1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
|
# encoding: utf-8
"""
Export (not only) geometry to various formats.
"""
from yade.wrapper import *
from yade import utils, Matrix3, Vector3
#textExt===============================================================
def textExt(filename, format='x_y_z_r', comment='', mask=-1, attrs=[]):
"""Save sphere coordinates and other parameters into a text file in specific format. Non-spherical bodies are silently skipped. Users can add here their own specific format, giving meaningful names. The first file row will contain the format name. Be sure to add the same format specification in ymport.textExt.
:param string filename: the name of the file, where sphere coordinates will be exported.
:param string format: the name of output format. Supported 'x_y_z_r'(default), 'x_y_z_r_matId', 'x_y_z_r_attrs' (use proper comment)
:param string comment: the text, which will be added as a comment at the top of file. If you want to create several lines of text, please use '\\\\n#' for next lines. With 'x_y_z_r_attrs' format, the last (or only) line should consist of column headers of quantities passed as attrs (1 comment word for scalars, 3 comment words for vectors and 9 comment words for matrices)
:param int mask: export only spheres with the corresponding mask export only spheres with the corresponding mask
:param [str] attrs: attributes to be exported with 'x_y_z_r_attrs' format. Each str in the list is evaluated for every body exported with body=b (i.e. 'b.state.pos.norm()' would stand for distance of body from coordinate system origin)
:return: number of spheres which were written.
:rtype: int
"""
O = Omega()
try:
out = open(filename, 'w')
except:
raise RuntimeError("Problem to write into the file")
count = 0
# TODO use output=[] instrad of ''???
output = ''
outputVel = ''
if (format != 'liggghts_in'):
output = '#format ' + format + '\n'
if (comment):
if format == 'x_y_z_r_attrs':
cmts = comment.split('\n')
for cmt in cmts[:-1]:
output += cmt
output += '# x y z r ' + cmts[-1] + '\n'
else:
output += '# ' + comment + '\n'
minCoord = Vector3.Zero
maxCoord = Vector3.Zero
maskNumber = []
for b in O.bodies:
try:
if (isinstance(b.shape, Sphere) and ((mask < 0) or ((mask & b.mask) > 0))):
if (format == 'x_y_z_r'):
output += ('%g\t%g\t%g\t%g\n' % (b.state.pos[0], b.state.pos[1], b.state.pos[2], b.shape.radius))
elif (format == 'x_y_z_r_matId'):
output += ('%g\t%g\t%g\t%g\t%d\n' % (b.state.pos[0], b.state.pos[1], b.state.pos[2], b.shape.radius, b.material.id))
elif (format == 'x_y_z_r_attrs'):
output += ('%g\t%g\t%g\t%g' % (b.state.pos[0], b.state.pos[1], b.state.pos[2], b.shape.radius))
for cmd in attrs:
v = eval(cmd)
if isinstance(v, (int, float)):
output += '\t%g' % v
elif isinstance(v, Vector3):
output += '\t%g\t%g\t%g' % tuple(v[i] for i in range(3))
elif isinstance(v, Matrix3):
output += '\t%g' % tuple(v[i] for i in range(9))
output += '\n'
elif (format == 'id_x_y_z_r_matId'):
output += (
'%d\t%g\t%g\t%g\t%g\t%d\n' %
(b.id, b.state.pos[0], b.state.pos[1], b.state.pos[2], b.shape.radius, b.material.id)
)
elif (format == 'jointedPM'):
output += (
'%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\t%g\n' % (
b.id, b.state.onJoint, b.state.joint, b.state.jointNormal1[0], b.state.jointNormal1[1],
b.state.jointNormal1[2], b.state.jointNormal2[0], b.state.jointNormal2[1], b.state.jointNormal2[2],
b.state.jointNormal3[0], b.state.jointNormal3[1], b.state.jointNormal3[2]
)
)
elif (format == 'liggghts_in'):
output += (
'%g %g %g %g %g %g %g\n' %
(count + 1, b.mask, b.shape.radius, b.material.density, b.state.pos[0], b.state.pos[1], b.state.pos[2])
)
outputVel += (
'%g %g %g %g %g %g %g\n' % (
count + 1, b.state.vel[0], b.state.vel[1], b.state.vel[2], b.state.angVel[0], b.state.angVel[1],
b.state.angVel[2]
)
)
else:
raise RuntimeError("Please, specify a correct format output!")
count += 1
if (count == 1):
minCoord = b.state.pos - Vector3(b.shape.radius, b.shape.radius, b.shape.radius)
maxCoord = b.state.pos + Vector3(b.shape.radius, b.shape.radius, b.shape.radius)
else:
minCoord = Vector3(
min(minCoord[0], b.state.pos[0] - b.shape.radius), min(minCoord[1], b.state.pos[1] - b.shape.radius),
min(minCoord[2], b.state.pos[2] - b.shape.radius)
)
maxCoord = Vector3(
max(maxCoord[0], b.state.pos[0] + b.shape.radius), max(maxCoord[1], b.state.pos[1] + b.shape.radius),
max(minCoord[2], b.state.pos[2] + b.shape.radius)
)
if b.mask not in maskNumber:
maskNumber.append(b.mask)
except AttributeError:
pass
if (format == 'liggghts_in'):
outputHeader = 'LIGGGHTS Description\n\n'
outputHeader += '%d atoms\n%d atom types\n\n' % (count, len(maskNumber))
outputHeader += '%g %g xlo xhi\n%g %g ylo yhi\n%g %g zlo zhi\n\n' % (
minCoord[0], maxCoord[0], minCoord[1], maxCoord[1], minCoord[2], maxCoord[2]
)
output = outputHeader + 'Atoms\n\n' + output + '\nVelocities\n\n' + outputVel
out.write(output)
out.close()
return count
#textClumps===============================================================
def textClumps(filename, format='x_y_z_r_clumpId', comment='', mask=-1):
"""Save clumps-members into a text file. Non-clumps members are bodies are silently skipped.
:param string filename: the name of the file, where sphere coordinates will be exported.
:param string comment: the text, which will be added as a comment at the top of file. If you want to create several lines of text, please use '\\\\n#' for next lines.
:param int mask: export only spheres with the corresponding mask export only spheres with the corresponding mask
:return: number of clumps, number of spheres which were written.
:rtype: int
"""
O = Omega()
try:
out = open(filename, 'w')
except:
raise RuntimeError("Problem to write into the file")
count = 0
countClumps = 0
output = ''
output = '#format x_y_z_r_clumpId\n'
if (comment):
output += '# ' + comment + '\n'
minCoord = Vector3.Zero
maxCoord = Vector3.Zero
maskNumber = []
for bC in O.bodies:
if bC.isClump:
keys = list(bC.shape.members.keys())
countClumps += 1
for ii in keys:
try:
b = O.bodies[ii]
if (isinstance(b.shape, Sphere) and ((mask < 0) or ((mask & b.mask) > 0))):
output += ('%g\t%g\t%g\t%g\t%g\n' % (b.state.pos[0], b.state.pos[1], b.state.pos[2], b.shape.radius, bC.id))
count += 1
except AttributeError:
pass
out.write(output)
out.close()
return countClumps, count
#textPolyhedra===============================================================
def textPolyhedra(fileName, comment='', mask=-1, explanationComment=True, attrs=[]):
"""Save polyhedra into a text file. Non-polyhedra bodies are silently skipped.
:param string filename: the name of the output file
:param string comment: the text, which will be added as a comment at the top of file. If you want to create several lines of text, please use '\\\\n#' for next lines.
:param int mask: export only polyhedra with the corresponding mask
:param str explanationComment: inclde explanation of format to the beginning of file
:return: number of polyhedra which were written.
:rtype: int
"""
count = 0
f = open(fileName, 'w')
f.writelines(
'# %s\n' % l for l in [
'YADE export of polyhedra.',
'Each polyhedron export contains first line with id, nuber of vertices and number of surfaces.',
'x,y,z coordinates of each vertex follows (each vertex on separate line).',
'ids if vertices of individual surfaces follows (numbering from 0, each surface on separate line).',
'',
'Example of tetrahedron and cube with random ids:',
'23 4 4',
'0.1 0.2 0.3',
'1.3 0.1 -0.1',
'-0.2 1.2 0',
'0 -0.1 1.5',
'0 2 1',
'0 3 2',
'0 1 3',
'1 2 3',
'65 8 6',
'4 0 0',
'5 0 0',
'4 1 0',
'5 1 0',
'4 0 1',
'5 0 1',
'4 1 1',
'5 1 1',
'0 2 3 1',
'0 1 5 4',
'1 3 7 5',
'3 2 6 7',
'2 0 4 6',
'4 5 7 6',
'',
]
)
if comment:
f.write('#\n# %s\n' % comment)
for b in O.bodies:
if not isinstance(b.shape, Polyhedra) or not mask & b.mask:
continue
count += 1
vertices = [b.state.pos + b.state.ori * v for v in b.shape.v]
surfaces = b.shape.GetSurfaces()
strAttrs = ''
if attrs:
for cmd in attrs:
v = eval(cmd)
if isinstance(v, (int, float)):
strAttrs += ' %g' % v
elif isinstance(v, Vector3):
strAttrs += ' %g %g %g' % tuple(v[i] for i in range(3))
elif isinstance(v, Matrix3):
strAttrs += ' %g' % tuple(v[i] for i in range(9))
f.write('%d %d %d%s\n' % (b.id, len(vertices), len(surfaces), strAttrs))
f.writelines('%.8e %.8e %.8e\n' % (v[0], v[1], v[2]) for v in vertices)
f.writelines(' '.join(str(i) for i in surface) + '\n' for surface in surfaces)
f.close()
return count
#VTKWriter===============================================================
class VTKWriter(object):
"""
USAGE:
create object vtk_writer = VTKWriter('base_file_name'),
add to engines PyRunner with command='vtk_writer.snapshot()'
"""
def __init__(self, baseName='snapshot', startSnap=0):
self.snapCount = startSnap
self.baseName = baseName
def snapshot(self):
import xml.dom.minidom
#import xml.dom.ext # python 2.5 and later
positions = []
radii = []
for b in Omega().bodies:
if b.mold.name == 'Sphere':
positions.append(b.phys['se3'][0])
radii.append(b.mold['radius'])
# Document and root element
doc = xml.dom.minidom.Document()
root_element = doc.createElementNS("VTK", "VTKFile")
root_element.setAttribute("type", "UnstructuredGrid")
root_element.setAttribute("version", "0.1")
root_element.setAttribute("byte_order", "LittleEndian")
doc.appendChild(root_element)
# Unstructured grid element
unstructuredGrid = doc.createElementNS("VTK", "UnstructuredGrid")
root_element.appendChild(unstructuredGrid)
# Piece 0 (only one)
piece = doc.createElementNS("VTK", "Piece")
piece.setAttribute("NumberOfPoints", str(len(positions)))
piece.setAttribute("NumberOfCells", "0")
unstructuredGrid.appendChild(piece)
### Points ####
points = doc.createElementNS("VTK", "Points")
piece.appendChild(points)
# Point location data
point_coords = doc.createElementNS("VTK", "DataArray")
point_coords.setAttribute("type", "Float32")
point_coords.setAttribute("format", "ascii")
point_coords.setAttribute("NumberOfComponents", "3")
points.appendChild(point_coords)
string = str()
for x, y, z in positions:
string += repr(x) + ' ' + repr(y) + ' ' + repr(z) + ' '
point_coords_data = doc.createTextNode(string)
point_coords.appendChild(point_coords_data)
#### Cells ####
cells = doc.createElementNS("VTK", "Cells")
piece.appendChild(cells)
# Cell locations
cell_connectivity = doc.createElementNS("VTK", "DataArray")
cell_connectivity.setAttribute("type", "Int32")
cell_connectivity.setAttribute("Name", "connectivity")
cell_connectivity.setAttribute("format", "ascii")
cells.appendChild(cell_connectivity)
# Cell location data
connectivity = doc.createTextNode("0")
cell_connectivity.appendChild(connectivity)
cell_offsets = doc.createElementNS("VTK", "DataArray")
cell_offsets.setAttribute("type", "Int32")
cell_offsets.setAttribute("Name", "offsets")
cell_offsets.setAttribute("format", "ascii")
cells.appendChild(cell_offsets)
offsets = doc.createTextNode("0")
cell_offsets.appendChild(offsets)
cell_types = doc.createElementNS("VTK", "DataArray")
cell_types.setAttribute("type", "UInt8")
cell_types.setAttribute("Name", "types")
cell_types.setAttribute("format", "ascii")
cells.appendChild(cell_types)
types = doc.createTextNode("1")
cell_types.appendChild(types)
#### Data at Points ####
point_data = doc.createElementNS("VTK", "PointData")
piece.appendChild(point_data)
# Particle radii
if len(radii) > 0:
radiiNode = doc.createElementNS("VTK", "DataArray")
radiiNode.setAttribute("Name", "radii")
radiiNode.setAttribute("type", "Float32")
radiiNode.setAttribute("format", "ascii")
point_data.appendChild(radiiNode)
string = str()
for r in radii:
string += repr(r) + ' '
radiiData = doc.createTextNode(string)
radiiNode.appendChild(radiiData)
#### Cell data (dummy) ####
cell_data = doc.createElementNS("VTK", "CellData")
piece.appendChild(cell_data)
# Write to file and exit
outFile = open(self.baseName + '%08d' % self.snapCount + '.vtu', 'w')
# xml.dom.ext.PrettyPrint(doc, file)
doc.writexml(outFile, newl='\n')
outFile.close()
self.snapCount += 1
#text===============================================================
def text(filename, mask=-1):
"""Save sphere coordinates into a text file; the format of the line is: x y z r. Non-spherical bodies are silently skipped. Example added to examples/regular-sphere-pack/regular-sphere-pack.py
:param string filename: the name of the file, where sphere coordinates will be exported.
:param int mask: export only spheres with the corresponding mask
:return: number of spheres which were written.
:rtype: int
"""
return (textExt(filename=filename, format='x_y_z_r', mask=mask))
#VTKExporter===============================================================
class VTKExporter(object):
"""Class for exporting data to `VTK Simple Legacy File <https://www.vtk.org/VTK/img/file-formats.pdf>`_ (for example if, for some reason, you are not able to use :yref:`VTKRecorder`).
Supported export of:
* spheres
* facets
* polyhedra
* PotentialBlocks
* interactions
* contact points
* periodic cell
Usage:
* create object ``vtkExporter = VTKExporter('baseFileName')``,
* add to ``O.engines`` a ``PyRunner`` with ``command='vtkExporter.exportSomething(...)'``
* alternatively, just use ``vtkExporter.exportSomething(...)`` at the end of the script for instance
Example: :ysrc:`examples/test/vtk-exporter/vtkExporter.py`, :ysrc:`examples/test/unv-read/unvReadVTKExport.py`.
:param string baseName: name of the exported files. The files would be named, e.g., ``baseName-spheres-snapNb.vtk`` or ``baseName-facets-snapNb.vtk``
:param int startSnap: the numbering of files will start form ``startSnap``
"""
# TODO comments
def __init__(self, baseName, startSnap=0):
self.spheresSnapCount = startSnap
self.facetsSnapCount = startSnap
self.intrsSnapCount = startSnap
self.polyhedraSnapCount = startSnap
self.PotentialBlocksSnapCount = startSnap
self.contactPointsSnapCount = startSnap
self.baseName = baseName
# auxiliary functions
def _checkWhatArgumentIsDict(self, what, funName, whatName="what"):
"""An auxiliary function, to be deleted when the 'deprecation period' is over"""
if isinstance(what, (tuple, list)):
raise DeprecationWarning("{}: '{}' argument is no longer list/tuple, but dict".format(funName, whatName))
assert isinstance(what, dict)
def _warn(self, msg):
print("Warning (yade.export.VTKExporter): " + msg)
def _error(self, msg):
print("ERROR (yade.export.VTKExporter): " + msg)
def _getBodies(self, ids, type):
allIds = False
if isinstance(ids, str) and ids.lower() == 'all':
ids = range(len(O.bodies))
allIds = True
bodies = []
for i in ids:
b = O.bodies[i]
if not b:
continue
if not isinstance(b.shape, type):
if not allIds:
self._warn("body %d is not of type %s" % (i, type))
continue
bodies.append(b)
if not bodies:
self._warn("no bodies...")
return bodies
def _getInteractions(self, ids):
if isinstance(ids, str) and ids.lower() == 'all':
ids = [(i.id1, i.id2) for i in O.interactions]
intrs = [(i, j) for i, j in ids]
if not intrs:
self._warn("no interactions ...")
return intrs
def exportSpheres(self, ids='all', what={}, comment="comment", numLabel=None, useRef=False):
"""exports spheres (positions and radius) and defined properties.
:param [int]|"all" ids: if "all", then export all spheres, otherwise only spheres from integer list
:param dictionary what: which additional quantities (other than the position and the radius) to export. parameter is name->command dictionary. Name is string under which it is save to vtk, command is string to evaluate. Note that the bodies are labeled as b in this function. Scalar, vector and tensor variables are supported. For example, to export velocity (with name particleVelocity) and the distance form point (0,0,0) (named as dist) you should write: ``what=dict(particleVelocity='b.state.vel',dist='b.state.pos.norm()', ... )``
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
:param bool useRef: if False (default), use current position of the spheres for export, use reference position otherwise
"""
# get list of bodies to export
bodies = self._getBodies(ids, Sphere)
if not bodies:
return
nBodies = len(bodies)
# output file
fName = self.baseName + '-spheres-%08d' % (numLabel if numLabel else self.spheresSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, nBodies))
# write position of spheres
for b in bodies:
pos = b.state.refPos if useRef else b.state.pos if not O.periodic else O.cell.wrap(b.state.pos)
outFile.write("%g %g %g\n" % (pos[0], pos[1], pos[2]))
# write radius
outFile.write("\nPOINT_DATA %d\nSCALARS radius double 1\nLOOKUP_TABLE default\n" % (nBodies))
for b in bodies:
outFile.write("%g\n" % (b.shape.radius))
# checks what argument
self._checkWhatArgumentIsDict(what, "exportSpheres")
# write additional data from 'what' param
for name, command in what.items(): # for each name...
test = eval(command) # ... eval one example to see what type (float, Vector3, Matrix3) the result is ...
# ... and write appropriate header line and loop over all bodies and write appropriate vtk line(s)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for b in bodies:
t = eval(command)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
elif isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for b in bodies:
v = eval(command)
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
elif isinstance(test, (int, float)):
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for b in bodies:
outFile.write("%g\n" % (eval(command)))
else:
self._warn("exportSpheres: wrong 'what' parameter, vtk output might be corrupted'")
outFile.close()
self.spheresSnapCount += 1
def exportFacets(self, ids='all', what={}, comment="comment", numLabel=None):
"""
exports facets (positions) and defined properties. Facets are exported with multiplicated nodes
:param [int]|"all" ids: if "all", then export all facets, otherwise only facets from integer list
:param dictionary what: see :meth:`exportSpheres`
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
"""
# get list of bodies to export
bodies = self._getBodies(ids, Facet)
if not bodies:
return
nBodies = len(bodies)
# output file
fName = self.baseName + '-facets-%08d' % (numLabel if numLabel else self.facetsSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, 3 * nBodies))
# write vertices
for b in bodies:
p = b.state.pos
o = b.state.ori
s = b.shape
pt1 = p + o * s.vertices[0]
pt2 = p + o * s.vertices[1]
pt3 = p + o * s.vertices[2]
outFile.write("%g %g %g\n" % (pt1[0], pt1[1], pt1[2]))
outFile.write("%g %g %g\n" % (pt2[0], pt2[1], pt2[2]))
outFile.write("%g %g %g\n" % (pt3[0], pt3[1], pt3[2]))
# write facets
outFile.write("\nPOLYGONS %d %d\n" % (nBodies, 4 * nBodies))
i = 0
for b in bodies:
outFile.write("3 %d %d %d\n" % (i, i + 1, i + 2))
i += 3
# checks what argument
self._checkWhatArgumentIsDict(what, "exportFacets")
# write additional data from 'what' param
if what:
outFile.write("\nCELL_DATA %d" % (nBodies))
# see exportSpheres for explanation of this code block
for name, command in what.items():
test = eval(command)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for b in bodies:
t = eval(command)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
if isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for b in bodies:
v = eval(command)
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
else:
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for b in bodies:
outFile.write("%g\n" % (eval(command)))
outFile.close()
self.facetsSnapCount += 1
def exportFacetsAsMesh(self, ids='all', connectivityTable=None, what={}, comment="comment", numLabel=None):
"""
exports facets (positions) and defined properties. Facets are exported as mesh (not with multiplicated nodes). Therefore additional parameters connectivityTable is needed
:param [int]|"all" ids: if "all", then export all facets, otherwise only facets from integer list
:param dictionary what: see :meth:`exportSpheres`
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
:param [(float,float,float)|Vector3] nodes: list of coordinates of nodes
:param [(int,int,int)] connectivityTable: list of node ids of individual elements (facets)
"""
# get list of bodies to export
bodies = self._getBodies(ids, Facet)
ids = [b.id for b in bodies]
if not bodies:
return
nBodies = len(bodies)
if connectivityTable is None:
self._error("'connectivityTable' not specified")
return
if nBodies != len(connectivityTable):
self._error("length of 'connectivityTable' does not match length of 'ids', no export")
return
# nodes
nodes = [Vector3.Zero for i in range(max(max(e) for e in connectivityTable) + 1)]
for id, e in zip(ids, connectivityTable):
b = bodies[id]
p = b.state.pos
o = b.state.ori
s = b.shape
pt1 = p + o * s.vertices[0]
pt2 = p + o * s.vertices[1]
pt3 = p + o * s.vertices[2]
nodes[e[0]] = pt1
nodes[e[1]] = pt2
nodes[e[2]] = pt3
# output file
fName = self.baseName + '-facets-%08d' % (numLabel if numLabel else self.facetsSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, len(nodes)))
# write vertices
for node in nodes:
outFile.write("%g %g %g\n" % (node[0], node[1], node[2]))
# write facets
outFile.write("\nPOLYGONS %d %d\n" % (len(connectivityTable), 4 * len(connectivityTable)))
for e in connectivityTable:
outFile.write("3 %d %d %d\n" % e)
# checks what argument
self._checkWhatArgumentIsDict(what, "exportFacetsAsMesh")
# write additional data from 'what' param
if what:
outFile.write("\nCELL_DATA %d" % (nBodies))
# see exportSpheres for explanation of this code block
for name, command in what.items():
test = eval(command)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for b in bodies:
t = eval(command)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
if isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for b in bodies:
v = eval(command)
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
else:
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for b in bodies:
outFile.write("%g\n" % (eval(command)))
outFile.close()
self.facetsSnapCount += 1
def exportInteractions(self, ids='all', what={}, verticesWhat={}, comment="comment", numLabel=None, useRef=False):
"""exports interactions and defined properties.
:param [(int,int)]|"all" ids: if "all", then export all interactions, otherwise only interactions from (int,int) list
:param dictionary what: what to export. parameter is a name->command dictionary. Name is string under which it is saved to vtk, command is string to evaluate. Note that the interactions are labeled as i in this function. Scalar, vector and tensor variables are supported. For example, to export the stiffness difference (named as ``dStiff``) from a certain value (1e9) you should write: ``what=dict(dStiff='i.phys.kn-1e9', ... )``
:param dictionary verticesWhat: what to export on connected bodies. Bodies are labeled as ``b`` (or ``b1`` and ``b2`` if you need to treat both bodies differently)
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
:param bool useRef: if False (default), use current position of the bodies for export, use reference position otherwise
"""
# get list of interactions to export
intrs = self._getInteractions(ids)
if not intrs:
return
nIntrs = len(intrs)
# output file
fName = self.baseName + '-intrs-%08d' % (numLabel if numLabel else self.intrsSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, 2 * nIntrs))
# write coords of intrs bodies (also taking into account possible periodicity
for ii, jj in intrs:
i = O.interactions[ii, jj]
pos = O.bodies[ii].state.refPos if useRef else O.bodies[ii].state.pos
outFile.write("%g %g %g\n" % (pos[0], pos[1], pos[2]))
pos = (O.bodies[jj].state.refPos if useRef else O.bodies[jj].state.pos) + (O.cell.hSize * i.cellDist if O.periodic else Vector3.Zero)
outFile.write("%g %g %g\n" % (pos[0], pos[1], pos[2]))
# write interactions as lines
outFile.write("LINES %d %d\n" % (nIntrs, 3 * nIntrs))
for j, i in enumerate(intrs):
outFile.write("2 %d %d\n" % (2 * j, 2 * j + 1))
# checks what argument
self._checkWhatArgumentIsDict(what, "exportInteractions")
# write additional data from 'what' param
if what:
outFile.write("\nCELL_DATA %d\n" % (nIntrs))
for i in O.interactions:
if i.isReal:
break
# see exportSpheres for explanation of this code block
for name, command in what.items():
test = eval(command)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for ii, jj in intrs:
i = O.interactions[ii, jj]
t = eval(command)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
elif isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for ii, jj in intrs:
i = O.interactions[ii, jj]
v = eval(command)
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
elif isinstance(test, (int, float)):
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for ii, jj in intrs:
i = O.interactions[ii, jj]
outFile.write("%g\n" % (eval(command)))
else:
self._warn("exportInteractions: wrong 'what' parameter, vtk output might be corrupted")
# checks verticesWhat argument
self._checkWhatArgumentIsDict(verticesWhat, "exportInteractions", "verticesWhat")
# write additional data of bodies
if verticesWhat:
outFile.write("\nPOINT_DATA %d\n" % (2 * nIntrs))
b = b1 = b2 = O.bodies[0]
# see exportSpheres for explanation of this code block
for name, vWhat in verticesWhat.items():
lw = len(vWhat)
if lw == 1:
command = vWhat
test = eval(command)
elif lw == 2:
command1, command2 = vWhat
test = eval(command1)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for ii, jj in intrs:
i = O.interactions[ii, jj]
b1 = O.bodies[ii]
b2 = O.bodies[jj]
if lw == 2:
for b in (b1, b2):
t = eval(command)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
elif lw == 3:
t1 = eval(command1)
t2 = eval(command2)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t1[0, 0], t1[0, 1], t1[0, 2], t1[1, 0], t1[1, 1], t1[1, 2], t1[2, 0], t1[2, 1], t1[2, 2])
)
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t2[0, 0], t2[0, 1], t2[0, 2], t2[1, 0], t2[1, 1], t2[1, 2], t2[2, 0], t2[2, 1], t2[2, 2])
)
elif isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for ii, jj in intrs:
i = O.interactions[ii, jj]
b1 = O.bodies[ii]
b2 = O.bodies[jj]
if lw == 2:
for b in (b1, b2):
v = eval(command)
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
elif lw == 3:
v1 = eval(command1)
v2 = eval(command2)
outFile.write("%g %g %g\n" % (v1[0], v1[1], v1[2]))
outFile.write("%g %g %g\n" % (v2[0], v2[1], v2[2]))
elif isinstance(test, (int, float)):
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for ii, jj in intrs:
i = O.interactions[ii, jj]
b1 = O.bodies[ii]
b2 = O.bodies[jj]
if lw == 2:
for b in (b1, b2):
outFile.write("%g\n" % (eval(command)))
elif lw == 3:
outFile.write("%g\n" % (eval(command1)))
outFile.write("%g\n" % (eval(command2)))
else:
self._warn("exportInteractions: wrong 'what' parameter, vtk output might be corrupted")
outFile.close()
self.intrsSnapCount += 1
def exportContactPoints(self, ids='all', what={}, useRef={}, comment="comment", numLabel=None):
"""exports contact points (CPs) and defined properties.
:param [(int,int)] ids: see :meth:`exportInteractions`
:param dictionary what: see :meth:`exportInteractions`
:param bool useRef: see :meth:`exportInteractions`
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
"""
# get list of interactions to export
if useRef:
useRef = dict(((i.id1, i.id2), v) for i, v in useRef.items())
intrs = list(useRef.keys())
else:
intrs = self._getInteractions(ids)
if not intrs:
return
nIntrs = len(intrs)
# output file
fName = self.baseName + '-cps-%08d' % (numLabel if numLabel else self.contactPointsSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, nIntrs))
# write coords of contact points
for ii, jj in intrs:
if useRef:
pos = useRef[(ii, jj)]
else:
i = O.interactions[ii, jj]
pos = i.geom.contactPoint
outFile.write("%g %g %g\n" % (pos[0], pos[1], pos[2]))
# checks what argument
self._checkWhatArgumentIsDict(what, "exportContactPoints")
# see exportSpheres for explanation of this code block
if what:
outFile.write("\nPOINT_DATA %d\n" % (nIntrs))
for i in O.interactions:
if i.isReal:
break
for name, command in what.items():
test = eval(command)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for ii, jj in intrs:
try:
i = O.interactions[ii, jj]
t = eval(command)
except IndexError:
t = Matrix3.Zero # TODO?
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
elif isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for ii, jj in intrs:
try:
i = O.interactions[ii, jj]
v = eval(command)
except IndexError:
v = Vector3.Zero # TODO?
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
elif isinstance(test, (int, float)):
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for ii, jj in intrs:
try:
i = O.interactions[ii, jj]
f = eval(command)
except IndexError:
f = 0. # TODO?
outFile.write("%g\n" % (f))
else:
self._warn("exportContacPoints: wrong 'what' parameter, vtk output might be corrupted'")
outFile.close()
self.contactPointsSnapCount += 1
def exportPeriodicCell(self, comment="comment", numLabel=None):
"""exports the :yref:`Cell` geometry for periodic simulations.
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
"""
if not O.periodic:
self._warn("exportPeriodicCell: scene is not periodic, no export...")
return
hSize = O.cell.hSize
fName = self.baseName + '-periCell-%08d' % (numLabel if numLabel else self.intrsSnapCount) + '.vtk'
outFile = open(fName, 'w')
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET UNSTRUCTURED_GRID\nPOINTS 8 double\n" % (comment))
vertices = [
hSize * Vector3(0, 0, 1),
hSize * Vector3(0, 1, 1),
hSize * Vector3(1, 1, 1),
hSize * Vector3(1, 0, 1),
hSize * Vector3(0, 0, 0),
hSize * Vector3(0, 1, 0),
hSize * Vector3(1, 1, 0),
hSize * Vector3(1, 0, 0),
]
for v in vertices:
outFile.write('%g %g %g\n' % (v[0], v[1], v[2]))
outFile.write('\nCELLS 1 9\n')
outFile.write('8 0 1 2 3 4 5 6 7\n')
outFile.write('\nCELL_TYPES 1\n12\n')
outFile.close()
def exportPolyhedra(self, ids='all', what={}, comment="comment", numLabel=None, useRef=False):
"""Exports polyhedrons and defined properties.
:param ids: if "all", then export all polyhedrons, otherwise only polyhedrons from integer list
:type ids: [int] | "all"
:param dictionary what: which additional quantities (in addition to the positions) to export. parameter is name->command dictionary. Name is string under which it is saved to vtk, command is string to evaluate. Note that the bodies are labeled as b in this function. Scalar, vector and tensor variables are supported. For example, to export velocity (named as particleVelocity) and the distance from point (0,0,0) (named as dist) you should write: ``what=dict(particleVelocity='b.state.vel',dist='b.state.pos.norm()', ... )``
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
"""
# TODO useRef?
# get list of bodies to export
bodies = self._getBodies(ids, Polyhedra) # TODO
if not bodies:
return
# number of vertices
nVertices = sum(len(b.shape.v) for b in bodies)
# export polyherda as a set of triangle faces
bodyFaces = []
for b in bodies:
ff = []
f = b.shape.GetSurfaceTriangulation()
for i in range(len(f) // 3):
ff.append([f[3 * i + j] for j in (0, 1, 2)])
bodyFaces.append(ff)
# output file
nFaces = sum(len(f) for f in bodyFaces)
fName = self.baseName + '-polyhedra-%08d' % (numLabel if numLabel else self.polyhedraSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, nVertices))
# write position of vertices
if useRef:
dspls = []
for b in bodies:
bPos = b.state.pos
bOri = b.state.ori
brPos = b.state.refPos
brOri = b.state.refOri
for v in b.shape.v:
rPos = brPos + brOri * v
pos = bPos + bOri * v
outFile.write("%g %g %g\n" % (rPos[0], rPos[1], rPos[2]))
dspls.append(pos - rPos)
else:
for b in bodies:
bPos = b.state.pos
bOri = b.state.ori
for v in b.shape.v:
pos = bPos + bOri * v
outFile.write("%g %g %g\n" % (pos[0], pos[1], pos[2]))
# write triangle faces
outFile.write("\nPOLYGONS %d %d\n" % (nFaces, 4 * nFaces))
j = 0
for i, b in enumerate(bodies):
faces = bodyFaces[i]
for face in faces:
t = tuple([j + ii for ii in face])
outFile.write("3 %d %d %d\n" % t)
j += len(b.shape.v)
# checks what argument
self._checkWhatArgumentIsDict(what, "exportPolyhedra")
# write additional data from 'what' param
if useRef:
outFile.write("\nPOINT_DATA %d\n" % (len(dspls)))
outFile.write("\nVECTORS displacement double\n")
for v in dspls:
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
if what:
outFile.write("\nCELL_DATA %d" % (nFaces))
# see exportSpheres for explanation of this code block
for name, command in what.items():
test = eval(command)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for i, b in enumerate(bodies):
t = eval(command)
for f in bodyFaces[i]:
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
elif isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for i, b in enumerate(bodies):
v = eval(command)
for f in bodyFaces[i]:
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
elif isinstance(test, (int, float)):
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for i, b in enumerate(bodies):
e = eval(command)
for f in bodyFaces[i]:
outFile.write("%g\n" % e)
else:
self._warn("exportPolyhedra: wrong 'what' parameter, vtk output might be corrupted")
outFile.close()
self.polyhedraSnapCount += 1
def exportPotentialBlocks(self, ids='all', what={}, comment="comment", numLabel=None, useRef=False):
"""Exports Potential Blocks and defined properties.
:param ids: if "all", then export all Potential Blocks, otherwise only Potential Blocks from integer list
:type ids: [int] | "all"
:param dictionary what: which additional quantities (in addition to the positions) to export. parameter is name->command dictionary. Name is string under which it is saved to vtk, command is string to evaluate. Note that the bodies are labeled as b in this function. Scalar, vector and tensor variables are supported. For example, to export velocity (named as particleVelocity) and the distance from point (0,0,0) (named as dist) you should write: ``what=dict(particleVelocity='b.state.vel',dist='b.state.pos.norm()', ... )``
:param string comment: comment to add to vtk file
:param int numLabel: number of file (e.g. time step), if unspecified, the last used value + 1 will be used
"""
# TODO useRef?
# get list of bodies to export
bodies = self._getBodies(ids, PotentialBlock) # TODO
if not bodies:
return
# number of vertices
nVertices = sum(len(b.shape.vertices) for b in bodies)
# export triangulation of particle face
bodyFaces = []
for b in bodies:
ff = []
for f in b.shape.connectivity:
for i in range(1, len(f) - 1):
ff.append([f[0], f[i], f[i + 1]])
bodyFaces.append(ff)
# output file
nFaces = sum(len(f) for f in bodyFaces)
fName = self.baseName + '-PotentialBlocks-%08d' % (numLabel if numLabel else self.PotentialBlocksSnapCount) + '.vtk'
outFile = open(fName, 'w')
# head
outFile.write("# vtk DataFile Version 3.0.\n%s\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n" % (comment, nVertices))
# write position of vertices
if useRef:
dspls = []
for b in bodies:
bPos = b.state.pos
bOri = b.state.ori
brPos = b.state.refPos
brOri = b.state.refOri
for v in b.shape.vertices:
rPos = brPos + brOri * v
pos = bPos + bOri * v
outFile.write("%g %g %g\n" % (rPos[0], rPos[1], rPos[2]))
dspls.append(pos - rPos)
else:
for b in bodies:
bPos = b.state.pos
bOri = b.state.ori
for v in b.shape.vertices:
pos = bPos + bOri * v
outFile.write("%g %g %g\n" % (pos[0], pos[1], pos[2]))
# write triangle faces
outFile.write("\nPOLYGONS %d %d\n" % (nFaces, 4 * nFaces))
j = 0
for i, b in enumerate(bodies):
faces = bodyFaces[i]
for face in faces:
t = tuple([j + ii for ii in face])
outFile.write("3 %d %d %d\n" % t)
j += len(b.shape.vertices)
# checks what argument
self._checkWhatArgumentIsDict(what, "exportPotentialBlocks")
# write additional data from 'what' param
if useRef:
outFile.write("\nPOINT_DATA %d\n" % (len(dspls)))
outFile.write("\nVECTORS displacement double\n")
for v in dspls:
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
if what:
outFile.write("\nCELL_DATA %d" % (nFaces))
# see exportSpheres for explanation of this code block
for name, command in what.items():
test = eval(command)
if isinstance(test, Matrix3):
outFile.write("\nTENSORS %s double\n" % (name))
for i, b in enumerate(bodies):
t = eval(command)
for f in bodyFaces[i]:
outFile.write(
"%g %g %g\n%g %g %g\n%g %g %g\n\n" %
(t[0, 0], t[0, 1], t[0, 2], t[1, 0], t[1, 1], t[1, 2], t[2, 0], t[2, 1], t[2, 2])
)
elif isinstance(test, Vector3):
outFile.write("\nVECTORS %s double\n" % (name))
for i, b in enumerate(bodies):
v = eval(command)
for f in bodyFaces[i]:
outFile.write("%g %g %g\n" % (v[0], v[1], v[2]))
elif isinstance(test, (int, float)):
outFile.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (name))
for i, b in enumerate(bodies):
e = eval(command)
for f in bodyFaces[i]:
outFile.write("%g\n" % e)
else:
self._warn("exportPotentialBlocks: wrong 'what' parameter, vtk output might be corrupted")
outFile.close()
self.PotentialBlocksSnapCount += 1
#gmshGeoExport===============================================================
def gmshGeo(filename, comment='', mask=-1, accuracy=-1):
"""Save spheres in geo-file for the following using in GMSH (http://www.geuz.org/gmsh/doc/texinfo/) program. The spheres can be there meshed.
:param string filename: the name of the file, where sphere coordinates will be exported.
:param int mask: export only spheres with the corresponding mask export only spheres with the corresponding mask
:param float accuracy: the accuracy parameter, which will be set for the poinst in geo-file. By default: 1./10. of the minimal sphere diameter.
:return: number of spheres which were exported.
:rtype: int
"""
O = Omega()
try:
out = open(filename, 'w')
except:
raise RuntimeError("Problem to write into the file")
count = 0
#out.write('#format \n')
# Find the minimal diameter
if (accuracy < 0.0):
dMin = -1.0
for b in O.bodies:
try:
if (isinstance(b.shape, Sphere) and ((mask < 0) or ((mask & b.mask) > 0))):
if (((dMin > 0.0) and (dMin > b.shape.radius * 2.0)) or (dMin < 0.0)):
dMin = b.shape.radius * 2.0
except AttributeError:
pass
accuracy = dMin / 10.0
# Export bodies
PTS = 0
CRS = 0
out.write('Acc = %g;\n' % (accuracy))
for b in O.bodies:
try:
if (isinstance(b.shape, Sphere) and ((mask < 0) or ((mask & b.mask) > 0))):
r = b.shape.radius
x = b.state.pos[0]
y = b.state.pos[1]
z = b.state.pos[2]
out.write('Rad = %g;\n' % (r))
out.write(
'Point(%d) = {%g, %g, %g, Acc};\n\
Point(%d) = {%g, %g, %g, Acc};\n\
Point(%d) = {%g, %g, %g, Acc};\n\
Point(%d) = {%g, %g, %g, Acc};\n\
Point(%d) = {%g, %g, %g, Acc};\n\
Point(%d) = {%g, %g, %g, Acc};\n\
Point(%d) = {%g, %g, %g, Acc};\n\n' % (
PTS + 1, x, y, z, PTS + 2, r + x, y, z, PTS + 3, -r + x, y, z, PTS + 4, x, y, r + z, PTS + 5, x, y, -r + z,
PTS + 6, x, r + y, z, PTS + 7, x, -r + y, z
)
)
out.write(
'\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n\
Circle(%d) = {%d, %d, %d};\n' % (
CRS + 1,
PTS + 4,
PTS + 1,
PTS + 6,
CRS + 2,
PTS + 6,
PTS + 1,
PTS + 5,
CRS + 3,
PTS + 6,
PTS + 1,
PTS + 3,
CRS + 4,
PTS + 3,
PTS + 1,
PTS + 7,
CRS + 5,
PTS + 7,
PTS + 1,
PTS + 5,
CRS + 6,
PTS + 7,
PTS + 1,
PTS + 2,
CRS + 7,
PTS + 2,
PTS + 1,
PTS + 6,
CRS + 8,
PTS + 7,
PTS + 1,
PTS + 4,
CRS + 9,
PTS + 2,
PTS + 1,
PTS + 5,
CRS + 10,
PTS + 5,
PTS + 1,
PTS + 3,
CRS + 11,
PTS + 3,
PTS + 1,
PTS + 4,
CRS + 12,
PTS + 4,
PTS + 1,
PTS + 2,
)
)
out.write(
'\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\
Line Loop(%d) = {%d, %d, %d}; Ruled Surface(%d) = {%d};\n\n\
' % (
(CRS + 13),
+(CRS + 1),
-(CRS + 7),
-(CRS + 12),
(CRS + 14),
(CRS + 13),
(CRS + 15),
+(CRS + 7),
+(CRS + 2),
-(CRS + 9),
(CRS + 16),
(CRS + 15),
(CRS + 17),
+(CRS + 2),
+(CRS + 10),
-(CRS + 3),
(CRS + 18),
(CRS + 17),
(CRS + 19),
+(CRS + 3),
+(CRS + 11),
+(CRS + 1),
(CRS + 20),
(CRS + 19),
(CRS + 21),
+(CRS + 8),
+(CRS + 12),
-(CRS + 6),
(CRS + 22),
(CRS + 21),
(CRS + 23),
+(CRS + 4),
+(CRS + 8),
-(CRS + 11),
(CRS + 24),
(CRS + 23),
(CRS + 25),
+(CRS + 5),
+(CRS + 10),
(CRS + 4),
(CRS + 26),
(CRS + 25),
(CRS + 27),
+(CRS + 6),
+(CRS + 9),
-(CRS + 5),
(CRS + 28),
(CRS + 27),
)
)
PTS += 7
CRS += 28
count += 1
except AttributeError:
pass
out.close()
return count
# external vtk manipulation ===============================================================
def text2vtk(inFileName, outFileName, comment="comment"):
"""Converts text file (created by :yref:`yade.export.textExt` function) into vtk file.
See :ysrc:`examples/test/paraview-spheres-solid-section/export_text.py` example
:param str inFileName: name of input text file
:param str outFileName: name of output vtk file
:param str comment: optional comment in vtk file
"""
with open(inFileName) as fin:
lines = [line for line in fin]
for i, line in enumerate(lines):
if not line.startswith("#"):
break
lineColumnNames = line
columns = lineColumnNames[1:].strip().split()[4:]
lines = lines[i:]
data = [line.split() for line in lines]
n = len(data)
with open(outFileName, "w") as fout:
fout.write('# vtk DataFile Version 3.0.\n{}\nASCII\n\nDATASET POLYDATA\nPOINTS {} double\n'.format(comment, n))
fout.writelines('{} {} {}\n'.format(*d) for d in data)
fout.write("\nPOINT_DATA {}\nSCALARS radius double 1\nLOOKUP_TABLE default\n".format(n))
fout.writelines('{}\n'.format(d[3]) for d in data)
for i, c in enumerate(columns):
fout.write("\nSCALARS {} double 1\nLOOKUP_TABLE default\n".format(c))
fout.writelines('{}\n'.format(d[4 + i]) for d in data)
def text2vtkSection(inFileName, outFileName, point, normal=(1, 0, 0)):
"""Converts section through spheres from text file (created by :yref:`yade.export.textExt` function) into vtk file.
See :ysrc:`examples/test/paraview-spheres-solid-section/export_text.py` example
:param str inFileName: name of input text file
:param str outFileName: name of output vtk file
:param Vector3|(float,float,float) point: coordinates of a point lying on the section plane
:param Vector3|(float,float,float) normal: normal vector of the section plane
"""
from math import sqrt
norm = sqrt(pow(normal[0], 2) + pow(normal[1], 2) + pow(normal[2], 2))
normal = (normal[0] / norm, normal[1] / norm, normal[2] / norm)
#
def computeD(point, normal):
# from point and normal computes parameter d in plane equation ax+by+cz+d=0
return -normal[0] * point[0] - normal[1] * point[1] - normal[2] * point[2]
def computeDistanceFromPlane(dat, point, normal, d=None):
# computes distance of sphere dat from plane (point,normal)
x, y, z = computeProjectionOnPlane(dat, point, normal, d)
cx, cy, cz = dat[0], dat[1], dat[2]
return sqrt(pow(x - cx, 2) + pow(y - cy, 2) + pow(z - cz, 2))
def computeProjectionOnPlane(self, point, normal, d=None):
# computes projection of sphere dat on plane (point,normal)
if d is None:
d = computeD(point, normal)
nx, ny, nz = normal[0], normal[1], normal[2]
cx, cy, cz = dat[0], dat[1], dat[2]
t = (-d - nx * cx - ny * cy - nz * cz) / (nx * nx + ny * ny + nz * nz)
x, y, z = cx + t * nx, cy + t * ny, cz + t * nz
return x, y, z
#
fin = open(inFileName)
lastLine = None
line = '#'
while line.startswith('#'):
lastLine = line
line = fin.readline()
columns = lastLine.split()[4:]
data = [[float(w) for w in line.split()] for line in fin]
fin.close()
#
d = computeD(point, normal)
circs = []
for dat in data:
r = dat[3]
dst = computeDistanceFromPlane(dat, point, normal, d)
if dst > r:
continue
x, y, z = computeProjectionOnPlane(dat, point, normal, d)
rNew = sqrt(r * r - dst * dst)
dNew = [x, y, z, rNew, r]
dNew.extend(dat[4:])
circs.append(dNew)
n = len(circs)
fout = open(outFileName, 'w')
fout.write('# vtk DataFile Version 3.0.\ncomment\nASCII\n\nDATASET POLYDATA\nPOINTS %d double\n' % (n))
fout.writelines('%g %g %g\n' % (c[0], c[1], c[2]) for c in circs)
fout.write("\nPOINT_DATA %d\nSCALARS radius double 1\nLOOKUP_TABLE default\n" % (n))
fout.writelines('%g\n' % (c[3]) for c in circs)
fout.write("\nSCALARS radiusOrig double 1\nLOOKUP_TABLE default\n")
fout.writelines('%g\n' % (c[4]) for c in circs)
fout.write("\nVECTORS normal double\n")
fout.writelines("%g %g %g\n" % normal for i in circs)
for i, c in enumerate(columns):
fout.write("\nSCALARS %s double 1\nLOOKUP_TABLE default\n" % (c))
fout.writelines('%s\n' % (c[4 + i]) for c in circs)
fout.close()
|