File: Clump.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (543 lines) | stat: -rw-r--r-- 25,195 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// (c) 2007-2010 Vaclav Smilauer <eudoxos@arcig.cz>

#include "Clump.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/BodyContainer.hpp>
#include <core/Scene.hpp>
#include <core/State.hpp>
#include <pkg/common/Sphere.hpp>

namespace yade { // Cannot have #include directive inside.

using math::max;
using math::min; // using inside .cpp file is ok.


YADE_PLUGIN((Clump));
CREATE_LOGGER(Clump);

boost::python::dict Clump::members_get() const
{
	boost::python::dict ret;
	for (const auto& b : members) {
		ret[b.first] = boost::python::make_tuple(b.second.position, b.second.orientation);
	}
	return ret;
}

void Clump::add(const shared_ptr<Body>& clumpBody, const shared_ptr<Body>& subBody)
{
	Body::id_t              subId = subBody->getId();
	const shared_ptr<Clump> clump = YADE_PTR_CAST<Clump>(clumpBody->shape);
	if (clump->members.count(subId) != 0)
		throw std::invalid_argument(
		        ("Body #" + boost::lexical_cast<string>(subId) + " is already part of this clump #" + boost::lexical_cast<string>(clumpBody->id))
		                .c_str());
	if (subBody->isClumpMember())
		throw std::invalid_argument(
		        ("Body #" + boost::lexical_cast<string>(subId) + " is already a clump member of #" + boost::lexical_cast<string>(subBody->clumpId))
		                .c_str());
	else if (subBody->isClump()) {
		const shared_ptr<Clump> subClump = YADE_PTR_CAST<Clump>(subBody->shape);
		for (const auto& mm : subClump->members) {
			const Body::id_t&       memberId = mm.first;
			Scene*                  scene(Omega::instance().getScene().get()); // get scene
			const shared_ptr<Body>& member = Body::byId(memberId, scene);
			assert(member->isClumpMember());
			member->clumpId          = clumpBody->id;
			clump->members[memberId] = Se3r(); // meaningful values will be put in by Clump::updateProperties
			                                   //LOG_DEBUG("Added body #"<<memberId->id<<" to clump #"<<clumpBody->id);
		}
		//LOG_DEBUG("Clump #"<<subClump->id<<" will be erased.");// see addToClump() in yadeWrapper.cpp
	} else {                                // subBody must be a standalone!
		clump->members[subId] = Se3r(); // meaningful values will be put in by Clump::updateProperties
		subBody->clumpId      = clumpBody->id;
	}
	clumpBody->clumpId = clumpBody->id; // just to make sure
	clumpBody->setBounded(false);       // disallow collisions with the clump itself
	if (subBody->isStandalone()) { LOG_DEBUG("Added body #" << subBody->id << " to clump #" << clumpBody->id); }
}

void Clump::del(const shared_ptr<Body>& clumpBody, const shared_ptr<Body>& subBody)
{
	// erase the subBody; removing body that is not part of the clump throws
	const shared_ptr<Clump> clump = YADE_PTR_CAST<Clump>(clumpBody->shape);
	if (clump->members.erase(subBody->id) != 1)
		throw std::invalid_argument(("Body #" + boost::lexical_cast<string>(subBody->id) + " not part of clump #"
		                             + boost::lexical_cast<string>(clumpBody->id) + "; not removing.")
		                                    .c_str());
	subBody->clumpId = Body::ID_NONE;
	LOG_DEBUG("Removed body #" << subBody->id << " from clump #" << clumpBody->id);
}

void Clump::addForceTorqueFromMembers(const State* clumpState, Scene* scene, Vector3r& F, Vector3r& T)
{
	for (const auto& mm : members) {
		const Body::id_t&       memberId = mm.first;
		const shared_ptr<Body>& member   = Body::byId(memberId, scene);
		assert(member->isClumpMember());
		State*          memberState = member->state.get();
		const Vector3r& f           = scene->forces.getForce(memberId);
		const Vector3r& t           = scene->forces.getTorque(memberId);
		F += f;
		T += t + (memberState->pos - clumpState->pos).cross(f);
	}
}

/*! Clump's se3 will be updated (origin at centroid and axes coincident with principal inertia axes) and subSe3 modified in such a way that members positions in world coordinates will not change.

	Note: velocities and angularVelocities of constituents are zeroed.

	OLD DOCS (will be cleaned up):

	-# Clump::members values and Clump::physicalParameters::se3 are invalid from this point
	-# M=0; S=vector3r(0,0,0); I=zero tensor; (ALL calculations are in world coordinates!)
	-# loop over Clump::members (position x_i, mass m_i, inertia at subBody's centroid I_i) [this loop will be replaced by numerical integration (rasterization) for the intersecting case; the rest will be the same]
		- M+=m_i
		- S+=m_i*x_i (local static moments are zero (centroid)
		- get inertia tensor of subBody in world coordinates, by rotating the principal (local) tensor against subBody->se3->orientation; then translate it to world origin (parallel axes theorem), then I+=I_i_world
	-# clumpPos=S/M
	-# translate aggregate's inertia tensor; parallel axes on I (R=clumpPos): I^c_jk=I'_jk-M*(delta_jk R.R - R_j*R_k) [http://en.wikipedia.org/wiki/Moments_of_inertia#Parallel_axes_theorem]
	-# eigen decomposition of I, get principal inertia and rotation matrix of the clump
	-# se3->orientation=quaternion(rotation_matrix); se3->position=clumpPos
	-#	update subSe3s

*/

void Clump::updateProperties(const shared_ptr<Body>& clumpBody, unsigned int discretization)
{
	LOG_DEBUG("Updating clump #" << clumpBody->id << " parameters");
	const shared_ptr<State> state(clumpBody->state);
	const shared_ptr<Clump> clump(YADE_PTR_CAST<Clump>(clumpBody->shape));

	if (clump->members.empty()) { throw std::runtime_error("Clump::updateProperties: clump has zero members."); }
	// trivial case
	if (clump->members.size() == 1) {
		LOG_DEBUG("Clump of size one will be treated specially.")
		MemberMap::iterator I       = clump->members.begin();
		shared_ptr<Body>    subBody = Body::byId(I->first);
		//const shared_ptr<RigidBodyParameters>& subRBP(YADE_PTR_CAST<RigidBodyParameters>(subBody->physicalParameters));
		State* subState = subBody->state.get();
		// se3 of the clump as whole is the same as the member's se3
		state->pos = subState->pos;
		state->ori = subState->ori;
		// relative member's se3 is identity
		I->second.position    = Vector3r::Zero();
		I->second.orientation = Quaternionr::Identity();
		state->inertia        = subState->inertia;
		state->mass           = subState->mass;
		state->vel            = Vector3r::Zero();
		state->angVel         = Vector3r::Zero();
		return;
	}
	//check for intersections:
	bool intersecting = false;
	int  Sph_Index    = Sphere::getClassIndexStatic(); // get sphere index for checking if bodies are spheres
	if (discretization > 0) {
		for (const auto& mm : clump->members) {
			const shared_ptr<Body> subBody1 = Body::byId(mm.first);
			for (const auto& mmm : clump->members) {
				const shared_ptr<Body> subBody2 = Body::byId(mmm.first);
				if ((subBody1->shape->getClassIndex() == Sph_Index) && (subBody2->shape->getClassIndex() == Sph_Index)
				    && (subBody1 != subBody2)) { //clump members should be spheres
					Vector3r      dist    = subBody1->state->pos - subBody2->state->pos;
					const Sphere* sphere1 = YADE_CAST<Sphere*>(subBody1->shape.get());
					const Sphere* sphere2 = YADE_CAST<Sphere*>(subBody2->shape.get());
					Real          un      = (sphere1->radius + sphere2->radius) - dist.norm();
					if (un > 0.001 * min(sphere1->radius, sphere2->radius)) {
						intersecting = true;
						break;
					}
				} // non-spherical cases trigger a warning below (here would not be ideal because of above "break")
			}
			if (intersecting) break;
		}
	}
	/* quantities suffixed by
		g: global (world) coordinates
		s: local subBody's coordinates
		c: local clump coordinates
	*/
	Real     M    = 0;                                   // mass
	Real     dens = 0;                                   //density
	Vector3r Sg(0, 0, 0);                                // static moment, for getting clump's centroid
	Matrix3r Ig(Matrix3r::Zero()), Ic(Matrix3r::Zero()); // tensors of inertia; is upper triangular, zeros instead of symmetric elements

	/**
	algorithm for estimation of volumes and inertia tensor from clumps using summation/integration scheme with regular grid spacing
	(some parts copied from woo: http://bazaar.launchpad.net/~eudoxos/woo/trunk/view/head:/pkg/dem/Clump.cpp)
	*/
	if (intersecting) {
		//get boundaries of clump Body (in global frame):
		AlignedBox3r aabb;
		for (const auto& mm : clump->members) {
			const shared_ptr<Body> subBody = Body::byId(mm.first);
			if (subBody->shape->getClassIndex() == Sph_Index) { //clump member should be a sphere
				const Sphere* sphere = YADE_CAST<Sphere*>(subBody->shape.get());
				aabb.extend(subBody->state->pos + Vector3r::Constant(sphere->radius));
				aabb.extend(subBody->state->pos - Vector3r::Constant(sphere->radius));
			} else { // since we have intersecting = 1 here, discretization is necessarily > 0
				// and we might still face non-spherical members: intersecting can be for instance detected to be true with a (2 overlapping Spheres + 1 non-Sphere) clump
				LOG_ERROR("Clump member " << mm.first << " is not spherical, discretization > 0 is not effective");
			}
		}
		Real rMin = min(aabb.diagonal()[0], min(aabb.diagonal()[1], aabb.diagonal()[2]));

		//get volume and inertia tensor using regular cubic cell array inside bounding box of the clump:
		Real dx     = rMin / discretization; //edge length of cell
		Real dv     = pow(dx, 3);            //volume of cell
		long nCells = long(math::round((aabb.sizes() / dx).prod()));
		if (nCells > 1e7) LOG_WARN("Clump::updateProperties: Cell array has " << nCells << " cells. Integrate inertia may take a while ...");
		Vector3r x; //position vector (center) of cell
		for (x.x() = aabb.min().x() + dx / 2.; x.x() < aabb.max().x(); x.x() += dx) {
			for (x.y() = aabb.min().y() + dx / 2.; x.y() < aabb.max().y(); x.y() += dx) {
				for (x.z() = aabb.min().z() + dx / 2.; x.z() < aabb.max().z(); x.z() += dx) {
					for (const auto& mm : clump->members) {
						const shared_ptr<Body> subBody = Body::byId(mm.first);
						if (subBody->shape->getClassIndex() == Sph_Index) { //clump member should be a sphere
							dens                 = subBody->material->density;
							const Sphere* sphere = YADE_CAST<Sphere*>(subBody->shape.get());
							if ((x - subBody->state->pos).squaredNorm() < pow(sphere->radius, 2)) {
								Real m = dens * dv;
								M += m;
								Sg += m * x;
								//inertia I = sum_i( mass_i*dist^2 + I_s) )	//steiners theorem
								Ig += m
								        * (x.dot(x) * Matrix3r::Identity() - x * x.transpose() /*dist^2*/
								           + Matrix3r(
								                   Vector3r::Constant(pow(dx, 2) / 6.)
								                           .asDiagonal())) /*I_s/m = d^2: along princial axes of dv; perhaps negligible?*/
								        ;
								break;
							}
						}
					}
				}
			}
		}
	} else { //not intersecting
		for (const auto& mm : clump->members) {
			// mm.first is Body::id_t, mm.second is Se3r of that body
			const shared_ptr<Body> subBody = Body::byId(mm.first);
			dens                           = subBody->material->density;
			if (subBody->shape->getClassIndex() == Sph_Index) { //clump member should be a sphere
				State*        subState = subBody->state.get();
				const Sphere* sphere   = YADE_CAST<Sphere*>(subBody->shape.get());
				Real          vol      = (4. / 3.) * Mathr::PI * pow(sphere->radius, 3.);
				Real          m        = dens * vol;
				M += m;
				Sg += m * subState->pos;
				Ig += Clump::inertiaTensorTranslate(
				        Vector3r::Constant((2 / 5.) * m * pow(sphere->radius, 2)).asDiagonal(), m, -1. * subState->pos);
			} else { // non-spherical bodies
				if (discretization > 0) LOG_ERROR("Clump member " << mm.first << " is not spherical, discretization > 0 is not effective");
				State*             subState = subBody->state.get();
				const Real&        m        = subState->mass;
				const Vector3r&    inertia  = subState->inertia;
				const Vector3r&    pos      = subState->pos;
				const Quaternionr& ori      = subState->ori;
				M += m;
				Sg += m * pos;
				Ig += inertiaTensorTranslate(inertiaTensorRotate(inertia.asDiagonal(), ori), m, -pos);
			}
		}
	}
	assert(M > 0);
	LOG_TRACE("M=\n" << M << "\nIg=\n" << Ig << "\nSg=\n" << Sg);
	// clump's centroid
	state->pos = Sg / M;
	// this will calculate translation only, since rotation is zero
	Matrix3r Ic_orientG = inertiaTensorTranslate(
	        Ig, -M /* negative mass means towards centroid */, state->pos); // inertia at clump's centroid but with world orientation
	LOG_TRACE("Ic_orientG=\n" << Ic_orientG);
	Ic_orientG(1, 0) = Ic_orientG(0, 1);
	Ic_orientG(2, 0) = Ic_orientG(0, 2);
	Ic_orientG(2, 1) = Ic_orientG(1, 2); // symmetrize

	Matrix3r R_g2c;
	matrixEigenDecomposition(Ic_orientG, R_g2c, Ic);

	// has NaNs for identity matrix??
	LOG_TRACE("R_g2c=\n" << R_g2c);
	// set quaternion from rotation matrix
	state->ori = Quaternionr(R_g2c);
	state->ori.normalize();
	state->inertia = Ic.diagonal();
	state->mass    = M;

	// TODO: these might be calculated from members... but complicated... - someone needs that?!
	state->vel = state->angVel = Vector3r::Zero();
	clumpBody->setAspherical(state->inertia[0] != state->inertia[1] || state->inertia[0] != state->inertia[2]);

	// update subBodySe3s; subtract clump orientation (=apply its inverse first) to subBody's orientation
	for (auto& I : clump->members) {
		shared_ptr<Body> subBody  = Body::byId(I.first);
		State*           subState = subBody->state.get();
		I.second.orientation      = state->ori.conjugate() * subState->ori;
		I.second.position         = state->ori.conjugate() * (subState->pos - state->pos);
	}
}


void Clump::updatePropertiesNonSpherical(const shared_ptr<Body>& clumpBody, bool intersecting, shared_ptr<Scene> rb)
{ //FIXME
	//LOG_DEBUG("Updating clump #"<<getId()<<" parameters");
	//LOG_DEBUG("Updating clump #"<<getId()<<" parameters");
	//assert(members.size()>0);
	const shared_ptr<State> state(clumpBody->state);
	const shared_ptr<Clump> clump(YADE_PTR_CAST<Clump>(clumpBody->shape));

	// trivial case
	if (clump->members.size() == 1) {
		LOG_DEBUG("Clump of size one will be treated specially.")
		MemberMap::iterator I       = clump->members.begin();
		shared_ptr<Body>    subBody = Body::byId(I->first, rb);
		//const shared_ptr<RigidBodyParameters>& subRBP(YADE_PTR_CAST<RigidBodyParameters>(subBody->physicalParameters));
		State* subState = subBody->state.get();
		// se3 of the clump as whole is the same as the member's se3
		state->pos = subState->pos;
		state->ori = subState->ori;
		// relative member's se3 is identity
		I->second.position    = Vector3r::Zero();
		I->second.orientation = Quaternionr::Identity();
		state->inertia        = subState->inertia;
		state->mass           = subState->mass;
		state->vel            = Vector3r::Zero();
		state->angVel         = Vector3r::Zero();
		return;
	}

	/* quantities suffixed by
		g: global (world) coordinates
		s: local subBody's coordinates
		c: local clump coordinates
	*/
	Real     M = 0;                                      // mass
	Vector3r Sg(0, 0, 0);                                // static moment, for getting clump's centroid
	Matrix3r Ig(Matrix3r::Zero()), Ic(Matrix3r::Zero()); // tensors of inertia; is upper triangular, zeros instead of symmetric elements

	if (intersecting) {
		LOG_WARN("Self-intersecting clumps not yet implemented, intersections will be ignored.");
		intersecting = false;
	}

	// begin non-intersecting loop here
	if (!intersecting) {
		for (const auto& I : clump->members) {
			// I.first is Body::id_t, I.second is Se3r of that body
			shared_ptr<Body> subBody  = Body::byId(I.first, rb);
			State*           subState = subBody->state.get();
			M += subState->mass;
			Sg += subState->mass * subState->pos;
			// transform from local to global coords
			Quaternionr subState_ori_conjugate = subState->ori.conjugate();
			Matrix3r    Imatrix                = Matrix3r::Zero();
			Imatrix.diagonal()                 = subState->inertia;
			// TRWM3MAT(Imatrix); TRWM3QUAT(subRBP_orientation_conjugate);
			Ig += Clump::inertiaTensorTranslate(Clump::inertiaTensorRotate(Imatrix, subState_ori_conjugate), subState->mass, -1. * subState->pos);
			//TRWM3MAT(Clump::inertiaTensorRotate(Matrix3r(subRBP->inertia),subRBP_orientation_conjugate));
		}
	}
	//TRVAR1(M); TRWM3MAT(Ig); TRWM3VEC(Sg);
	assert(M > 0);

	state->pos = Sg / M; // clump's centroid
	// this will calculate translation only, since rotation is zero
	Matrix3r Ic_orientG = Clump::inertiaTensorTranslate(
	        Ig, -M /* negative mass means towards centroid */, state->pos); // inertia at clump's centroid but with world orientation
	//TRWM3MAT(Ic_orientG);

	Matrix3r R_g2c(Matrix3r::Zero()); //rotation matrix
	Ic_orientG(1, 0) = Ic_orientG(0, 1);
	Ic_orientG(2, 0) = Ic_orientG(0, 2);
	Ic_orientG(2, 1) = Ic_orientG(1, 2); // symmetrize
	//TRWM3MAT(Ic_orientG);
	matrixEigenDecomposition(Ic_orientG, R_g2c, Ic);

	// set quaternion from rotation matrix
	state->ori = Quaternionr(R_g2c);
	state->ori.normalize();
	state->inertia = Ic.diagonal();
	state->mass    = M;

	// TODO: these might be calculated from members... but complicated... - someone needs that?!
	state->vel = state->angVel = Vector3r::Zero();

	clumpBody->setAspherical(state->inertia[0] != state->inertia[1] || state->inertia[0] != state->inertia[2]);

	// update subBodySe3s; subtract clump orientation (=apply its inverse first) to subBody's orientation
	for (auto& I : clump->members) {
		// now, I->first is Body::id_t, I->second is Se3r of that body
		shared_ptr<Body> subBody = Body::byId(I.first, rb);
		//const shared_ptr<RigidBodyParameters>& subRBP(YADE_PTR_CAST<RigidBodyParameters>(subBody->physicalParameters));
		State* subState      = subBody->state.get();
		I.second.orientation = state->ori.conjugate() * subState->ori;
		I.second.position    = state->ori.conjugate() * (subState->pos - state->pos);
	}
}

void Clump::updatePropertiesNonSpherical(const shared_ptr<Body>& clumpBody, bool intersecting)
{ //FIXME
	//LOG_DEBUG("Updating clump #"<<getId()<<" parameters");
	//assert(members.size()>0);
	const shared_ptr<State> state(clumpBody->state);
	const shared_ptr<Clump> clump(YADE_PTR_CAST<Clump>(clumpBody->shape));

	// trivial case
	if (clump->members.size() == 1) {
		LOG_DEBUG("Clump of size one will be treated specially.")
		MemberMap::iterator I       = clump->members.begin();
		shared_ptr<Body>    subBody = Body::byId(I->first);
		//const shared_ptr<RigidBodyParameters>& subRBP(YADE_PTR_CAST<RigidBodyParameters>(subBody->physicalParameters));
		State* subState = subBody->state.get();
		// se3 of the clump as whole is the same as the member's se3
		state->pos = subState->pos;
		state->ori = subState->ori;
		// relative member's se3 is identity
		I->second.position    = Vector3r::Zero();
		I->second.orientation = Quaternionr::Identity();
		state->inertia        = subState->inertia;
		state->mass           = subState->mass;
		state->vel            = Vector3r::Zero();
		state->angVel         = Vector3r::Zero();
		return;
	}

	/* quantities suffixed by
		g: global (world) coordinates
		s: local subBody's coordinates
		c: local clump coordinates
	*/
	Real     M = 0;                                      // mass
	Vector3r Sg(0, 0, 0);                                // static moment, for getting clump's centroid
	Matrix3r Ig(Matrix3r::Zero()), Ic(Matrix3r::Zero()); // tensors of inertia; is upper triangular, zeros instead of symmetric elements

	if (intersecting) {
		LOG_WARN("Self-intersecting clumps not yet implemented, intersections will be ignored.");
		intersecting = false;
	}

	// begin non-intersecting loop here
	if (!intersecting) {
		for (const auto& I : clump->members) {
			// I.first is Body::id_t, I.second is Se3r of that body
			shared_ptr<Body> subBody  = Body::byId(I.first);
			State*           subState = subBody->state.get();
			M += subState->mass;
			Sg += subState->mass * subState->pos;
			// transform from local to global coords
			Quaternionr subState_ori_conjugate = subState->ori.conjugate();
			Matrix3r    Imatrix                = Matrix3r::Zero();
			Imatrix.diagonal()                 = subState->inertia;
			// TRWM3MAT(Imatrix); TRWM3QUAT(subRBP_orientation_conjugate);
			Ig += Clump::inertiaTensorTranslate(Clump::inertiaTensorRotate(Imatrix, subState_ori_conjugate), subState->mass, -1. * subState->pos);
			//TRWM3MAT(Clump::inertiaTensorRotate(Matrix3r(subRBP->inertia),subRBP_orientation_conjugate));
		}
	}
	//TRVAR1(M); TRWM3MAT(Ig); TRWM3VEC(Sg);
	assert(M > 0);

	state->pos = Sg / M; // clump's centroid
	// this will calculate translation only, since rotation is zero
	Matrix3r Ic_orientG = Clump::inertiaTensorTranslate(
	        Ig, -M /* negative mass means towards centroid */, state->pos); // inertia at clump's centroid but with world orientation
	//TRWM3MAT(Ic_orientG);

	Matrix3r R_g2c(Matrix3r::Zero()); //rotation matrix
	Ic_orientG(1, 0) = Ic_orientG(0, 1);
	Ic_orientG(2, 0) = Ic_orientG(0, 2);
	Ic_orientG(2, 1) = Ic_orientG(1, 2); // symmetrize
	//TRWM3MAT(Ic_orientG);
	matrixEigenDecomposition(Ic_orientG, R_g2c, Ic);
	/*! @bug eigendecomposition might be wrong. see http://article.gmane.org/gmane.science.physics.yade.devel/99 for message. It is worked around below, however.
	*/
	// has NaNs for identity matrix!
	//TRWM3MAT(R_g2c);

	// set quaternion from rotation matrix
	state->ori = Quaternionr(R_g2c);
	state->ori.normalize();
	// now Ic is diagonal
	state->inertia = Ic.diagonal();
	state->mass    = M;


	// this block will be removed once EigenDecomposition works for diagonal matrices
	//#if 1
	//	if(isnan(R_g2c(0,0))||isnan(R_g2c(0,1))||isnan(R_g2c(0,2))||isnan(R_g2c(1,0))||isnan(R_g2c(1,1))||isnan(R_g2c(1,2))||isnan(R_g2c(2,0))||isnan(R_g2c(2,1))||isnan(R_g2c(2,2))){
	//		throw std::logic_error("Clump::updateProperties: NaNs in eigen-decomposition of inertia matrix?!");
	//	}
	//#endif
	//TRWM3VEC(state->inertia);

	// TODO: these might be calculated from members... but complicated... - someone needs that?!
	state->vel = state->angVel = Vector3r::Zero();

	clumpBody->setAspherical(state->inertia[0] != state->inertia[1] || state->inertia[0] != state->inertia[2]);

	// update subBodySe3s; subtract clump orientation (=apply its inverse first) to subBody's orientation
	for (auto& I : clump->members) {
		// now, I->first is Body::id_t, I->second is Se3r of that body
		shared_ptr<Body> subBody = Body::byId(I.first);
		//const shared_ptr<RigidBodyParameters>& subRBP(YADE_PTR_CAST<RigidBodyParameters>(subBody->physicalParameters));
		State* subState      = subBody->state.get();
		I.second.orientation = state->ori.conjugate() * subState->ori;
		I.second.position    = state->ori.conjugate() * (subState->pos - state->pos);
	}
}

void Clump::addNonSpherical(const shared_ptr<Body>& clumpBody, const shared_ptr<Body>& subBody)
{ //FIXME
	Body::id_t subId = subBody->getId();
	if (subBody->clumpId != Body::ID_NONE)
		throw std::invalid_argument(
		        ("Body #" + boost::lexical_cast<string>(subId) + " is already in clump #" + boost::lexical_cast<string>(subBody->clumpId)).c_str());
	const shared_ptr<Clump> clump = YADE_PTR_CAST<Clump>(clumpBody->shape);
	if (clump->members.count(subId) != 0)
		throw std::invalid_argument(
		        ("Body #" + boost::lexical_cast<string>(subId) + " is already part of this clump #" + boost::lexical_cast<string>(clumpBody->id))
		                .c_str());

	clump->members[subId] = Se3r(); // meaningful values will be put in by Clump::updateProperties
	subBody->clumpId      = clumpBody->id;
	clumpBody->clumpId    = clumpBody->id; // just to make sure
	clumpBody->setBounded(false);          // disallow collisions with the clump itself
	                                       //LOG_DEBUG("Added body #"<<subId<<" to clump #"<<getId());
}
/*! @brief Recalculates inertia tensor of a body after translation away from (default) or towards its centroid.
 *
 * @param I inertia tensor in the original coordinates; it is assumed to be upper-triangular (elements below the diagonal are ignored).
 * @param m mass of the body; if positive, translation is away from the centroid; if negative, towards centroid.
 * @param off offset of the new origin from the original origin
 * @return inertia tensor in the new coordinate system; the matrix is symmetric.
 */
Matrix3r Clump::inertiaTensorTranslate(const Matrix3r& I, const Real m, const Vector3r& off)
{
	return I + m * (off.dot(off) * Matrix3r::Identity() - off * off.transpose());
}

/*! @brief Recalculate body's inertia tensor in rotated coordinates.
 *
 * @param I inertia tensor in old coordinates
 * @param T rotation matrix from old to new coordinates
 * @return inertia tensor in new coordinates
 */
Matrix3r Clump::inertiaTensorRotate(const Matrix3r& I, const Matrix3r& T)
{
	/* [http://www.kwon3d.com/theory/moi/triten.html] */
	return T.transpose() * I * T;
}

/*! @brief Recalculate body's inertia tensor in rotated coordinates.
 *
 * @param I inertia tensor in old coordinates
 * @param rot quaternion that describes rotation from old to new coordinates
 * @return inertia tensor in new coordinates
 */
Matrix3r Clump::inertiaTensorRotate(const Matrix3r& I, const Quaternionr& rot)
{
	Matrix3r T = rot.toRotationMatrix();
	return inertiaTensorRotate(I, T);
}

} // namespace yade