File: LOedometricDeform.py

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (141 lines) | stat: -rw-r--r-- 4,516 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -*- encoding=utf-8 -*-

# Testing of the Deformation Enginge with Luding Contact Law
# Modified Oedometric Test
# The reference paper [Haustein2017]

from yade import utils, plot, timing
from yade import pack

o = Omega()

# Physical parameters
fr = 0.3
rho = 2000
Diameter = 16.5e-3
r1 = Diameter
r2 = Diameter
k1 = 1005.0
kp = 10.0 * k1
kc = k1 * 0.0
ks = k1 * 0.1
DeltaPMax = Diameter / 3.0
Chi1 = 0.34

o.dt = 1.0e-5

particleMass = 4.0 / 3.0 * math.pi * r1 * r1 * r1 * rho

Vi1 = math.sqrt(k1 / particleMass) * DeltaPMax * Chi1

PhiF1 = DeltaPMax * (kp - k1) * (r1 + r2) / (kp * 2 * r1 * r2)

#*************************************

# Add material
mat1 = O.materials.append(LudingMat(frictionAngle=fr, density=rho, k1=k1, kp=kp, ks=ks, kc=kc, PhiF=PhiF1, G0=0.0))

# Spheres for compression

sp = pack.SpherePack()
sp.makeCloud((-4.0 * Diameter, -4.0 * Diameter, -2.5 * Diameter), (3.0 * Diameter, 3.0 * Diameter, 15.0 * Diameter), rMean=Diameter / 2.0, num=300)
sp.toSimulation()

######################################################################
O.bodies.append(geom.facetBox((0, 0, 0), (4.0 * Diameter, 4.0 * Diameter, 4.0 * Diameter), wallMask=63 - 32, material=mat1))

# Add engines
o.engines = [
        ForceResetter(),
        InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=1.05), Bo1_Wall_Aabb(),
                               Bo1_Facet_Aabb()]),
        InteractionLoop(
                [Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=1.05),
                 Ig2_Facet_Sphere_ScGeom(), Ig2_Wall_Sphere_ScGeom()], [Ip2_LudingMat_LudingMat_LudingPhys()], [Law2_ScGeom_LudingPhys_Basic()]
        ),
        NewtonIntegrator(damping=0.1, gravity=[0, 0, -9.81]),
        #VTKRecorder(fileName='vtk-',recorders=['all'],iterPeriod=10000),
        PyRunner(command='checkForce()', realPeriod=1, label="fCheck"),
        DeformControl(label="DefControl")
]


def checkForce():
	# at the very start, unbalanced force can be low as there is only few
	# contacts, but it does not mean the packing is stable
	if O.iter < 20000:
		return
	# the rest will be run only if unbalanced is < .1 (stabilized packing)
	timing.reset()
	if unbalancedForce() > 0.2:
		return
	# add plate at upper box side

	highSphere = 0.0
	for b in O.bodies:
		if highSphere < b.state.pos[2] and isinstance(b.shape, Sphere):
			highSphere = b.state.pos[2]
		else:
			pass

	O.bodies.append(wall(highSphere + 0.5 * Diameter, axis=2, sense=-1, material=mat1))
	# without this line, the plate variable would only exist inside this
	# function
	global plate
	plate = O.bodies[-1]  # the last particles is the plate
	# Wall objects are "fixed" by default, i.e. not subject to forces
	# prescribing a velocity will therefore make it move at constant velocity
	# (downwards)
	plate.state.vel = (0, 0, -.1)
	# start plotting the data now, it was not interesting before
	O.engines = O.engines + [PyRunner(command='addPlotData()', iterPeriod=1000)]
	# next time, do not call this function anymore, but the next one
	# (unloadPlate) instead
	fCheck.command = 'unloadPlate()'


def unloadPlate():
	# if the force on plate exceeds maximum load, start unloading
	# if abs(O.forces.f(plate.id)[2]) > 5e-2:
	if abs(O.forces.f(plate.id)[2]) > 5.0e2:
		plate.state.vel *= -1
		# next time, do not call this function anymore, but the next one
		# (stopUnloading) instead
		fCheck.command = 'stopUnloading()'


def stopUnloading():
	if abs(O.forces.f(plate.id)[2]) == 0:
		# O.tags can be used to retrieve unique identifiers of the simulation
		# if running in batch, subsequent simulation would overwrite each other's output files otherwise
		# d (or description) is simulation description (composed of parameter values)
		# while the id is composed of time and process number
		# plot.saveDataTxt(O.tags['d.id'] + '.txt')
		plot.saveDataTxt('data' + O.tags['id'] + '.txt')
		print(timing.stats())
		O.pause()


def addPlotData():
	if not isinstance(O.bodies[-1].shape, Wall):
		plot.addData()
		return
	Fz = O.forces.f(plate.id)[2]
	plot.addData(Fz=Fz, w=plate.state.pos[2] - (-4 * Diameter), unbalanced=unbalancedForce(), i=O.iter)


def defVisualizer():
	with open("data.dat", "a") as f:
		for b in O.bodies:
			if isinstance(b.shape, Sphere):
				rData = "{x},{y},{z},{r},{w}\t".format(
				        x=b.state.pos[0], y=b.state.pos[1], z=b.state.pos[2], r=b.shape.radius + b.state.dR, w=plate.state.pos[2]
				)
				f.write(rData)
		f.write("\n")


O.timingEnabled = True
O.run(1, True)
plot.plots = {'w': ('Fz', None)}
plot.plot()