1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
# -*- encoding=utf-8 -*-
# 2020 (c) Vasileios Angelidakis <v.angelidakis2@ncl.ac.uk>
# Collapse of a zero-porosity packing of cuboidal blocks in a Jenga-like tower, using the Potential Blocks.
recordVTK = False
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
if recordVTK:
# Create vtk directory
import os
import errno
try:
os.mkdir('./vtk/')
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
pass
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Contact stiffnesses and Engines
kn = 1e7
ks = kn / 1.5
kn_i = 5 * kn
ks_i = 5 * ks
init = 1e-6 # initial overlap distance
O.engines = [
ForceResetter(),
InsertionSortCollider([PotentialBlock2AABB()], verletDist=0.00), #0.01
InteractionLoop(
[Ig2_PB_PB_ScGeom(calContactArea=True)], [Ip2_FrictMat_FrictMat_KnKsPBPhys(kn_i=kn_i, ks_i=ks_i, Knormal=kn, Kshear=ks, viscousDamping=0.00)],
[Law2_SCG_KnKsPBPhys_KnKsPBLaw(initialOverlapDistance=init, allowViscousAttraction=False, label='law')]
),
NewtonIntegrator(damping=0.1, exactAsphericalRot=True, gravity=[0, 0, -9.81], label='newton'),
]
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Material
O.materials.append(FrictMat(young=-1, poisson=-1, frictionAngle=radians(10.0), density=400, label='frictional'))
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Generate building blocks
length = 0.075 #m = 7.5cm
width = 0.025 #m = 2.5cm
height = 0.015 #m = 1.5cm
# Piece blocks into a tower
for i in range(0, 18): #18 layers
for j in range(0, 3): #3 pieces per layer
r = 0.5 * width / 2.
b = Body()
b.aspherical = True
color = Vector3(random.random(), random.random(), random.random())
b.shape = PotentialBlock(
r=r,
R=0.0,
a=[1, -1, 0, 0, 0, 0],
b=[0, 0, 1, -1, 0, 0],
c=[0, 0, 0, 0, 1, -1],
d=[
length / 2. - r + init, length / 2. - r + init, width / 2. - r + init, width / 2. - r + init, height / 2. - r + init,
height / 2. - r + init
],
isBoundary=False,
color=color,
AabbMinMax=True,
fixedNormal=False
)
utils._commonBodySetup(b, b.shape.volume, b.shape.inertia, material='frictional', pos=[0, 0, 0], fixed=False)
if (i % 2) == 0:
b.state.pos = [0, width * j - width, height / 2. + height * i]
b.state.ori = b.shape.orientation
else:
b.state.pos = [width * j - width, 0, height / 2. + height * i]
b.state.ori = Quaternion((0, 0, 1), radians(90))
O.bodies.append(b)
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Move block 10 on top
O.bodies[10].state.pos = [0, width * 2 - width, height / 2. + height * 18]
O.bodies[10].state.ori = O.bodies[10].shape.orientation
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Generate fixed plate
width = 5 * length #half width
thickness = 0.3 * length
r = 0.5 * thickness
bbb = Body()
bbb.shape = PotentialBlock(
r=r,
R=0.0,
a=[1, -1, 0, 0, 0, 0],
b=[0, 0, 1, -1, 0, 0],
c=[0, 0, 0, 0, 1, -1],
d=[width / 2. - r, width / 2. - r, width / 2. - r, width / 2. - r, thickness / 2. - r, thickness / 2. - r],
id=len(O.bodies),
isBoundary=True,
color=[0, 0.5, 1],
AabbMinMax=True,
wire=False,
fixedNormal=True,
boundaryNormal=[0, 0, 1]
)
utils._commonBodySetup(bbb, bbb.shape.volume, bbb.shape.inertia, material='frictional', pos=[0, 0, -thickness / 2.], fixed=True)
O.bodies.append(bbb)
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Visualisation
from yade import qt
qt.Controller()
v = qt.View()
v.eyePosition = Vector3(1.3 * width, -1.3 * width, 1.5 * length)
v.upVector = Vector3(0, 0, 1)
v.viewDir = Vector3(-sqrt(2) / 2, sqrt(2) / 2, 0)
v.ortho = False
v.sceneRadius = width
rndr = yade.qt.Renderer()
rndr.lightPos *= -1
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Timestep
#O.dt = sqrt(0.3*O.bodies[0].state.mass/kn)
O.dt = 5e-5
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
# Pull block 11 along its long axis
O.engines = O.engines + [TranslationEngine(ids=[11], translationAxis=[0, 1, 0], velocity=5, label='tEngine')]
# Bring block 11 on top, once removed
def bringOnTop():
if O.bodies[11].state.pos[1] > length:
tEngine.dead = True
O.bodies[11].state.vel = [0, 0, 0]
O.bodies[11].state.pos = [0, width * 1 - width, height / 2. + height * 18]
O.bodies[11].state.ori = O.bodies[11].shape.orientation
bOT.dead = True
eFP.dead = False
O.engines = O.engines + [PyRunner(iterPeriod=1, command='bringOnTop()', label='bOT')]
def eraseFallenParticles():
for b in O.bodies:
if sqrt(b.state.pos[0]**2 + b.state.pos[1]**2) > 2 * length:
O.bodies.erase(b.id)
O.engines = O.engines + [PyRunner(iterPeriod=500, command='eraseFallenParticles()', dead=True, label='eFP')]
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
if recordVTK:
# Take snapshots
# O.engines=O.engines+[SnapshotEngine(iterPeriod=100,fileBase='vtk/jenga-',firstIterRun=10,label='snapshooter')]
# Export VTK results
from yade import export
vtkExporter = export.VTKExporter('./vtk/jengaTowerExample')
def vtkExport():
vtkExporter.exportPotentialBlocks(what=dict(n='b.id'))
O.engines = O.engines + [PyRunner(iterPeriod=500, command='vtkExport()')]
# ────────────────────────────────────────────────────────────────────────────────────────────────────────── #
O.saveTmp()
O.run()
|