File: SlicedProfiles.py

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (255 lines) | stat: -rw-r--r-- 8,539 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
This example illustrates the use of the function `getSlicedProfiles` to get average
profiles of particle volume fraction and particle velocity over a given time and along
a specified axis.

The configuration of this example is a gravity-driven dry mono-disperse granular
flow in a flume (inclined plane with side walls).

Three examples of profiles are given :
- example 1 : vertical (z) profiles at the center of the flume
- example 2 : vertical (z) profiles at the side walls
- example 3 : cross (y) profiles between 2 elevations
"""

from yade import pack, qt
import numpy as np
from matplotlib import pyplot as plt

############
# PARAMETERS

diameterPart = 2e-3  # Diameter of the particles [m]
densPart = 2500  # Density of particles [kg/m3]
phiPartMax = 0.6  # Max particle concentration estimation
phiPartMean = 0.58  # Mean particle concentration estimation
length = 15 * diameterPart  # Length of the flume [m]
width = 8 * diameterPart  # Width of the flume [m]
height = 6 * diameterPart  # Height of the flume [m]
slopeAngle = pi / 4  # Slope angle of the flume [rad]
delta = diameterPart / 30  # Discretisation step for the profiles
gravityVector = Vector3(9.81 * sin(slopeAngle), 0.0, -9.81 * cos(slopeAngle))
dtSave = 0.1  # time step for saving profiles [s]
timeAverage = 3  # time during which we average profiles after deposition [s]

# Define slice elevation limits for example 3
zBottom = 3 * diameterPart
zTop = 5 * diameterPart

# Estimated max particle pressure from the static load
maxPressure = densPart * phiPartMax * height * 9.81

# Evaluate the minimal normal stiffness to be in the rigid particle limit
# (cf Roux and Combe 2002)
normalStiffness = maxPressure * diameterPart * 1e4

# Young modulus of the particles from the stiffness wanted.
young = normalStiffness / diameterPart

# Create materials
O.materials.append(ViscElMat(en=0.5, et=0., young=young, poisson=0.5, density=densPart, frictionAngle=atan(0.4), label='Mat'))

####################
# FRAMEWORK CREATION

# Compute number of particles to fit in the height
numberPart = int(phiPartMean * height * length * width / pi / diameterPart**3 * 6)

# Define deposition height for the particle cloud
depositionHeight = 4 * height

# Define reference positions of the flume
bottomPos = 2 * diameterPart
leftPos = diameterPart

# Create a periodic box (larger than the flume to avoid bugs):
O.periodic = True
boxWidth = width + 2 * leftPos
boxHeight = bottomPos + depositionHeight
O.cell.setBox(length, boxWidth, boxHeight)

# Create walls
bottomWall = box(
        center=(length / 2.0, boxWidth / 2.0, bottomPos),
        extents=(1e6, boxWidth / 2.0, 0),
        fixed=True,
        wire=False,
        color=(0, 1, 0),
        material='Mat',
)
leftWall = box(
        center=(length / 2.0, leftPos, boxHeight / 2.0),
        extents=(1e6, 0, boxHeight / 2.0),
        fixed=True,
        wire=True,
        color=(1, 0, 0),
        material='Mat',
)
rightWall = box(
        center=(length / 2.0, leftPos + width, boxHeight / 2.0),
        extents=(1e6, 0, boxHeight / 2.0),
        fixed=True,
        wire=True,
        color=(1, 0, 0),
        material='Mat',
)
O.bodies.append([bottomWall, leftWall, rightWall])

# Create the particle cloud
epsilon = diameterPart / 4  # to avoid bugs with initial contacts between particles and walls
cloud = pack.SpherePack()
cloud.makeCloud(
        minCorner=(0, leftPos + epsilon, bottomPos + 1e-4),
        maxCorner=(length, leftPos + width - epsilon, boxHeight),
        rMean=diameterPart / 2,
        num=numberPart,
)
cloud.toSimulation(material='Mat', color=(0, 0, 1))

# Evaluate the deposition time considering the free-fall time of the highest particle to the ground
depositionTime = sqrt(depositionHeight * 2 / abs(gravityVector[2]))

#################
# INITIALIZATION

# Compute y and z axis for latter plots
yAxis = np.array([i * delta / diameterPart for i in range(int(width / delta))])
zAxis = np.array([i * delta / diameterPart for i in range(int(height / delta))])

# Initialize arrays of concentration and velocity for the 3 examples
Nstep = int(timeAverage / dtSave)
phiPart1 = np.empty([Nstep, len(zAxis)])
vPart1 = np.empty([Nstep, len(zAxis), 3])
phiPart2 = np.empty([Nstep, len(zAxis)])
vPart2 = np.empty([Nstep, len(zAxis), 3])
phiPart3 = np.empty([Nstep, len(yAxis)])
vPart3 = np.empty([Nstep, len(yAxis), 3])

# Initialize the step to fill the phiPart and vPart array
step = 0

###################################
# ENGINES AND PY-RUNNER DEFINITION

O.engines = [
        ForceResetter(),
        InsertionSortCollider(
                [Bo1_Sphere_Aabb(), Bo1_Box_Aabb()],
                allowBiggerThanPeriod=True,
        ),
        InteractionLoop(
                [Ig2_Sphere_Sphere_ScGeom(), Ig2_Box_Sphere_ScGeom()],
                [Ip2_ViscElMat_ViscElMat_ViscElPhys()],
                [Law2_ScGeom_ViscElPhys_Basic()],
        ),
        GlobalStiffnessTimeStepper(
                defaultDt=1e-4,
                viscEl=True,
                timestepSafetyCoefficient=0.7,
        ),
        NewtonIntegrator(gravity=gravityVector, damping=0.2),
        PyRunner(command='saveProfiles()', virtPeriod=dtSave),
]


def saveProfiles():
	global phiPart1, vPart1, phiPart2, vPart2, phiPart3, vPart3, step

	if O.time >= depositionTime and O.time < depositionTime + timeAverage:

		# example 1 : get z profiles at the center of the flume on a slice large
		# of `2*diameterPart` in y-direction, with `int(height/delta)` intervals
		# of discretisation of size `delta` in z-direction.
		phiPart1[step, :], vPart1[step, :, :] = getSlicedProfiles(
		        vCell=2 * diameterPart * length * delta,
		        nCell=int(height / delta),
		        dP=delta,
		        refP=bottomPos,
		        refS=leftPos,
		        dirS=1,
		        dirP=2,
		        sliceCenters=[width / 2],
		        sliceWidths=[2 * diameterPart]
		)

		# example 2 : get z profiles at the box walls on two sub-slices large of
		# `diameterPart` in y-direction, with `int(height/delta)` intervals of
		# discretisation of size `delta` in z-direction.
		phiPart2[step, :], vPart2[step, :, :] = getSlicedProfiles(
		        vCell=2 * diameterPart * length * delta,
		        nCell=int(height / delta),
		        dP=delta,
		        refP=bottomPos,
		        refS=leftPos,
		        dirS=1,
		        dirP=2,
		        sliceCenters=[diameterPart / 2, width - diameterPart / 2],
		        sliceWidths=[diameterPart] * 2
		)

		# example 3 : get y profiles on a slice which z position is between 2 and
		# 4 diameters from the bottom of the flume with `int(width/delta)`
		# intervals of discretisation of size `delta` in y-direction.
		phiPart3[step, :], vPart3[step, :, :] = getSlicedProfiles(
		        vCell=(zTop - zBottom) * length * delta,
		        nCell=int(width / delta),
		        dP=delta,
		        refP=leftPos,
		        refS=bottomPos,
		        dirS=2,
		        dirP=1,
		        sliceCenters=[(zTop + zBottom) / 2],
		        sliceWidths=[zTop - zBottom]
		)

		# update step
		print(f"Profiles saved for step {step}/{Nstep}.")
		step += 1

	if O.time >= depositionTime + timeAverage:
		# Pause the simulation
		O.pause()

		# Average Profiles over all the time steps
		phiPart1 = np.mean(phiPart1, axis=0)
		vPart1 = np.mean(vPart1, axis=0)
		phiPart2 = np.mean(phiPart2, axis=0)
		vPart2 = np.mean(vPart2, axis=0)
		phiPart3 = np.mean(phiPart3, axis=0)
		vPart3 = np.mean(vPart3, axis=0)

		# Extract streamwise velocities
		vxPart1 = vPart1[:, 0]
		vxPart2 = vPart2[:, 0]
		vxPart3 = vPart3[:, 0]

		# Plot z profiles (examples 1 and 2)
		fig, axs = plt.subplots(1, 2, sharey=True)
		fig.suptitle("z profiles (Examples 1 and 2)")
		axs[0].plot(phiPart1, zAxis, label="Example 1 : at the center")
		axs[0].plot(phiPart2, zAxis, label="Example 2 : at the walls")
		axs[1].plot(vxPart1, zAxis, label="Example 1 : at the center")
		axs[1].plot(vxPart2, zAxis, label="Example 2 : at the walls")
		axs[0].set_xlabel(r"$\phi$ [-]")
		axs[1].set_xlabel("$v_x$ [m/s]")
		axs[0].set_ylabel("$z$ [diameters]")
		axs[1].legend()
		fig.show()

		# Plot y profiles (example 3)
		fig, axs = plt.subplots(1, 2, sharey=True)
		fig.suptitle("y cross profiles (Example 3)")
		axs[0].plot(phiPart3, yAxis)
		axs[1].plot(vxPart3, yAxis)
		axs[0].set_xlabel(r"$\phi$ [-]")
		axs[1].set_xlabel("$v_x$ [m/s]")
		axs[0].set_ylabel("$y$ [diameters]")
		fig.show()


###################
# RUN WITH QT VIEW
view = qt.View()
view.viewDir = (0, 1, 0)
view.fitAABB([0, 0, 0], [length, boxWidth, boxHeight])
O.run()