1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
"""
This example illustrates the use of the function `getSlicedProfiles` to get average
profiles of particle volume fraction and particle velocity over a given time and along
a specified axis.
The configuration of this example is a gravity-driven dry mono-disperse granular
flow in a flume (inclined plane with side walls).
Three examples of profiles are given :
- example 1 : vertical (z) profiles at the center of the flume
- example 2 : vertical (z) profiles at the side walls
- example 3 : cross (y) profiles between 2 elevations
"""
from yade import pack, qt
import numpy as np
from matplotlib import pyplot as plt
############
# PARAMETERS
diameterPart = 2e-3 # Diameter of the particles [m]
densPart = 2500 # Density of particles [kg/m3]
phiPartMax = 0.6 # Max particle concentration estimation
phiPartMean = 0.58 # Mean particle concentration estimation
length = 15 * diameterPart # Length of the flume [m]
width = 8 * diameterPart # Width of the flume [m]
height = 6 * diameterPart # Height of the flume [m]
slopeAngle = pi / 4 # Slope angle of the flume [rad]
delta = diameterPart / 30 # Discretisation step for the profiles
gravityVector = Vector3(9.81 * sin(slopeAngle), 0.0, -9.81 * cos(slopeAngle))
dtSave = 0.1 # time step for saving profiles [s]
timeAverage = 3 # time during which we average profiles after deposition [s]
# Define slice elevation limits for example 3
zBottom = 3 * diameterPart
zTop = 5 * diameterPart
# Estimated max particle pressure from the static load
maxPressure = densPart * phiPartMax * height * 9.81
# Evaluate the minimal normal stiffness to be in the rigid particle limit
# (cf Roux and Combe 2002)
normalStiffness = maxPressure * diameterPart * 1e4
# Young modulus of the particles from the stiffness wanted.
young = normalStiffness / diameterPart
# Create materials
O.materials.append(ViscElMat(en=0.5, et=0., young=young, poisson=0.5, density=densPart, frictionAngle=atan(0.4), label='Mat'))
####################
# FRAMEWORK CREATION
# Compute number of particles to fit in the height
numberPart = int(phiPartMean * height * length * width / pi / diameterPart**3 * 6)
# Define deposition height for the particle cloud
depositionHeight = 4 * height
# Define reference positions of the flume
bottomPos = 2 * diameterPart
leftPos = diameterPart
# Create a periodic box (larger than the flume to avoid bugs):
O.periodic = True
boxWidth = width + 2 * leftPos
boxHeight = bottomPos + depositionHeight
O.cell.setBox(length, boxWidth, boxHeight)
# Create walls
bottomWall = box(
center=(length / 2.0, boxWidth / 2.0, bottomPos),
extents=(1e6, boxWidth / 2.0, 0),
fixed=True,
wire=False,
color=(0, 1, 0),
material='Mat',
)
leftWall = box(
center=(length / 2.0, leftPos, boxHeight / 2.0),
extents=(1e6, 0, boxHeight / 2.0),
fixed=True,
wire=True,
color=(1, 0, 0),
material='Mat',
)
rightWall = box(
center=(length / 2.0, leftPos + width, boxHeight / 2.0),
extents=(1e6, 0, boxHeight / 2.0),
fixed=True,
wire=True,
color=(1, 0, 0),
material='Mat',
)
O.bodies.append([bottomWall, leftWall, rightWall])
# Create the particle cloud
epsilon = diameterPart / 4 # to avoid bugs with initial contacts between particles and walls
cloud = pack.SpherePack()
cloud.makeCloud(
minCorner=(0, leftPos + epsilon, bottomPos + 1e-4),
maxCorner=(length, leftPos + width - epsilon, boxHeight),
rMean=diameterPart / 2,
num=numberPart,
)
cloud.toSimulation(material='Mat', color=(0, 0, 1))
# Evaluate the deposition time considering the free-fall time of the highest particle to the ground
depositionTime = sqrt(depositionHeight * 2 / abs(gravityVector[2]))
#################
# INITIALIZATION
# Compute y and z axis for latter plots
yAxis = np.array([i * delta / diameterPart for i in range(int(width / delta))])
zAxis = np.array([i * delta / diameterPart for i in range(int(height / delta))])
# Initialize arrays of concentration and velocity for the 3 examples
Nstep = int(timeAverage / dtSave)
phiPart1 = np.empty([Nstep, len(zAxis)])
vPart1 = np.empty([Nstep, len(zAxis), 3])
phiPart2 = np.empty([Nstep, len(zAxis)])
vPart2 = np.empty([Nstep, len(zAxis), 3])
phiPart3 = np.empty([Nstep, len(yAxis)])
vPart3 = np.empty([Nstep, len(yAxis), 3])
# Initialize the step to fill the phiPart and vPart array
step = 0
###################################
# ENGINES AND PY-RUNNER DEFINITION
O.engines = [
ForceResetter(),
InsertionSortCollider(
[Bo1_Sphere_Aabb(), Bo1_Box_Aabb()],
allowBiggerThanPeriod=True,
),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(), Ig2_Box_Sphere_ScGeom()],
[Ip2_ViscElMat_ViscElMat_ViscElPhys()],
[Law2_ScGeom_ViscElPhys_Basic()],
),
GlobalStiffnessTimeStepper(
defaultDt=1e-4,
viscEl=True,
timestepSafetyCoefficient=0.7,
),
NewtonIntegrator(gravity=gravityVector, damping=0.2),
PyRunner(command='saveProfiles()', virtPeriod=dtSave),
]
def saveProfiles():
global phiPart1, vPart1, phiPart2, vPart2, phiPart3, vPart3, step
if O.time >= depositionTime and O.time < depositionTime + timeAverage:
# example 1 : get z profiles at the center of the flume on a slice large
# of `2*diameterPart` in y-direction, with `int(height/delta)` intervals
# of discretisation of size `delta` in z-direction.
phiPart1[step, :], vPart1[step, :, :] = getSlicedProfiles(
vCell=2 * diameterPart * length * delta,
nCell=int(height / delta),
dP=delta,
refP=bottomPos,
refS=leftPos,
dirS=1,
dirP=2,
sliceCenters=[width / 2],
sliceWidths=[2 * diameterPart]
)
# example 2 : get z profiles at the box walls on two sub-slices large of
# `diameterPart` in y-direction, with `int(height/delta)` intervals of
# discretisation of size `delta` in z-direction.
phiPart2[step, :], vPart2[step, :, :] = getSlicedProfiles(
vCell=2 * diameterPart * length * delta,
nCell=int(height / delta),
dP=delta,
refP=bottomPos,
refS=leftPos,
dirS=1,
dirP=2,
sliceCenters=[diameterPart / 2, width - diameterPart / 2],
sliceWidths=[diameterPart] * 2
)
# example 3 : get y profiles on a slice which z position is between 2 and
# 4 diameters from the bottom of the flume with `int(width/delta)`
# intervals of discretisation of size `delta` in y-direction.
phiPart3[step, :], vPart3[step, :, :] = getSlicedProfiles(
vCell=(zTop - zBottom) * length * delta,
nCell=int(width / delta),
dP=delta,
refP=leftPos,
refS=bottomPos,
dirS=2,
dirP=1,
sliceCenters=[(zTop + zBottom) / 2],
sliceWidths=[zTop - zBottom]
)
# update step
print(f"Profiles saved for step {step}/{Nstep}.")
step += 1
if O.time >= depositionTime + timeAverage:
# Pause the simulation
O.pause()
# Average Profiles over all the time steps
phiPart1 = np.mean(phiPart1, axis=0)
vPart1 = np.mean(vPart1, axis=0)
phiPart2 = np.mean(phiPart2, axis=0)
vPart2 = np.mean(vPart2, axis=0)
phiPart3 = np.mean(phiPart3, axis=0)
vPart3 = np.mean(vPart3, axis=0)
# Extract streamwise velocities
vxPart1 = vPart1[:, 0]
vxPart2 = vPart2[:, 0]
vxPart3 = vPart3[:, 0]
# Plot z profiles (examples 1 and 2)
fig, axs = plt.subplots(1, 2, sharey=True)
fig.suptitle("z profiles (Examples 1 and 2)")
axs[0].plot(phiPart1, zAxis, label="Example 1 : at the center")
axs[0].plot(phiPart2, zAxis, label="Example 2 : at the walls")
axs[1].plot(vxPart1, zAxis, label="Example 1 : at the center")
axs[1].plot(vxPart2, zAxis, label="Example 2 : at the walls")
axs[0].set_xlabel(r"$\phi$ [-]")
axs[1].set_xlabel("$v_x$ [m/s]")
axs[0].set_ylabel("$z$ [diameters]")
axs[1].legend()
fig.show()
# Plot y profiles (example 3)
fig, axs = plt.subplots(1, 2, sharey=True)
fig.suptitle("y cross profiles (Example 3)")
axs[0].plot(phiPart3, yAxis)
axs[1].plot(vxPart3, yAxis)
axs[0].set_xlabel(r"$\phi$ [-]")
axs[1].set_xlabel("$v_x$ [m/s]")
axs[0].set_ylabel("$y$ [diameters]")
fig.show()
###################
# RUN WITH QT VIEW
view = qt.View()
view.viewDir = (0, 1, 0)
view.fitAABB([0, 0, 0], [length, boxWidth, boxHeight])
O.run()
|