1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
|
// 2011 © Bruno Chareyre <bruno.chareyre@grenoble-inp.fr>
// 2012 © Kneib Francois <francois.kneib@irstea.fr>
#include "Cylinder.hpp"
#include <lib/high-precision/Constants.hpp>
#include <pkg/common/Sphere.hpp>
#ifdef YADE_OPENGL
#include <lib/opengl/OpenGLWrapper.hpp>
#endif
#include <core/Aabb.hpp>
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
Cylinder::~Cylinder() { }
ChainedCylinder::~ChainedCylinder() { }
ChainedState::~ChainedState() { }
// Ig2_Sphere_ChainedCylinder_CylScGeom::~Ig2_Sphere_ChainedCylinder_CylScGeom() {}
// Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D::~Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D() {}
YADE_PLUGIN((Cylinder)(ChainedCylinder)(ChainedState)(Ig2_Sphere_ChainedCylinder_CylScGeom)(Ig2_Sphere_ChainedCylinder_CylScGeom6D)(
Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D)(Law2_CylScGeom6D_CohFrictPhys_CohesionMoment)(Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment)(
Law2_CylScGeom_FrictPhys_CundallStrack)
#ifdef YADE_OPENGL
(Gl1_Cylinder)(Gl1_ChainedCylinder)
#endif
(Bo1_Cylinder_Aabb)(Bo1_ChainedCylinder_Aabb));
vector<vector<int>> ChainedState::chains;
unsigned int ChainedState::currentChain = 0;
//!################## IG FUNCTORS #####################
//!Sphere-cylinder or cylinder-cylinder not implemented yet, see Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D and test/chained-cylinder-spring.py
bool Ig2_Sphere_ChainedCylinder_CylScGeom::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& /*force*/,
const shared_ptr<Interaction>& c)
{
const State* sphereSt = YADE_CAST<const State*>(&state1);
const ChainedState* cylinderSt = YADE_CAST<const ChainedState*>(&state2);
ChainedCylinder* cylinder = YADE_CAST<ChainedCylinder*>(cm2.get());
Sphere* sphere = YADE_CAST<Sphere*>(cm1.get());
assert(sphereSt && cylinderSt && cylinder && sphere);
bool isLast = (cylinderSt->chains[cylinderSt->chainNumber].size() == (cylinderSt->rank + 1));
bool isNew = !c->geom;
shared_ptr<CylScGeom> scm;
if (!isNew) { scm = YADE_PTR_CAST<CylScGeom>(c->geom); }
bool betweenTwoCylinders = false; //defines whether the sphere's center is moving between two cylinders who have an angle>180°
Vector3r segment, branch, direction; //informations about the current cylinder
Real length, dist;
shared_ptr<const ChainedState> statePrev;
Vector3r segmentPrev = Vector3r(0, 0, 0), directionPrev = Vector3r(0, 0, 0), branchPrev = Vector3r(0, 0, 0);
Real lengthPrev = 0, distPrev = 0;
if (cylinderSt->rank > 0) { //informations about the previous cylinder
statePrev = YADE_PTR_CAST<const ChainedState>(Body::byId(cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1], scene)->state);
segmentPrev = cylinderSt->pos - statePrev->pos;
lengthPrev = segmentPrev.norm();
directionPrev = segmentPrev / lengthPrev;
branchPrev = sphereSt->pos - statePrev->pos;
distPrev = directionPrev.dot(branchPrev);
}
//FIXME : definition of segment in next line breaks periodicity
shared_ptr<Body> cylinderNext;
branch = sphereSt->pos - cylinderSt->pos - shift2;
if (isLast) { //handle the last node with length=0
segment = Vector3r(0, 0, 0);
length = 0;
direction = Vector3r(0, 1, 0);
dist = directionPrev.dot(branch);
if (dist < 0) {
if (isNew) return false;
else if (scm->isDuplicate) {
scm->isDuplicate = 2;
scm->penetrationDepth = -1;
return true;
}
}
} else {
cylinderNext = Body::byId(cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1], scene);
segment = cylinderNext->state->pos - cylinderSt->pos;
length = segment.norm();
direction = segment / length;
dist = direction.dot(branch);
if (cylinderSt->rank > 0) {
if (distPrev > lengthPrev && dist < 0) { //the sphere is touching two cylinder who have an angle>180°
betweenTwoCylinders = true;
}
}
if (!betweenTwoCylinders && (cylinderSt->rank > 0 or dist > 0)) {
if (segment.dot(branch) >= segment.dot(segment) or dist < 0) { //position after or before the cylinder
//FIXME : scm->penetrationDepth=-1 is defined to workaround interactions never being erased when scm->isDuplicate=2 on the true interaction.
if (isNew) return false;
else if (scm->isDuplicate) {
scm->isDuplicate = 2;
scm->penetrationDepth = -1;
return true;
}
}
}
}
//Check sphere-cylinder distance
Vector3r projectedP = cylinderSt->pos + shift2 + direction * dist;
branch = projectedP - sphereSt->pos;
if (isLast || (cylinderSt->rank == 0 && dist < 0)) { branch = cylinderSt->pos - sphereSt->pos; }
if (branch.norm() > sphere->radius + cylinder->radius) {
if (isNew) return false;
else if (scm->isDuplicate) {
scm->isDuplicate = 2;
scm->penetrationDepth = -1;
return true;
}
}
if (!isNew) scm->isDuplicate = false; //reset here at each step, and recompute below
//if there is a contact with the previous element in the chain, consider this one a duplicate and push data to the new contact. Two interactions will share the same geometry and physics during a timestep.
if (!betweenTwoCylinders && cylinderSt->rank > 0 && dist < 0) {
if (!isNew) {
const shared_ptr<Interaction> intr
= scene->interactions->find(c->id1, cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1]);
if (!intr) {
cout << "Skipping contact because collider didn't found the previous cylinder" << endl;
return false;
}
//we know there is a contact, so there should be at least a virtual interaction created by collider
intr->geom = c->geom;
intr->phys = c->phys;
scm = YADE_PTR_CAST<CylScGeom>(c->geom);
scm->isDuplicate = 2;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1];
isNew = false;
return true;
} else
scm->isDuplicate = true;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1];
}
//similarly, make sure there is no contact with the next element in the chain
//else if (!isLast && dist>length) {
if (!betweenTwoCylinders && !isLast && dist >= length) {
if (!isNew) {
const shared_ptr<Interaction> intr
= scene->interactions->find(c->id1, cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1]);
if (!intr) {
cout << "Skipping contact because collider didn't found the next cylinder." << endl;
return false;
}
intr->geom = c->geom;
intr->phys = c->phys;
scm = YADE_PTR_CAST<CylScGeom>(c->geom);
scm->isDuplicate = 2;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1];
isNew = false;
return true;
} else
scm->isDuplicate = true;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1];
}
//We didn't find any special case, do normal geometry definition
if (isNew) {
scm = shared_ptr<CylScGeom>(new CylScGeom());
c->geom = scm;
}
scm->radius1 = sphere->radius;
scm->radius2 = cylinder->radius;
if (!isLast) scm->id3 = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1];
scm->start = cylinderSt->pos + shift2;
scm->end = scm->start + segment;
//FIXME : there should be other checks without distanceFactor?
if (dist <= 0 || isLast) { //We have sphere-node contact
Vector3r normal = (cylinderSt->pos + shift2) - sphereSt->pos;
Real norm = normal.norm();
normal /= norm;
scm->relPos = 0;
scm->onNode = true;
scm->relPos = 0;
scm->penetrationDepth = sphere->radius + cylinder->radius - norm;
scm->contactPoint = sphereSt->pos + (sphere->radius - 0.5 * scm->penetrationDepth) * normal;
scm->precompute(state1, state2, scene, c, normal, isNew, shift2, true); //use sphere-sphere precompute (a node is a sphere)
} else { //we have sphere-cylinder contact
scm->onNode = false;
scm->relPos = dist / length;
Real norm = branch.norm();
Vector3r normal = branch / norm;
scm->penetrationDepth = sphere->radius + cylinder->radius - norm;
// define a virtual sphere at the projected center
scm->fictiousState.pos = projectedP;
scm->fictiousState.vel = (1 - scm->relPos) * cylinderSt->vel + scm->relPos * cylinderNext->state->vel;
scm->fictiousState.angVel = ((1 - scm->relPos) * cylinderSt->angVel + scm->relPos * cylinderNext->state->angVel).dot(direction)
* direction //twist part : interpolated
+ segment.cross(cylinderNext->state->vel - cylinderSt->vel); // non-twist part : defined from nodes velocities
if (dist > length) {
scm->penetrationDepth = sphere->radius + cylinder->radius - (cylinderSt->pos + segment - sphereSt->pos).norm();
//FIXME : handle contact jump on next element
}
scm->contactPoint = sphereSt->pos + normal * (sphere->radius - 0.5 * scm->penetrationDepth);
scm->precompute(
state1, scm->fictiousState, scene, c, branch / norm, isNew, shift2, true); //use sphere-sphere precompute (with a virtual sphere)
}
return true;
}
bool Ig2_Sphere_ChainedCylinder_CylScGeom::goReverse(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
cerr << "Ig2_Sphere_ChainedCylinder_CylScGeom::goReverse" << endl;
c->swapOrder();
return go(cm2, cm1, state2, state1, -shift2, force, c);
}
bool Ig2_Sphere_ChainedCylinder_CylScGeom6D::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& /*force*/,
const shared_ptr<Interaction>& c)
{
const State* sphereSt = YADE_CAST<const State*>(&state1);
const ChainedState* cylinderSt = YADE_CAST<const ChainedState*>(&state2);
ChainedCylinder* cylinder = YADE_CAST<ChainedCylinder*>(cm2.get());
Sphere* sphere = YADE_CAST<Sphere*>(cm1.get());
assert(sphereSt && cylinderSt && cylinder && sphere);
bool isLast = (cylinderSt->chains[cylinderSt->chainNumber].size() == (cylinderSt->rank + 1));
bool isNew = !c->geom;
shared_ptr<CylScGeom6D> scm;
if (!isNew) { scm = YADE_PTR_CAST<CylScGeom6D>(c->geom); }
bool betweenTwoCylinders = false; //defines whether the sphere's center is moving between two cylinders who have an angle>180°
Vector3r segment, branch, direction; //informations about the current cylinder
Real length, dist;
shared_ptr<const ChainedState> statePrev;
Vector3r segmentPrev = Vector3r(0, 0, 0), directionPrev = Vector3r(0, 0, 0), branchPrev = Vector3r(0, 0, 0);
Real lengthPrev = 0, distPrev = 0;
if (cylinderSt->rank > 0) { //informations about the previous cylinder
statePrev = YADE_PTR_CAST<const ChainedState>(Body::byId(cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1], scene)->state);
segmentPrev = cylinderSt->pos - statePrev->pos;
lengthPrev = segmentPrev.norm();
directionPrev = segmentPrev / lengthPrev;
branchPrev = sphereSt->pos - statePrev->pos;
distPrev = directionPrev.dot(branchPrev);
}
//FIXME : definition of segment in next line breaks periodicity
shared_ptr<Body> cylinderNext;
branch = sphereSt->pos - cylinderSt->pos - shift2;
if (isLast) { //handle the last node with length=0
segment = Vector3r(0, 0, 0);
length = 0;
direction = Vector3r(0, 1, 0);
dist = directionPrev.dot(branch);
if (dist < 0) {
if (isNew) return false;
else if (scm->isDuplicate) {
scm->isDuplicate = 2;
return true;
}
}
} else {
cylinderNext = Body::byId(cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1], scene);
segment = cylinderNext->state->pos - cylinderSt->pos;
length = segment.norm();
direction = segment / length;
dist = direction.dot(branch);
if (cylinderSt->rank > 0) {
if (distPrev > lengthPrev && dist < 0) { //the sphere is touching two cylinder who have an angle>180°
betweenTwoCylinders = true;
}
}
if (!betweenTwoCylinders && (cylinderSt->rank > 0 or dist > 0)) {
if (segment.dot(branch) >= segment.dot(segment) or dist < 0) { //position after or before the cylinder
//FIXME : scm->penetrationDepth=-1 is defined to workaround interactions never being erased when scm->isDuplicate=2 on the true interaction.
if (isNew) return false;
else if (scm->isDuplicate) {
scm->isDuplicate = 2;
return true;
}
}
}
}
//Check sphere-cylinder distance
Vector3r projectedP = cylinderSt->pos + shift2 + direction * dist;
branch = projectedP - sphereSt->pos;
if (isLast || (cylinderSt->rank == 0 && dist < 0)) { branch = cylinderSt->pos - sphereSt->pos; }
if (branch.norm() > sphere->radius + cylinder->radius) {
if (isNew) return false;
else if (scm->isDuplicate) {
scm->isDuplicate = 2;
return true;
}
}
if (!isNew) scm->isDuplicate = false; //reset here at each step, and recompute below
//if there is a contact with the previous element in the chain, consider this one a duplicate and push data to the new contact. Two interactions will share the same geometry and physics during a timestep.
if (!betweenTwoCylinders && cylinderSt->rank > 0 && dist < 0) {
if (!isNew) {
const shared_ptr<Interaction> intr
= scene->interactions->find(c->id1, cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1]);
if (!intr) {
cout << "Skipping contact because collider didn't found the previous cylinder" << endl;
return false;
}
//we know there is a contact, so there should be at least a virtual interaction created by collider
intr->geom = c->geom;
intr->phys = c->phys;
scm = YADE_PTR_CAST<CylScGeom6D>(c->geom);
scm->isDuplicate = 2;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1];
isNew = false;
return true;
} else
scm->isDuplicate = true;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank - 1];
}
//similarly, make sure there is no contact with the next element in the chain
//else if (!isLast && dist>length) {
if (!betweenTwoCylinders && !isLast && dist >= length) {
if (!isNew) {
const shared_ptr<Interaction> intr
= scene->interactions->find(c->id1, cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1]);
if (!intr) {
cout << "Skipping contact because collider didn't found the next cylinder." << endl;
return false;
}
intr->geom = c->geom;
intr->phys = c->phys;
scm = YADE_PTR_CAST<CylScGeom6D>(c->geom);
scm->isDuplicate = 2;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1];
isNew = false;
return true;
} else
scm->isDuplicate = true;
scm->trueInt = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1];
}
//We didn't find any special case, do normal geometry definition
if (isNew) {
scm = shared_ptr<CylScGeom6D>(new CylScGeom6D());
c->geom = scm;
}
scm->radius1 = sphere->radius;
scm->radius2 = cylinder->radius;
if (!isLast && !scm->id3) scm->id3 = cylinderSt->chains[cylinderSt->chainNumber][cylinderSt->rank + 1];
scm->start = cylinderSt->pos + shift2;
scm->end = scm->start + segment;
//FIXME : there should be other checks without distanceFactor?
if (dist <= 0 || isLast) { //We have sphere-node contact
Vector3r normal = (cylinderSt->pos + shift2) - sphereSt->pos;
Real norm = normal.norm();
normal /= norm;
scm->relPos = 0;
scm->onNode = true;
scm->relPos = 0;
scm->penetrationDepth = sphere->radius + cylinder->radius - norm;
scm->contactPoint = sphereSt->pos + (sphere->radius - 0.5 * scm->penetrationDepth) * normal;
scm->precompute(state1, state2, scene, c, normal, isNew, shift2, true); //use sphere-sphere precompute (a node is a sphere)
} else { //we have sphere-cylinder contact
scm->onNode = false;
scm->relPos = dist / length;
Real norm = branch.norm();
Vector3r normal = branch / norm;
scm->penetrationDepth = sphere->radius + cylinder->radius - norm;
// define a virtual sphere at the projected center
scm->fictiousState.pos = projectedP;
scm->fictiousState.vel = (1 - scm->relPos) * cylinderSt->vel + scm->relPos * cylinderNext->state->vel;
scm->fictiousState.angVel = ((1 - scm->relPos) * cylinderSt->angVel + scm->relPos * cylinderNext->state->angVel).dot(direction)
* direction //twist part : interpolated
+ segment.cross(cylinderNext->state->vel - cylinderSt->vel); // non-twist part : defined from nodes velocities
if (dist > length) {
scm->penetrationDepth = sphere->radius + cylinder->radius - (cylinderSt->pos + segment - sphereSt->pos).norm();
//FIXME : handle contact jump on next element
}
scm->contactPoint = sphereSt->pos + normal * (sphere->radius - 0.5 * scm->penetrationDepth);
scm->precompute(
state1, scm->fictiousState, scene, c, branch / norm, isNew, shift2, true); //use sphere-sphere precompute (with a virtual sphere)
}
return true;
}
bool Ig2_Sphere_ChainedCylinder_CylScGeom6D::goReverse(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
return go(cm1, cm2, state2, state1, -shift2, force, c);
}
bool Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& /*force*/,
const shared_ptr<Interaction>& c)
{
const ChainedState *pChain1, *pChain2;
pChain1 = YADE_CAST<const ChainedState*>(&state1);
pChain2 = YADE_CAST<const ChainedState*>(&state2);
unsigned int sizeChain1 = pChain1->chains[pChain1->chainNumber].size();
unsigned int sizeChain2 = pChain2->chains[pChain2->chainNumber].size();
if (!pChain1 || !pChain2) { cerr << "cast failed8567" << endl; }
const bool revert = ((int)pChain2->rank - (int)pChain1->rank == -1);
const ChainedState& bchain1 = revert ? *pChain2 : *YADE_CAST<const ChainedState*>(&state1);
const ChainedState& bchain2 = revert ? *pChain1 : *pChain2;
ChainedCylinder* bs1 = static_cast<ChainedCylinder*>(revert ? cm2.get() : cm1.get());
bool isLast = bchain1.chains[bchain1.chainNumber].size() == (bchain1.rank + 1) || bchain2.chains[bchain2.chainNumber].size() == (bchain2.rank + 1);
bool isNew = !c->geom;
if (pChain2->chainNumber != pChain1->chainNumber) {
shared_ptr<ChCylGeom6D> scm;
if (isLast) { return false; }
shared_ptr<Body> cylinderNext1 = Body::byId(pChain1->chains[pChain1->chainNumber][pChain1->rank + 1], scene);
shared_ptr<Body> cylinderNext2 = Body::byId(pChain2->chains[pChain2->chainNumber][pChain2->rank + 1], scene);
//cout<<c->id1<<" "<<c->id2<<endl;
bool colinearVectors = 0, insideCyl1 = 1,
insideCyl2 = 1; //insideCyl1&2 are used to determine whether the contact is inside each cylinder's segment
Real dist = NaN, k = 0, m = 0; //k and m are the parameters of the fictious states on the cylinders.
Vector3r A = pChain1->pos, a = cylinderNext1->state->pos - A, B = pChain2->pos, b = cylinderNext2->state->pos - B;
Vector3r N = a.cross(b);
Vector3r normal;
if (N.norm() > 1e-14) {
dist = math::abs(N.dot(B - A) / (N.norm())); //distance between the two LINES.
//But we need to check that the intersection point is inside the two SEGMENTS ...
//Projection of B to have a common plan between the two segments.
Vector3r projB1 = B + dist * (N / (N.norm())), projB2 = B - dist * (N / (N.norm()));
Real distB1A = (projB1 - A).norm(), distB2A = (projB2 - A).norm();
Vector3r projB = (distB1A <= distB2A) * projB1 + (distB1A > distB2A) * projB2;
int b1 = 0, b2 = 1; //base vectors used to compute the segment intersection (if N is aligned with an axis, we can't use this axis)
if (math::abs(N[1]) < 1e-14 && math::abs(N[2]) < 1e-14) {
b1 = 1;
b2 = 2;
}
if (math::abs(N[0]) < 1e-14 && math::abs(N[2]) < 1e-14) {
b1 = 0;
b2 = 2;
}
Real det = a[b1] * b[b2] - a[b2] * b[b1];
if (math::abs(det) > 1e-14) { //Check if the two segments are intersected (using k and m)
k = (b[b2] * (projB[b1] - A[b1]) + b[b1] * (A[b2] - projB[b2])) / det;
m = (a[b1] * (-projB[b2] + A[b2]) + a[b2] * (projB[b1] - A[b1])) / det;
if (k < 0.0 || k >= 1.0 || m < 0.0 || m >= 1.0) { //so they are not intersected
dist = NaN;
if (k >= 1) {
k = 1;
if (!(pChain1->rank >= sizeChain1 - 2)) insideCyl1 = 0;
}
if (k < 0) {
k = 0;
if (!(pChain1->rank == 0)) insideCyl1 = 0;
}
if (m >= 1) {
m = 1;
if (!(pChain2->rank >= sizeChain2 - 2)) insideCyl2 = 0;
}
if (m < 0) {
m = 0;
if (!(pChain2->rank == 0)) insideCyl2 = 0;
}
}
} else
cout << "Error in Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D : det==0 !!!" << endl; //should not happen
} else {
//Special case for parallel cylinders.
//FIXME : this is an approximation, but it seems very complicated to do something else.
//FIXME : contact following have to be done for parallel cylinders.
colinearVectors = 1;
insideCyl1 = 1;
insideCyl2 = 1;
Real PA = (A - B).dot(b) / (b.norm() * b.norm());
PA = min((Real)1.0, max((Real)0.0, PA));
Real Pa = (A + a - B).dot(b) / (b.norm() * b.norm());
Pa = min((Real)1.0, max((Real)0.0, Pa));
Real PB = (B - A).dot(a) / (a.norm() * a.norm());
PB = min((Real)1.0, max((Real)0.0, PB));
Real Pb = (B + b - A).dot(a) / (a.norm() * a.norm());
Pb = min((Real)1.0, max((Real)0.0, Pb));
Real h1 = (A + 0.5 * a - B).dot(b) / (b.norm() * b.norm()); //Projection parameter of center of a on b
Real h2 = (B + 0.5 * b - A).dot(a) / (a.norm() * a.norm()); //Projection parameter of center of b on a
k = (PB + Pb) / 2.;
m = (PA + Pa) / 2.;
dist = (A + k * a - (B + m * b)).norm();
bool edgeEdgeContact = (h1 > 1 && pChain2->rank >= sizeChain2 - 2) || (h1 < 0 && pChain2->rank == 0)
|| (h2 > 1 && pChain1->rank >= sizeChain1 - 2) || (h2 < 0 && pChain1->rank == 0);
if (edgeEdgeContact) colinearVectors = 0;
if ((0 <= h1 and 1 > h1) or (0 <= h2 and 1 > h2) or edgeEdgeContact) {
; //Do a perfectly flat contact
} else
return false; //Parallel lines but edge-edge contact
}
ChainedCylinder* cc1 = static_cast<ChainedCylinder*>(cm1.get());
ChainedCylinder* cc2 = static_cast<ChainedCylinder*>(cm2.get());
if (math::isnan(
dist)) { //now if we didn't found a suitable distance because the segments don't cross each other, we try to find a sphere-cylinder distance.
Vector3r pointsToCheck[4] = { A, A + a, B, B + b };
Real resultDist = dist, resultProj = dist;
int whichCaseIsCloser = -1;
for (int i = 0; i < 4; i++) { //loop on the 4 cylinder's extremities and look at the extremity-cylinder distance
Vector3r S = pointsToCheck[i], C = (i < 2) ? B : A, vec = (i < 2) ? b : a;
Vector3r CS = S - C;
Real d = CS.dot(vec) / (vec.norm());
if (d < 0.) resultDist = CS.norm();
else if (d > vec.norm())
resultDist = (C + vec - S).norm();
else
resultDist = (CS.cross(vec)).norm() / (vec.norm());
if (dist > resultDist or math::isnan(dist)) {
dist = resultDist;
whichCaseIsCloser = i;
resultProj = d;
}
}
//we know which extremity may be in contact (i), so k and m are computed to generate the right fictiousStates.
insideCyl1 = 1;
insideCyl2 = 1;
//FIXME:NATCHOS ! this should be reformulated
if (whichCaseIsCloser == 0 || whichCaseIsCloser == 1) {
k = whichCaseIsCloser == 0 ? 0 : 1;
if (resultProj <= 0) {
m = 0;
if (!(pChain2->rank == 0)) insideCyl2 = 0;
} else if (resultProj > b.norm()) {
m = 1;
if (!(pChain2->rank >= sizeChain2 - 2)) insideCyl2 = 0;
} else
m = resultProj / (b.norm());
if (isNew && whichCaseIsCloser == 1 && !(pChain1->rank >= sizeChain1 - 2)) return false;
} else {
m = whichCaseIsCloser == 2 ? 0 : 1;
if (resultProj <= 0) {
k = 0;
if (!(pChain1->rank == 0)) insideCyl1 = 0;
} else if (resultProj > a.norm()) {
k = 1;
if (!(pChain1->rank >= sizeChain2 - 2)) insideCyl1 = 0;
} else
k = resultProj / (a.norm());
if (isNew && whichCaseIsCloser == 3 && !(pChain2->rank >= sizeChain2 - 2)) return false;
}
}
if (isNew && dist >= cc1->radius + cc2->radius) return false; //if the contact had not yet occured, return false.
//FIXME:the next line sometimes causes an error in the terminal, because instead of returning false here the contact should be correctly erased.
if (insideCyl1 == 0 || insideCyl2 == 0) return false; //the contact may be duplicated ...
else { //else create the geometry.
if (!isNew) scm = YADE_PTR_CAST<ChCylGeom6D>(c->geom);
else {
scm = shared_ptr<ChCylGeom6D>(new ChCylGeom6D());
c->geom = scm;
}
scm->relPos1 = colinearVectors ? 0.5 : k;
scm->relPos2 = colinearVectors ? 0.5 : m;
scm->fictiousState1.pos = A + k * a;
scm->fictiousState2.pos = B + m * b;
scm->fictiousState1.vel = (1 - k) * pChain1->vel + k * cylinderNext1->state->vel;
scm->fictiousState2.vel = (1 - m) * pChain2->vel + m * cylinderNext2->state->vel;
Vector3r direction = a / (a.norm());
scm->fictiousState1.angVel
= ((1 - k) * pChain1->angVel + k * cylinderNext1->state->angVel).dot(direction) * direction //twist part : interpolated
+ a.cross(cylinderNext1->state->vel - pChain1->vel); // non-twist part : defined from nodes velocities
direction = b / (b.norm());
scm->fictiousState2.angVel
= ((1 - m) * pChain2->angVel + m * cylinderNext2->state->angVel).dot(direction) * direction //twist part : interpolated
+ b.cross(cylinderNext2->state->vel - pChain2->vel); // non-twist part : defined from nodes velocities
scm->contactPoint = 0.5 * (scm->fictiousState1.pos + scm->fictiousState2.pos);
normal = scm->fictiousState2.pos - scm->fictiousState1.pos;
normal = normal / (normal.norm());
scm->penetrationDepth = cc1->radius + cc2->radius - dist;
scm->radius1 = cc1->radius;
scm->radius2 = cc2->radius;
scm->precompute(scm->fictiousState1, scm->fictiousState2, scene, c, normal, isNew, shift2, true);
return true;
}
} else if (bchain2.rank - bchain1.rank != 1) { /*cerr<<"Mutual contacts in same chain between not adjacent elements, not handled*/
return false;
} else { //contact between two Cylinders within the same chain.
shared_ptr<ScGeom6D> scm;
if (!isNew) scm = YADE_PTR_CAST<ScGeom6D>(c->geom);
else {
scm = shared_ptr<ScGeom6D>(new ScGeom6D());
c->geom = scm;
}
Real length = (bchain2.pos - bchain1.pos).norm();
Vector3r segt = pChain2->pos - pChain1->pos;
if (isNew) { /*scm->normal=scm->prevNormal=segt/length;*/
bs1->initLength = length;
}
if (!halfLengthContacts) {
scm->radius1 = revert ? 0 : bs1->initLength;
scm->radius2 = revert ? bs1->initLength : 0;
scm->contactPoint = bchain2.pos;
} else {
scm->radius1 = scm->radius2 = 0.5 * bs1->initLength;
scm->contactPoint = 0.5 * (bchain2.pos + bchain1.pos);
}
scm->penetrationDepth = bs1->initLength - length;
//bs1->segment used for fast BBs and projections + display
bs1->segment = bchain2.pos - bchain1.pos;
#ifdef YADE_OPENGL
bs1->length = length;
bs1->chainedOrientation.setFromTwoVectors(Vector3r::UnitZ(), bchain1.ori.conjugate() * segt);
#endif
scm->precompute(state1, state2, scene, c, segt / length, isNew, shift2, true);
scm->precomputeRotations(state1, state2, isNew, false);
//Set values that will be considered in Ip2 functor, geometry (precomputed) is really defined with values above
scm->radius1 = scm->radius2 = bs1->initLength * 0.5;
return true;
}
}
bool Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D::goReverse(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
return go(cm2, cm1, state2, state1, -shift2, force, c);
}
#ifdef YADE_OPENGL
//!################## RENDERING #####################
bool Gl1_Cylinder::wire;
bool Gl1_Cylinder::glutNormalize;
int Gl1_Cylinder::glutSlices;
int Gl1_Cylinder::glutStacks;
int Gl1_Cylinder::glCylinderList = -1;
void Gl1_Cylinder::out(Quaternionr q)
{
AngleAxisr aa(q);
std::cout << " axis: " << aa.axis()[0] << " " << aa.axis()[1] << " " << aa.axis()[2] << ", angle: " << aa.angle() << " | ";
}
void Gl1_Cylinder::go(const shared_ptr<Shape>& cm, const shared_ptr<State>&, bool wire2, const GLViewInfo&)
{
Real r = (static_cast<Cylinder*>(cm.get()))->radius;
Real length = (static_cast<Cylinder*>(cm.get()))->length;
//glMaterialv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, Vector3f(cm->color[0],cm->color[1],cm->color[2]));
glColor3v(cm->color);
if (glutNormalize) glPushAttrib(GL_NORMALIZE);
// glPushMatrix();
Quaternionr shift = (static_cast<ChainedCylinder*>(cm.get()))->chainedOrientation;
if (wire || wire2) drawCylinder(true, r, length, shift);
else
drawCylinder(false, r, length, shift);
if (glutNormalize) glPopAttrib();
// glPopMatrix();
return;
}
void Gl1_ChainedCylinder::go(const shared_ptr<Shape>& cm, const shared_ptr<State>& state, bool wire2, const GLViewInfo&)
{
Real r = (static_cast<ChainedCylinder*>(cm.get()))->radius;
Real length = (static_cast<ChainedCylinder*>(cm.get()))->length;
Quaternionr shift; // = (static_cast<ChainedCylinder*>(cm.get()))->chainedOrientation;
shift.setFromTwoVectors(Vector3r::UnitZ(), state->ori.conjugate() * (static_cast<ChainedCylinder*>(cm.get()))->segment);
glColor3v(cm->color);
if (glutNormalize) glPushAttrib(GL_NORMALIZE);
if (wire || wire2) drawCylinder(true, r, length, shift);
else
drawCylinder(false, r, length, shift);
if (glutNormalize) glPopAttrib();
return;
}
void Gl1_Cylinder::drawCylinder(bool wireNonMember, Real radius, Real length, const Quaternionr& shift) const
{
glPushMatrix();
GLUquadricObj* quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, (GLenum)(wireNonMember ? GLU_SILHOUETTE : GLU_FILL));
gluQuadricNormals(quadObj, (GLenum)GLU_SMOOTH);
gluQuadricOrientation(quadObj, (GLenum)GLU_OUTSIDE);
AngleAxisr aa(shift);
glRotate(aa.angle() * 180.0 / Mathr::PI, aa.axis()[0], aa.axis()[1], aa.axis()[2]);
gluCylinder(quadObj, radius, radius, length, glutSlices, glutStacks);
gluQuadricOrientation(quadObj, (GLenum)GLU_INSIDE);
glutSolidSphere(radius, glutSlices, glutStacks);
glTranslate(0.0, 0.0, length);
glutSolidSphere(radius, glutSlices, glutStacks);
// gluDisk(quadObj,0.0,radius,glutSlices,_loops);
gluDeleteQuadric(quadObj);
glPopMatrix();
}
//!################## BOUNDS FUNCTOR #####################
#endif
void Bo1_Cylinder_Aabb::go(const shared_ptr<Shape>& cm, shared_ptr<Bound>& bv, const Se3r& se3, const Body* /*b*/)
{
Cylinder* cylinder = static_cast<Cylinder*>(cm.get());
if (!bv) { bv = shared_ptr<Bound>(new Aabb); }
Aabb* aabb = static_cast<Aabb*>(bv.get());
if (!scene->isPeriodic) {
const Vector3r& O = se3.position;
Vector3r O2 = se3.position + se3.orientation * cylinder->segment;
aabb->min = aabb->max = O;
for (int k = 0; k < 3; k++) {
aabb->min[k] = min(aabb->min[k], min(O[k], O2[k]) - cylinder->radius);
aabb->max[k] = max(aabb->max[k], max(O[k], O2[k]) + cylinder->radius);
}
return;
}
}
void Bo1_ChainedCylinder_Aabb::go(const shared_ptr<Shape>& cm, shared_ptr<Bound>& bv, const Se3r& se3, const Body* /*b*/)
{
ChainedCylinder* cylinder = static_cast<ChainedCylinder*>(cm.get());
if (!bv) { bv = shared_ptr<Bound>(new Aabb); }
Aabb* aabb = static_cast<Aabb*>(bv.get());
if (!scene->isPeriodic) {
const Vector3r& O = se3.position;
Vector3r O2 = O + cylinder->segment;
//cout<<"O="<<O<<" O2="<<O2<<endl;
for (int k = 0; k < 3; k++) {
aabb->min[k] = min(O[k], O2[k]) - cylinder->radius;
aabb->max[k] = max(O[k], O2[k]) + cylinder->radius;
}
return;
}
}
bool Law2_CylScGeom_FrictPhys_CundallStrack::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
CylScGeom* geom = static_cast<CylScGeom*>(ig.get());
FrictPhys* phys = static_cast<FrictPhys*>(ip.get());
if (geom->penetrationDepth < 0) {
if (neverErase) {
phys->shearForce = Vector3r::Zero();
phys->normalForce = Vector3r::Zero();
} else
return false;
}
if (geom->isDuplicate) {
if (id2 != geom->trueInt) {
//cerr<<"skip duplicate "<<id1<<" "<<id2<<endl;
if (geom->isDuplicate == 2) return false;
}
}
Real& un = geom->penetrationDepth;
phys->normalForce = phys->kn * math::max(un, (Real)0) * geom->normal;
Vector3r& shearForce = geom->rotate(phys->shearForce);
const Vector3r& shearDisp = geom->shearIncrement();
shearForce -= phys->ks * shearDisp;
Real maxFs = phys->normalForce.squaredNorm() * math::pow(phys->tangensOfFrictionAngle, 2);
if (!scene->trackEnergy) { //Update force but don't compute energy terms (see below))
// PFC3d SlipModel, is using friction angle. CoulombCriterion
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
shearForce *= ratio;
}
} else {
//almost the same with additional Vector3r instanciated for energy tracing, duplicated block to make sure there is no cost for the instanciation of the vector when traceEnergy==false
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
Vector3r trialForce = shearForce; //store prev force for definition of plastic slip
//define the plastic work input and increment the total plastic energy dissipated
shearForce *= ratio;
Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
if (dissip > 0) scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset*/ false);
}
// compute elastic energy as well
scene->energy->add(
0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks),
"elastPotential",
elastPotentialIx,
/*reset at every timestep*/ true);
}
if (!scene->isPeriodic) {
Vector3r force = -phys->normalForce - shearForce;
scene->forces.addForce(id1, force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
//FIXME : include moment due to axis-contact distance in forces on node
Vector3r twist = (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
scene->forces.addForce(id2, (geom->relPos - 1) * force);
scene->forces.addTorque(id2, (1 - geom->relPos) * twist);
if (geom->relPos) { //else we are on node (or on last node - and id3 is junk)
scene->forces.addForce(geom->id3, (-geom->relPos) * force);
scene->forces.addTorque(geom->id3, geom->relPos * twist);
}
}
// applyForceAtContactPoint(-phys->normalForce-shearForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
else { //FIXME : periodicity not implemented here :
Vector3r force = -phys->normalForce - shearForce;
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
scene->forces.addTorque(id2, (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
}
return true;
}
bool Law2_CylScGeom6D_CohFrictPhys_CohesionMoment::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
CylScGeom6D* geom = YADE_CAST<CylScGeom6D*>(ig.get());
CohFrictPhys* currentContactPhysics = YADE_CAST<CohFrictPhys*>(ip.get());
Vector3r& shearForceFirst = currentContactPhysics->shearForce; //force tangentielle
if (contact->isFresh(scene)) shearForceFirst = Vector3r::Zero(); //contact nouveau => force tengentielle = 0,0,0
Real un = geom->penetrationDepth; //un : interpenetration
Real Fn = currentContactPhysics->kn * (un - currentContactPhysics->unp); //Fn : force normale
if (geom->isDuplicate) {
if (id2 != geom->trueInt) {
//cerr<<"skip duplicate "<<id1<<" "<<id2<<endl;
if (geom->isDuplicate == 2) return false;
}
}
if (currentContactPhysics->fragile && (-Fn) > currentContactPhysics->normalAdhesion) {
// BREAK due to tension
return false;
} else {
if ((-Fn) > currentContactPhysics->normalAdhesion) { //normal plasticity
Fn = -currentContactPhysics->normalAdhesion;
currentContactPhysics->unp = un + currentContactPhysics->normalAdhesion / currentContactPhysics->kn;
if (currentContactPhysics->unpMax && currentContactPhysics->unp < currentContactPhysics->unpMax) return false;
}
currentContactPhysics->normalForce = Fn * geom->normal;
Vector3r& shearForce = geom->rotate(currentContactPhysics->shearForce);
const Vector3r& dus = geom->shearIncrement();
//Linear elasticity giving "trial" shear force
shearForce -= currentContactPhysics->ks * dus;
Real Fs = currentContactPhysics->shearForce.norm();
Real maxFs = currentContactPhysics->shearAdhesion;
if (!currentContactPhysics->cohesionDisablesFriction || maxFs == 0) maxFs += Fn * currentContactPhysics->tangensOfFrictionAngle;
maxFs = math::max((Real)0, maxFs);
if (Fs > maxFs) { //Plasticity condition on shear force
if (currentContactPhysics->fragile && !currentContactPhysics->cohesionBroken) {
currentContactPhysics->SetBreakingState();
maxFs = max((Real)0, Fn * currentContactPhysics->tangensOfFrictionAngle);
}
maxFs = maxFs / Fs;
shearForce *= maxFs;
if (Fn < 0) currentContactPhysics->normalForce = Vector3r::Zero(); //Vector3r::Zero()
}
Vector3r force = -currentContactPhysics->normalForce - shearForce;
if (!scene->isPeriodic) {
scene->forces.addForce(id1, force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
//FIXME : include moment due to axis-contact distance in forces on node
Vector3r twist = (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
scene->forces.addForce(id2, (geom->relPos - 1) * force);
scene->forces.addTorque(id2, (1 - geom->relPos) * twist);
if (geom->relPos) { //else we are on node (or on last node - and id3 is junk)
scene->forces.addForce(geom->id3, (-geom->relPos) * force);
scene->forces.addTorque(geom->id3, geom->relPos * twist);
}
}
// applyForceAtContactPoint(-phys->normalForce-shearForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
else { //FIXME : periodicity not implemented here :
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
scene->forces.addTorque(id2, (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
}
//applyForceAtContactPoint(-currentContactPhysics->normalForce-shearForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
}
return true;
}
bool Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
ChCylGeom6D* geom = YADE_CAST<ChCylGeom6D*>(ig.get());
CohFrictPhys* currentContactPhysics = YADE_CAST<CohFrictPhys*>(ip.get());
/*
shared_ptr<const ChainedState> state1 = YADE_PTR_CAST<const ChainedState> (Body::byId(id1,scene)->state);
const shared_ptr<Interaction> intr = scene->interactions->find(id1,id2+1);
if(!intr) {cout<<"Skipping contact because collider didn't found the next cylinder."<<endl;return false;}
intr->geom = c->geom;
intr->phys = c->phys;
*/
Vector3r& shearForceFirst = currentContactPhysics->shearForce; //force tangentielle
if (contact->isFresh(scene)) shearForceFirst = Vector3r::Zero(); //contact nouveau => force tengentielle = 0,0,0
Real un = geom->penetrationDepth; //un : interpenetration
Real Fn = currentContactPhysics->kn * (un - currentContactPhysics->unp); //Fn : force normale
if (currentContactPhysics->fragile && (-Fn) > currentContactPhysics->normalAdhesion) return false; // BREAK due to tension
else {
if ((-Fn) > currentContactPhysics->normalAdhesion) { //normal plasticity
Fn = -currentContactPhysics->normalAdhesion;
currentContactPhysics->unp = un + currentContactPhysics->normalAdhesion / currentContactPhysics->kn;
if (currentContactPhysics->unpMax && currentContactPhysics->unp < currentContactPhysics->unpMax) return false;
}
currentContactPhysics->normalForce = Fn * geom->normal;
Vector3r& shearForce = geom->rotate(currentContactPhysics->shearForce);
const Vector3r& dus = geom->shearIncrement();
//Linear elasticity giving "trial" shear force
shearForce -= currentContactPhysics->ks * dus;
Real Fs = currentContactPhysics->shearForce.norm();
Real maxFs = currentContactPhysics->shearAdhesion;
if (!currentContactPhysics->cohesionDisablesFriction || maxFs == 0) maxFs += Fn * currentContactPhysics->tangensOfFrictionAngle;
maxFs = math::max((Real)0, maxFs);
if (Fs > maxFs) { //Plasticity condition on shear force
if (currentContactPhysics->fragile && !currentContactPhysics->cohesionBroken) {
currentContactPhysics->SetBreakingState();
maxFs = max((Real)0, Fn * currentContactPhysics->tangensOfFrictionAngle);
}
maxFs = maxFs / Fs;
shearForce *= maxFs;
if (Fn < 0) currentContactPhysics->normalForce = Vector3r::Zero(); //Vector3r::Zero()
}
Vector3r force = -currentContactPhysics->normalForce - shearForce;
//cout<<"id1="<<contact->getId1()<<" id2="<<contact->getId2()<<" normalForce="<<currentContactPhysics->normalForce<<" shearForce="<<shearForce<<endl;
if (!scene->isPeriodic) {
Vector3r twist1 = (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
Vector3r twist2 = (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
scene->forces.addForce(id1, (1 - geom->relPos1) * force);
scene->forces.addTorque(id1, (1 - geom->relPos1) * twist1);
scene->forces.addForce(id2, -(1 - geom->relPos2) * force);
scene->forces.addTorque(id2, (1 - geom->relPos2) * twist2);
scene->forces.addForce(id1 + 1, geom->relPos1 * force);
scene->forces.addTorque(id1 + 1, geom->relPos1 * twist1);
scene->forces.addForce(id2 + 1, -geom->relPos2 * force);
scene->forces.addTorque(id2 + 1, geom->relPos2 * twist2);
}
// applyForceAtContactPoint(-phys->normalForce-shearForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
else { //FIXME : periodicity not implemented here :
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
scene->forces.addTorque(id2, (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
}
}
return true;
}
} // namespace yade
|