1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
/*************************************************************************
* Copyright (C) 2012 by François Kneib francois.kneib@gmail.com *
* Copyright (C) 2012 by Bruno Chareyre bruno.chareyre@grenoble-inp.fr *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#include "Grid.hpp"
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
//!################## SHAPES #####################
GridNode::~GridNode() { }
YADE_PLUGIN((GridNode));
GridConnection::~GridConnection() { }
YADE_PLUGIN((GridConnection));
GridNodeGeom6D::~GridNodeGeom6D() { }
YADE_PLUGIN((GridNodeGeom6D));
ScGridCoGeom::~ScGridCoGeom() { }
YADE_PLUGIN((ScGridCoGeom));
GridCoGridCoGeom::~GridCoGridCoGeom() { }
YADE_PLUGIN((GridCoGridCoGeom));
void GridNode::addConnection(shared_ptr<Body> GC) { ConnList.push_back(GC); }
Vector3r GridConnection::getSegment() const
{
if (!periodic) return node2->state->pos - node1->state->pos;
//else
const Scene* scene = Omega::instance().getScene().get();
return node2->state->pos + scene->cell->hSize * cellDist.cast<Real>() - node1->state->pos;
}
Real GridConnection::getLength() const { return getSegment().norm(); }
void GridNode::addPFacet(shared_ptr<Body> PF) { pfacetList.push_back(PF); }
void GridConnection::addPFacet(shared_ptr<Body> PF) { pfacetList.push_back(PF); }
PFacet::~PFacet() { }
YADE_PLUGIN((PFacet));
//!################## IGeom Functors #####################
//! O-O
bool Ig2_GridNode_GridNode_GridNodeGeom6D::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
//GridConnection* GC = static_cast<GridConnection*>(cm.get());
bool isNew = !c->geom;
GridNode* GN[2] = { static_cast<GridNode*>(cm1.get()), static_cast<GridNode*>(cm2.get()) };
if (Ig2_Sphere_Sphere_ScGeom::go(cm1, cm2, state1, state2, shift2, force, c)) { //the 3 DOFS from ScGeom are updated here
if (isNew) { //generate a 6DOF interaction from the 3DOF one generated by Ig2_Sphere_Sphere_ScGeom
shared_ptr<GridNodeGeom6D> sc(new GridNodeGeom6D());
*(YADE_PTR_CAST<ScGeom>(sc)) = *(YADE_PTR_CAST<ScGeom>(c->geom));
c->geom = sc;
}
if (updateRotations) YADE_PTR_CAST<GridNodeGeom6D>(c->geom)->precomputeRotations(state1, state2, isNew, creep);
if (YADE_PTR_CAST<GridNodeGeom6D>(c->geom)->connectionBody) { //test this because the connectionBody may not have been yet initialized.
YADE_PTR_CAST<GridNodeGeom6D>(c->geom)->connectionBody->state->pos = state1.pos;
for (unsigned int j = 0; j < 2; j++) {
for (unsigned int i = 0; i < GN[j]->pfacetList.size(); i++) {
PFacet* Pfacet = YADE_CAST<PFacet*>(GN[j]->pfacetList[i]->shape.get());
if (c->id1 == Pfacet->node1->getId()) GN[j]->pfacetList[i]->state->pos = state1.pos;
}
}
}
return true;
} else
return false;
}
bool Ig2_GridNode_GridNode_GridNodeGeom6D::goReverse(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
return go(cm1, cm2, state2, state1, -shift2, force, c);
}
YADE_PLUGIN((Ig2_GridNode_GridNode_GridNodeGeom6D));
//! \\//
bool Ig2_GridConnection_GridConnection_GridCoGridCoGeom::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& /*state1*/,
const State& /*state2*/,
const Vector3r& shift2,
const bool& /*force*/,
const shared_ptr<Interaction>& c)
{
/*FIXME : /!\ Note that this geometry doesn't take care of any unwished duplicated contact or shear force following. /!\*/
GridConnection* conn1 = YADE_CAST<GridConnection*>(cm1.get());
GridConnection* conn2 = YADE_CAST<GridConnection*>(cm2.get());
State* stNode11 = conn1->node1->state.get();
State* stNode12 = conn1->node2->state.get();
State* stNode21 = conn2->node1->state.get();
State* stNode22 = conn2->node2->state.get();
if (conn1->node1 == conn2->node1 || conn1->node1 == conn2->node2 || conn1->node2 == conn2->node1 || conn1->node2 == conn2->node2) {
//Two connections share at least one node, so they are contiguous => they must not interact.
return false;
}
//There could be a contact between to connections. Check this now.
bool isNew = !c->geom;
Real k, m;
Vector3r A = stNode11->pos, a = stNode12->pos - A; //"A" is an extremity of conn1, "a" is the connection's segment.
Vector3r B = stNode21->pos, b = stNode22->pos - B; //"B" is an extremity of conn2, "b" is the connection's segment.
B += shift2; //periodicity.
/* NOW STARTS THE OLD VERSION. IT SHOULD BE REMOVED LATER.
Vector3r N=a.cross(b); //"N" is orthogonal to "a" and "b". It means that "N" describes the common plan between a and b.
if(N.norm()>1e-14){ //If "a" and "b" are colinear, "N==0" and this is a special case.
Real dist=N.dot(B-A)/(N.norm()); //here "dist" is oriented, so it's sign depends on the orientation of "N" against "AB".
Vector3r pB=B-dist*(N/(N.norm())); //"pB" is the projection of the point "B" in the plane defined by his normal vector "N".
//Now we have pB, so we will compute the intersection of two segments into a plane.
int b0, b1; //2 base vectors used to compute the segment intersection. For more accuracy and to avoid det==0, don't choose the axis where N is max.
if(math::abs(N[0])<math::abs(N[1]) || math::abs(N[0])<math::abs(N[2])){b0=0 ; b1=math::abs(N[1])<math::abs(N[2])?1:2;}
else { b0=1;b1=2;}
Real det=a[b0]*b[b1]-a[b1]*b[b0];
if (math::abs(det)>1e-14){
//Now compute k and m, who are the parameters (relative position on the connections) of the intersection on conn1 ("A" and "a") and conn2 ("B" and "b") respectively.
k = (b[b1]*(pB[b0]-A[b0])+b[b0]*(A[b1]-pB[b1]))/det;
m = (a[b0]*(-pB[b1]+A[b1])+a[b1]*(pB[b0]-A[b0]))/det;
//This is a little bit tricky : if we haven't 0<k,m<1, it means that the intersection is not inside both segments,
//but the contact can occurs anyway between a connection's extremity and a connection's edge or between two connection's extremity.
//So the three next lines : don't modify k and m if (0<k,m<1), but modify them otherwise to compute later the right normal and penetrationDepth of the contact.
k = max(min( k,(Real)1.0),(Real)0.0);
m = max(min( (A+a*k-B).dot(b)/(pow(b.norm(),2.0)) ,(Real)1.0),(Real)0.0);
k = max(min( (B+b*m-A).dot(a)/(pow(a.norm(),2.0)) ,(Real)1.0),(Real)0.0);
}
else {//should never happen
k=0;m=0;
cout<<"Error in Ig2_GridConnection_GridConnection_GridCoGridCoGeom : det=="<<det<<endl;
cout<<"Details : N="<<N<<" b0="<<b0<<" b1="<<b1<<" a="<<a<<" b="<<b<<endl;
}
}
else{ //this is a special case for perfectly colinear vectors ("a" and "b")
Real PA=(A-B).dot(b)/(b.norm()*b.norm()); PA=min((Real)1.0,max((Real)0.0,PA));
Real Pa=(A+a-B).dot(b)/(b.norm()*b.norm()); Pa=min((Real)1.0,max((Real)0.0,Pa));
Real PB=(B-A).dot(a)/(a.norm()*a.norm()); PB=min((Real)1.0,max((Real)0.0,PB));
Real Pb=(B+b-A).dot(a)/(a.norm()*a.norm()); Pb=min((Real)1.0,max((Real)0.0,Pb));
k=(PB+Pb)/2. ; m=(PA+Pa)/2.;
} OLD VERSION END*/
/* NOW STARTS THE NEW VERSION */
Real denom = a.dot(a) * b.dot(b) - pow(a.dot(b), 2);
if (denom != 0) {
k = (a.dot(B - A) * b.dot(b) - a.dot(b) * b.dot(B - A)) / denom;
// m = (a.dot(b)*a.dot(B-A)-b.dot(B-A)*a.dot(a))/denom; //USELESS BECAUSE DETERMINED FROM k
k = max(min(k, (Real)1.0), (Real)0.0);
m = max(min((A + a * k - B).dot(b) / (pow(b.norm(), 2.0)), (Real)1.0), (Real)0.0);
k = max(min((B + b * m - A).dot(a) / (pow(a.norm(), 2.0)), (Real)1.0), (Real)0.0);
// cout<<"k="<<k<<" m="<<m<<"\n"<<"kc="<<kc<<" mc="<<mc<<"\n\n"<<endl;//}
} else {
Real PA = (A - B).dot(b) / (b.norm() * b.norm());
PA = min((Real)1.0, max((Real)0.0, PA));
Real Pa = (A + a - B).dot(b) / (b.norm() * b.norm());
Pa = min((Real)1.0, max((Real)0.0, Pa));
Real PB = (B - A).dot(a) / (a.norm() * a.norm());
PB = min((Real)1.0, max((Real)0.0, PB));
Real Pb = (B + b - A).dot(a) / (a.norm() * a.norm());
Pb = min((Real)1.0, max((Real)0.0, Pb));
k = (PB + Pb) / 2.;
m = (PA + Pa) / 2.;
}
/*NEW VERSION END*/
//Compute the geometry if "penetrationDepth" is positive.
Real penetrationDepth = conn1->radius + conn2->radius - (A + k * a - (B + m * b)).norm();
shared_ptr<GridCoGridCoGeom> scm;
if (isNew) {
if (penetrationDepth < 0) return false;
scm = shared_ptr<GridCoGridCoGeom>(new GridCoGridCoGeom());
c->geom = scm;
} else
scm = YADE_PTR_CAST<GridCoGridCoGeom>(c->geom);
//k and m are used to compute almost everything...
//Fictious states (spheres) are generated at k or m of each connection, they will handle the contact.
scm->relPos1 = k;
scm->relPos2 = m;
scm->fictiousState1.pos = A + k * a;
scm->fictiousState2.pos = B + m * b;
scm->radius1 = conn1->radius;
scm->radius2 = conn2->radius;
scm->fictiousState1.vel = (1 - k) * stNode11->vel + k * stNode12->vel;
scm->fictiousState2.vel = (1 - m) * stNode21->vel + m * stNode22->vel;
Vector3r direction = a / (a.norm());
scm->fictiousState1.angVel = ((1 - k) * stNode11->angVel + k * stNode12->angVel).dot(direction) * direction //twist part : interpolated
+ a.cross(stNode12->vel - stNode11->vel); // non-twist part : defined from nodes velocities
direction = b / (b.norm());
scm->fictiousState2.angVel = ((1 - m) * stNode21->angVel + m * stNode22->angVel).dot(direction) * direction //twist part : interpolated
+ b.cross(stNode22->vel - stNode21->vel); // non-twist part : defined from nodes velocities
Vector3r normal = scm->fictiousState2.pos - scm->fictiousState1.pos;
normal /= normal.norm();
scm->contactPoint = scm->fictiousState1.pos + (scm->radius1 - 0.5 * penetrationDepth) * normal;
scm->penetrationDepth = penetrationDepth;
scm->precompute(scm->fictiousState1, scm->fictiousState2, scene, c, normal, isNew, shift2, true);
return true;
}
bool Ig2_GridConnection_GridConnection_GridCoGridCoGeom::goReverse(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
return go(cm1, cm2, state2, state1, -shift2, force, c);
}
YADE_PLUGIN((Ig2_GridConnection_GridConnection_GridCoGridCoGeom));
//! O/
bool Ig2_Sphere_GridConnection_ScGridCoGeom::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& /*state2*/,
const Vector3r& shift2,
const bool& /*force*/,
const shared_ptr<Interaction>& c)
{ // Useful variables :
const State* sphereSt = YADE_CAST<const State*>(&state1);
Sphere* sphere = YADE_CAST<Sphere*>(cm1.get());
GridConnection* gridCo = YADE_CAST<GridConnection*>(cm2.get());
GridNode* gridNo1 = YADE_CAST<GridNode*>(gridCo->node1->shape.get());
GridNode* gridNo2 = YADE_CAST<GridNode*>(gridCo->node2->shape.get());
State* gridNo1St = YADE_CAST<State*>(gridCo->node1->state.get());
State* gridNo2St = YADE_CAST<State*>(gridCo->node2->state.get());
bool isNew = !c->geom;
shared_ptr<ScGridCoGeom> scm;
if (!isNew) scm = YADE_PTR_CAST<ScGridCoGeom>(c->geom);
else {
scm = shared_ptr<ScGridCoGeom>(new ScGridCoGeom());
}
Vector3r segt = gridCo->getSegment();
Real len = gridCo->getLength();
Vector3r spherePos = sphereSt->pos - shift2;
Vector3r branch = spherePos - gridNo1St->pos;
Vector3r branchN = spherePos - gridNo2St->pos;
for (int i = 0; i < 3; i++) {
if (math::abs(branch[i]) < 1e-14) branch[i] = 0.0;
if (math::abs(branchN[i]) < 1e-14) branchN[i] = 0.0;
}
Real relPos = branch.dot(segt) / (len * len);
if (scm->isDuplicate == 2 && scm->trueInt != c->id2) return true; //the contact will be deleted into the Law, no need to compute here.
scm->isDuplicate = 0;
scm->trueInt = -1;
/*
The 4 conditions below are used to avoid double contact between a sphere and two cylinders, and to follow contact properties when the sphere is sliding along different consecutive GridConnections.
If none of these conditions are satisfied, the classic contact will be done at the bottom of the Ig2. Else the contact may be copied (if sliding), deleted (if just copied and/or duplicated) and the return statement may be used to abort the Ig2.
The first and the second conditions detect if a sphere's projections is outside the connection. So the contact :
- have to be created if the projection is outside all neighbours and not already created.
- have to be ignored if the projection is inside at least one neighbour.
- if the contact is sliding out to another connection (detected via isNew), mark it as duplicated (it will be ignored by the law and imported (copied) by the new contact).
The third and the fourth conditions detect if a sphere's projections is inside the connection. So if the contact is new and :
- is before the middle of the connection, we search an old contact that may have slided from one of the previous connections. If we find one, we import it here.
- is after the middle of the connection, we search an old contact that may have slided from one of the following connections. If we find one, we import it here.
*/
if (relPos <= 0) { // if the sphere projection is BEFORE the segment ...
if (gridNo1->ConnList.size() > 1) { // if the node is not an extremity of the Grid (only one connection)
for (int unsigned i = 0; i < gridNo1->ConnList.size(); i++) { // ... loop on all the Connections of the same Node ...
GridConnection* GC = (GridConnection*)gridNo1->ConnList[i]->shape.get();
if (GC == gridCo) continue; // self comparison.
Vector3r segtCandidate1
= GC->node1->state->pos - gridNo1St->pos; // (be sure of the direction of segtPrev to compare relPosPrev.)
Vector3r segtCandidate2 = GC->node2->state->pos - gridNo1St->pos;
Vector3r segtPrev = segtCandidate1.norm() > segtCandidate2.norm() ? segtCandidate1 : segtCandidate2;
for (int j = 0; j < 3; j++) {
if (math::abs(segtPrev[j]) < 1e-14) segtPrev[j] = 0.0;
}
Real relPosPrev = (branch.dot(segtPrev)) / (segtPrev.norm() * segtPrev.norm());
// ... and check whether the sphere projection is before the neighbours connections too.
if (relPosPrev
<= 0) { //if the sphere projection is outside both the current Connection AND this neighbouring connection, then create the interaction if the neighbour did not already do it before.
const shared_ptr<Interaction> intr = scene->interactions->find(c->id1, gridNo1->ConnList[i]->getId());
if (intr && intr->isReal()) {
shared_ptr<ScGridCoGeom> intrGeom = YADE_PTR_CAST<ScGridCoGeom>(intr->geom);
if (!(intrGeom->isDuplicate == 1)) { //skip contact.
if (isNew) return false;
else {
scm->isDuplicate = 1; /*cout<<"Declare "<<c->id1<<"-"<<c->id2<<" as duplicated."<<endl;*/
}
}
}
} else { //the sphere projection is outside the current Connection but inside the previous neighbour. The contact has to be handled by the Prev GridConnection, not here.
if (isNew) return false;
else {
// cout<<"The contact "<<c->id1<<"-"<<c->id2<<" may be copied and will be deleted now."<<endl ;
scm->isDuplicate = 1;
scm->trueInt = -1;
return true;
}
}
}
}
}
//Exactly the same but in the case the sphere projection is AFTER the segment.
else if (relPos >= 1) {
if (gridNo2->ConnList.size() > 1) {
for (int unsigned i = 0; i < gridNo2->ConnList.size(); i++) {
GridConnection* GC = (GridConnection*)gridNo2->ConnList[i]->shape.get();
if (GC == gridCo) continue; // self comparison.
Vector3r segtCandidate1 = GC->node1->state->pos - gridNo2St->pos;
Vector3r segtCandidate2 = GC->node2->state->pos - gridNo2St->pos;
Vector3r segtNext = segtCandidate1.norm() > segtCandidate2.norm() ? segtCandidate1 : segtCandidate2;
for (int j = 0; j < 3; j++) {
if (math::abs(segtNext[j]) < 1e-14) segtNext[j] = 0.0;
}
Real relPosNext = (branchN.dot(segtNext)) / (segtNext.norm() * segtNext.norm());
if (relPosNext
<= 0) { //if the sphere projection is outside both the current Connection AND this neighbouring connection, then create the interaction if the neighbour did not already do it before.
const shared_ptr<Interaction> intr = scene->interactions->find(c->id1, gridNo2->ConnList[i]->getId());
if (intr && intr->isReal()) {
shared_ptr<ScGridCoGeom> intrGeom = YADE_PTR_CAST<ScGridCoGeom>(intr->geom);
if (!(intrGeom->isDuplicate == 1)) {
if (isNew) return false;
else {
scm->isDuplicate = 1; /*cout<<"Declare "<<c->id1<<"-"<<c->id2<<" as duplicated."<<endl;*/
}
}
}
} else { //the sphere projection is outside the current Connection but inside the previous neighbour. The contact has to be handled by the Prev GridConnection, not here.
if (isNew) return false;
else {
// cout<<"The contact "<<c->id1<<"-"<<c->id2<<" may be copied and will be deleted now."<<endl ;
scm->isDuplicate = 1;
scm->trueInt = -1;
return true;
}
}
}
}
}
else if (relPos <= 0.5) {
if (gridNo1->ConnList.size() > 1) { // if the node is not an extremity of the Grid (only one connection)
for (int unsigned i = 0; i < gridNo1->ConnList.size(); i++) { // ... loop on all the Connections of the same Node ...
GridConnection* GC = (GridConnection*)gridNo1->ConnList[i]->shape.get();
if (GC == gridCo) continue; // self comparison.
Vector3r segtCandidate1
= GC->node1->state->pos - gridNo1St->pos; // (be sure of the direction of segtPrev to compare relPosPrev.)
Vector3r segtCandidate2 = GC->node2->state->pos - gridNo1St->pos;
Vector3r segtPrev = segtCandidate1.norm() > segtCandidate2.norm() ? segtCandidate1 : segtCandidate2;
for (int j = 0; j < 3; j++) {
if (math::abs(segtPrev[j]) < 1e-14) segtPrev[j] = 0.0;
}
Real relPosPrev = (branch.dot(segtPrev)) / (segtPrev.norm() * segtPrev.norm());
if (relPosPrev <= 0) { //the sphere projection is inside the current Connection and outide this neighbour connection.
const shared_ptr<Interaction> intr = scene->interactions->find(c->id1, gridNo1->ConnList[i]->getId());
if (intr
&& intr->isReal()) { // if an ineraction exist between the sphere and the previous connection, import parameters.
scm = YADE_PTR_CAST<ScGridCoGeom>(intr->geom);
if (isNew) {
// cout<<"Copying contact geom and phys from "<<intr->id1<<"-"<<intr->id2<<" to here ("<<c->id1<<"-"<<c->id2<<")"<<endl;
c->geom = scm;
c->phys = intr->phys;
c->iterMadeReal = intr->iterMadeReal;
}
scm->trueInt = c->id2;
scm->isDuplicate = 2; //command the old contact deletion.
isNew = 0;
break;
}
}
}
}
}
else if (relPos > 0.5) {
if (gridNo2->ConnList.size() > 1) {
for (int unsigned i = 0; i < gridNo2->ConnList.size(); i++) {
GridConnection* GC = (GridConnection*)gridNo2->ConnList[i]->shape.get();
if (GC == gridCo) continue; // self comparison.
Vector3r segtCandidate1 = GC->node1->state->pos - gridNo2St->pos;
Vector3r segtCandidate2 = GC->node2->state->pos - gridNo2St->pos;
Vector3r segtNext = segtCandidate1.norm() > segtCandidate2.norm() ? segtCandidate1 : segtCandidate2;
for (int j = 0; j < 3; j++) {
if (math::abs(segtNext[j]) < 1e-14) segtNext[j] = 0.0;
}
Real relPosNext = (branchN.dot(segtNext)) / (segtNext.norm() * segtNext.norm());
if (relPosNext <= 0) { //the sphere projection is inside the current Connection and outide this neighbour connection.
const shared_ptr<Interaction> intr = scene->interactions->find(c->id1, gridNo2->ConnList[i]->getId());
if (intr
&& intr->isReal()) { // if an ineraction exist between the sphere and the previous connection, import parameters.
scm = YADE_PTR_CAST<ScGridCoGeom>(intr->geom);
if (isNew) {
// cout<<"Copying contact geom and phys from "<<intr->id1<<"-"<<intr->id2<<" to here ("<<c->id1<<"-"<<c->id2<<")"<<endl;
c->geom = scm;
c->phys = intr->phys;
c->iterMadeReal = intr->iterMadeReal;
}
scm->trueInt = c->id2;
scm->isDuplicate = 2; //command the old contact deletion.
isNew = 0;
break;
}
}
}
}
}
relPos = relPos < 0 ? 0 : relPos; //min value of relPos : 0
relPos = relPos > 1 ? 1 : relPos; //max value of relPos : 1
Vector3r fictiousPos = gridNo1St->pos + relPos * segt;
Vector3r branchF = fictiousPos - spherePos;
Real dist = branchF.norm();
if (isNew && (dist > (sphere->radius + gridCo->radius))) return false;
// Create the geometry :
if (isNew) c->geom = scm;
scm->radius1 = sphere->radius;
scm->radius2 = gridCo->radius;
scm->id3 = gridCo->node1->getId();
scm->id4 = gridCo->node2->getId();
scm->relPos = relPos;
Vector3r normal = branchF / dist;
scm->penetrationDepth = sphere->radius + gridCo->radius - dist;
scm->fictiousState.pos = fictiousPos;
scm->contactPoint = spherePos + normal * (scm->radius1 - 0.5 * scm->penetrationDepth);
scm->fictiousState.vel = (1 - relPos) * gridNo1St->vel + relPos * gridNo2St->vel;
scm->fictiousState.angVel = ((1 - relPos) * gridNo1St->angVel + relPos * gridNo2St->angVel).dot(segt / len) * segt / len //twist part : interpolated
+ segt.cross(gridNo2St->vel - gridNo1St->vel); // non-twist part : defined from nodes velocities
scm->precompute(state1, scm->fictiousState, scene, c, normal, isNew, shift2, true); //use sphere-sphere precompute (with a virtual sphere)
return true;
}
bool Ig2_Sphere_GridConnection_ScGridCoGeom::goReverse(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
c->swapOrder();
return go(cm2, cm1, state2, state1, -shift2, force, c);
}
YADE_PLUGIN((Ig2_Sphere_GridConnection_ScGridCoGeom));
//!################## Laws #####################
//! O/
bool Law2_ScGridCoGeom_FrictPhys_CundallStrack::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
ScGridCoGeom* geom = static_cast<ScGridCoGeom*>(ig.get());
FrictPhys* phys = static_cast<FrictPhys*>(ip.get());
if (geom->penetrationDepth < 0) {
if (neverErase) {
phys->shearForce = Vector3r::Zero();
phys->normalForce = Vector3r::Zero();
} else
return false;
}
if (geom->isDuplicate) {
if (id2 != geom->trueInt) {
//cerr<<"skip duplicate "<<id1<<" "<<id2<<endl;
if (geom->isDuplicate == 2) return false;
return true;
}
}
Real& un = geom->penetrationDepth;
phys->normalForce = phys->kn * math::max(un, (Real)0) * geom->normal;
// std::cout<< "phys->shearForce1= "<<phys->shearForce<<std::endl;
Vector3r& shearForce = geom->rotate(phys->shearForce);
// std::cout<< "phys->shearForce2= "<<phys->shearForce<<", geom->shearIncrement()= "<<geom->shearIncrement()<<", phys->ks= "<<phys->ks<<std::endl;
const Vector3r& shearDisp = geom->shearIncrement();
shearForce -= phys->ks * shearDisp;
Real maxFs = phys->normalForce.squaredNorm() * math::pow(phys->tangensOfFrictionAngle, 2);
// std::cout<< "shearForce3= "<<shearForce<<" ,phys->normalForce="<<phys->normalForce<<std::endl;
if (!scene->trackEnergy) { //Update force but don't compute energy terms (see below))
// PFC3d SlipModel, is using friction angle. CoulombCriterion
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
shearForce *= ratio;
}
} else {
//almost the same with additional Vector3r instanciated for energy tracing, duplicated block to make sure there is no cost for the instanciation of the vector when traceEnergy==false
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
Vector3r trialForce = shearForce; //store prev force for definition of plastic slip
//define the plastic work input and increment the total plastic energy dissipated
shearForce *= ratio;
Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
if (dissip > 0) scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset*/ false);
}
// compute elastic energy as well
scene->energy->add(
0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks),
"elastPotential",
elastPotentialIx,
/*reset at every timestep*/ true);
}
Vector3r force = -phys->normalForce - shearForce;
// std::cout<< "id1= "<<id1<<" ,force="<<force<<std::endl;
scene->forces.addForce(id1, force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
Vector3r twist = (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
if (geom->id5 == -1) {
scene->forces.addForce(geom->id3, (geom->relPos - 1) * force);
scene->forces.addTorque(geom->id3, (1 - geom->relPos) * twist);
scene->forces.addForce(geom->id4, (-geom->relPos) * force);
scene->forces.addTorque(geom->id4, geom->relPos * twist);
} else {
scene->forces.addForce(geom->id3, geom->weight[0] * -force);
scene->forces.addForce(geom->id4, geom->weight[1] * -force);
scene->forces.addForce(geom->id5, geom->weight[2] * -force);
}
return true;
}
YADE_PLUGIN((Law2_ScGridCoGeom_FrictPhys_CundallStrack));
bool Law2_ScGridCoGeom_CohFrictPhys_CundallStrack::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
const int& id1 = contact->getId1();
const int& id2 = contact->getId2();
ScGridCoGeom* geom = YADE_CAST<ScGridCoGeom*>(ig.get());
CohFrictPhys* phys = YADE_CAST<CohFrictPhys*>(ip.get());
if (geom->isDuplicate) {
if (id2 != geom->trueInt) {
//cerr<<"skip duplicate "<<id1<<" "<<id2<<endl;
if (geom->isDuplicate == 2) return false;
return true;
}
}
Vector3r& shearForceFirst = phys->shearForce;
if (contact->isFresh(scene) && geom->isDuplicate != 2) shearForceFirst = Vector3r::Zero();
Real un = geom->penetrationDepth;
Real Fn = phys->kn * (un - phys->unp);
if (phys->fragile && (-Fn) > phys->normalAdhesion) {
// BREAK due to tension
return false;
} else {
if ((-Fn) > phys->normalAdhesion) { //normal plasticity
Fn = -phys->normalAdhesion;
phys->unp = un + phys->normalAdhesion / phys->kn;
if (phys->unpMax && phys->unp < phys->unpMax) return false;
}
phys->normalForce = Fn * geom->normal;
Vector3r& shearForce = geom->rotate(phys->shearForce);
const Vector3r& dus = geom->shearIncrement();
//Linear elasticity giving "trial" shear force
shearForce -= phys->ks * dus;
Real Fs = phys->shearForce.norm();
Real maxFs = phys->shearAdhesion;
if (!phys->cohesionDisablesFriction || maxFs == 0) maxFs += Fn * phys->tangensOfFrictionAngle;
maxFs = math::max((Real)0, maxFs);
if (Fs > maxFs) { //Plasticity condition on shear force
if (phys->fragile && !phys->cohesionBroken) {
phys->SetBreakingState();
maxFs = max((Real)0, Fn * phys->tangensOfFrictionAngle);
}
maxFs = maxFs / Fs;
Vector3r trialForce = shearForce;
shearForce *= maxFs;
if (scene->trackEnergy) {
Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
if (dissip > 0) scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset*/ false);
}
if (Fn < 0) phys->normalForce = Vector3r::Zero(); //Vector3r::Zero()
}
Vector3r force = -phys->normalForce - shearForce;
scene->forces.addForce(id1, force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
Vector3r twist = (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
scene->forces.addForce(geom->id3, (geom->relPos - 1) * force);
scene->forces.addTorque(geom->id3, (1 - geom->relPos) * twist);
scene->forces.addForce(geom->id4, (-geom->relPos) * force);
scene->forces.addTorque(geom->id4, geom->relPos * twist);
return true;
}
}
YADE_PLUGIN((Law2_ScGridCoGeom_CohFrictPhys_CundallStrack));
bool Law2_GridCoGridCoGeom_FrictPhys_CundallStrack::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
id_t id11 = (static_cast<GridConnection*>((&Body::byId(id1)->shape)->get()))->node1->getId();
id_t id12 = (static_cast<GridConnection*>((&Body::byId(id1)->shape)->get()))->node2->getId();
id_t id21 = (static_cast<GridConnection*>((&Body::byId(id2)->shape)->get()))->node1->getId();
id_t id22 = (static_cast<GridConnection*>((&Body::byId(id2)->shape)->get()))->node2->getId();
GridCoGridCoGeom* geom = static_cast<GridCoGridCoGeom*>(ig.get());
FrictPhys* phys = static_cast<FrictPhys*>(ip.get());
if (geom->penetrationDepth < 0) {
if (neverErase) {
phys->shearForce = Vector3r::Zero();
phys->normalForce = Vector3r::Zero();
} else
return false;
}
Real& un = geom->penetrationDepth;
phys->normalForce = phys->kn * math::max(un, (Real)0) * geom->normal;
Vector3r& shearForce = geom->rotate(phys->shearForce);
const Vector3r& shearDisp = geom->shearIncrement();
shearForce -= phys->ks * shearDisp;
Real maxFs = phys->normalForce.squaredNorm() * math::pow(phys->tangensOfFrictionAngle, 2);
if (!scene->trackEnergy && !traceEnergy) { //Update force but don't compute energy terms (see below))
// PFC3d SlipModel, is using friction angle. CoulombCriterion
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
shearForce *= ratio;
}
} else {
//almost the same with additional Vector3r instatinated for energy tracing,
//duplicated block to make sure there is no cost for the instanciation of the vector when traceEnergy==false
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
Vector3r trialForce = shearForce; //store prev force for definition of plastic slip
//define the plastic work input and increment the total plastic energy dissipated
shearForce *= ratio;
Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
if (traceEnergy) plasticDissipation += dissip;
else if (dissip > 0)
scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset*/ false);
}
// compute elastic energy as well
scene->energy->add(
0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks),
"elastPotential",
elastPotentialIx,
/*reset at every timestep*/ true);
}
Vector3r force = -phys->normalForce - shearForce;
Vector3r torque1 = (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
Vector3r torque2 = (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force);
scene->forces.addForce(id11, (1 - geom->relPos1) * force);
scene->forces.addForce(id12, geom->relPos1 * force);
scene->forces.addForce(id21, -(1 - geom->relPos2) * force);
scene->forces.addForce(id22, -geom->relPos2 * force);
scene->forces.addTorque(id11, (1 - geom->relPos1) * torque1);
scene->forces.addTorque(id12, geom->relPos1 * torque1);
scene->forces.addTorque(id21, (1 - geom->relPos2) * torque2);
scene->forces.addTorque(id22, geom->relPos2 * torque2);
return true;
}
YADE_PLUGIN((Law2_GridCoGridCoGeom_FrictPhys_CundallStrack));
//!################## Bounds #####################
void Bo1_GridConnection_Aabb::go(const shared_ptr<Shape>& cm, shared_ptr<Bound>& bv, const Se3r& /*se3*/, const Body* /*b*/)
{
GridConnection* GC = static_cast<GridConnection*>(cm.get());
if (!bv) { bv = shared_ptr<Bound>(new Aabb); }
Aabb* aabb = static_cast<Aabb*>(bv.get());
Vector3r O = YADE_CAST<State*>(GC->node1->state.get())->pos;
Vector3r O2 = YADE_CAST<State*>(GC->node2->state.get())->pos;
if (!scene->isPeriodic) {
for (int k = 0; k < 3; k++) {
aabb->min[k] = min(O[k], O2[k]) - GC->radius;
aabb->max[k] = max(O[k], O2[k]) + GC->radius;
}
return;
} else {
O = scene->cell->unshearPt(O);
O2 = scene->cell->unshearPt(O2);
O2 = O2 + scene->cell->hSize * GC->cellDist.cast<Real>();
for (int k = 0; k < 3; k++) {
aabb->min[k] = min(O[k], O2[k]) - GC->radius;
aabb->max[k] = max(O[k], O2[k]) + GC->radius;
}
}
}
YADE_PLUGIN((Bo1_GridConnection_Aabb));
} // namespace yade
|