1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#ifdef YADE_SPH
#include "SPHEngine.hpp"
#include <core/Scene.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/ViscoelasticPM.hpp>
#include <core/Omega.hpp>
#include <core/State.hpp>
namespace yade { // Cannot have #include directive inside.
void SPHEngine::action()
{
{
YADE_PARALLEL_FOREACH_BODY_BEGIN(const shared_ptr<Body>& b, scene->bodies)
{
if (mask > 0 && (b->groupMask & mask) == 0) continue;
this->calculateSPHRho(b);
b->state->press = math::max(0.0, k * (b->state->rho - b->state->rho0));
}
YADE_PARALLEL_FOREACH_BODY_END();
}
}
void SPHEngine::calculateSPHRho(const shared_ptr<Body>& b)
{
if (b->state->rho0 < 0) { b->state->rho0 = rho0; }
if (not b->isClump()) {
Real rho = 0;
// Pointer to kernel function
KernelFunction kernelFunctionCurDensity = returnKernelFunction(KernFunctionDensity, Norm);
// Calculate rho for every particle
for (Body::MapId2IntrT::iterator it = b->intrs.begin(), end = b->intrs.end(); it != end; ++it) {
const shared_ptr<Body> b2 = Body::byId((*it).first, scene);
Sphere* s = dynamic_cast<Sphere*>(b->shape.get());
if (!s) continue;
if (((*it).second)->geom and ((*it).second)->phys) {
const ScGeom geom = *(YADE_PTR_CAST<ScGeom>(((*it).second)->geom));
const ViscElPhys phys = *(YADE_PTR_CAST<ViscElPhys>(((*it).second)->phys));
Real Mass = b2->state->mass;
if (Mass == 0) Mass = b->state->mass;
const Real SmoothDist = (b2->state->pos - b->state->pos).norm();
// [Monaghan1992], (2.7) (3.8)
rho += b2->state->mass * kernelFunctionCurDensity(SmoothDist, h);
}
}
// Self mass contribution
rho += b->state->mass * kernelFunctionCurDensity(0.0, h);
b->state->rho = rho;
}
}
Real smoothkernelLucy(const double& r, const double& h)
{
if (r <= h && h > 0) {
// Lucy Kernel function, [Lucy1977] (27)
const Real r_h = r / h;
return 105. / (16. * M_PI * h * h * h) * (1. + 3. * r_h) * math::pow((1. - r_h), 3);
} else {
return 0;
}
}
Real smoothkernelLucyGrad(const double& r, const double& h)
{
if (r <= h && h > 0) {
// 1st derivative of Lucy Kernel function, [Lucy1977] (27)
return 105. / (16. * M_PI * h * h * h) * (-12. * r) * math::pow((h - r), 2) / (h * h * h * h);
} else {
return 0;
}
}
Real smoothkernelLucyLapl(const double& r, const double& h)
{
if (r <= h && h > 0) {
// 2nd derivative of Lucy Kernel function, [Lucy1977] (27)
return 105. / (16. * M_PI * h * h * h) * (-12.) / (h * h * h * h) * (h * h - 2. * r * h + 3. * r * r);
} else {
return 0;
}
}
//=========================================================================
Real smoothkernelBSpline1(const double& r, const double& h)
{
// BSpline Kernel function, [Monaghan1985] (21)
if (r <= 2.0 * h && h > 0) {
const Real coefA = 3. / (2. * M_PI * h * h * h);
const Real r_h = r / h;
if (r <= h) {
return coefA * (2. / 3. - r_h * r_h + 1. / 2. * r_h * r_h * r_h);
} else {
return coefA / 6. * math::pow((2. - r_h), 3);
}
} else {
return 0;
}
}
Real smoothkernelBSpline1Grad(const double& r, const double& h)
{
// 1st derivative of BSpline Kernel function, [Monaghan1985] (21)
if (r <= 2. * h && h > 0) {
const Real coefA = 3. / (2. * M_PI * h * h * h);
const Real r_h = r / h;
if (r <= h) {
return coefA * (-r_h) * (2. - 3. / 2. * r_h);
} else {
return coefA * (-1. / 2.) * math::pow((2. - r_h), 2);
}
} else {
return 0;
}
}
Real smoothkernelBSpline1Lapl(const double& r, const double& h)
{
// 2nd derivative of BSpline Kernel function, [Monaghan1985] (21)
if (r <= 2.0 * h && h > 0) {
const Real coefA = 3. / (2. * M_PI * h * h * h);
const Real r_h = r / h;
if (r <= h) {
return coefA * (-2. + 3. * r_h);
} else {
return coefA * (2. - r_h);
}
} else {
return 0;
}
}
//=========================================================================
Real smoothkernelBSpline2(const double& r, const double& h)
{
// BSpline Kernel function, [Monaghan1985] (22)
if (r <= 2.0 * h && h > 0) {
const Real coefA = 3. / (4. * M_PI * h * h * h);
const Real r_h = r / h;
if (r <= h) {
return coefA * (10. / 3. - 7. * r_h * r_h + 4 * r_h * r_h * r_h);
} else {
return coefA * math::pow((2. - r_h), 2) * ((5. - 4. * r_h) / 3.);
}
} else {
return 0;
}
}
Real smoothkernelBSpline2Grad(const double& r, const double& h)
{
// 1st derivative of BSpline Kernel function, [Monaghan1985] (22)
if (r <= 2.0 * h && h > 0) {
const Real coefA = 3. / (4. * M_PI * h * h * h);
const Real r_h = r / h;
if (r <= h) {
return coefA * (-2.) / (h * h) * (7. * r - 6. * r * r_h);
} else {
return coefA * 2. / h * (-6. + 7. * r_h - 2. * math::pow(r_h, 2));
}
} else {
return 0;
}
}
Real smoothkernelBSpline2Lapl(const double& r, const double& h)
{
// 2nd derivative of BSpline Kernel function, [Monaghan1985] (22)
if (r <= 2.0 * h && h > 0) {
const Real coefA = 3. / (4. * M_PI * h * h * h);
const Real r_h = r / h;
if (r <= h) {
return coefA * (-2.) / (h * h) * (7. - 12. * r_h);
} else {
return coefA * 2. / (h * h) * (7. - 4. * r_h);
}
} else {
return 0;
}
}
//=========================================================================
KernelFunction returnKernelFunction(const int a, const typeKernFunctions typeF) { return returnKernelFunction(a, a, typeF); }
KernelFunction returnKernelFunction(const int a, const int b, const typeKernFunctions typeF)
{
if (a != b) { throw runtime_error("Kernel types should be equal!"); }
if (a == Lucy) {
if (typeF == Norm) {
return smoothkernelLucy;
} else if (typeF == Grad) {
return smoothkernelLucyGrad;
} else if (typeF == Lapl) {
return smoothkernelLucyLapl;
} else {
KERNELFUNCDESCR
}
} else if (a == BSpline1) {
if (typeF == Norm) {
return smoothkernelBSpline1;
} else if (typeF == Grad) {
return smoothkernelBSpline1Grad;
} else if (typeF == Lapl) {
return smoothkernelBSpline1Lapl;
} else {
KERNELFUNCDESCR
}
} else if (a == BSpline2) {
if (typeF == Norm) {
return smoothkernelBSpline2;
} else if (typeF == Grad) {
return smoothkernelBSpline2Grad;
} else if (typeF == Lapl) {
return smoothkernelBSpline2Lapl;
} else {
KERNELFUNCDESCR
}
} else {
KERNELFUNCDESCR
}
}
bool computeForceSPH(shared_ptr<IGeom>& _geom, shared_ptr<IPhys>& _phys, Interaction* I, Vector3r& force)
{
const ScGeom& geom = *static_cast<ScGeom*>(_geom.get());
Scene* scene = Omega::instance().getScene().get();
ViscElPhys& phys = *static_cast<ViscElPhys*>(_phys.get());
const int id1 = I->getId1();
const int id2 = I->getId2();
const BodyContainer& bodies = *scene->bodies;
if (bodies[id1]->isClumpMember() and bodies[id2]->isClumpMember() and bodies[id1]->clumpId == bodies[id2]->clumpId) {
//If 2 bodies belong to the same clump, do not calculate forces
force = Vector3r::Zero();
return true;
}
//////////////////////////////////////////////////////////////////
// Copy-paste
// Handle periodicity.
const Vector3r shift2 = scene->isPeriodic ? scene->cell->intrShiftPos(I->cellDist) : Vector3r::Zero();
const Vector3r shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(I->cellDist) : Vector3r::Zero();
const State& de1 = *static_cast<State*>(bodies[id1]->state.get());
const State& de2 = *static_cast<State*>(bodies[id2]->state.get());
const Vector3r c1x = (geom.contactPoint - de1.pos);
const Vector3r c2x = (geom.contactPoint - de2.pos - shift2);
const Vector3r relativeVelocity = (de1.vel + de1.angVel.cross(c1x)) - (de2.vel + de2.angVel.cross(c2x)) + shiftVel;
const Real normalVelocity = geom.normal.dot(relativeVelocity);
// Copy-paste
//////////////////////////////////////////////////////////////////
const Real Mass1 = bodies[id1]->state->mass;
const Real Mass2 = bodies[id2]->state->mass;
const Real Rho1 = bodies[id1]->state->rho;
const Real Rho2 = bodies[id2]->state->rho;
const Vector3r xixj = de2.pos - de1.pos;
if (phys.kernelFunctionCurrentPressure(xixj.norm(), phys.h)) {
Real fpressure = 0.0;
if (Rho1 != 0.0 and Rho2 != 0.0) {
// from [Monaghan1992], (3.3), multiply by Mass2, because we need a force, not du/dt
fpressure = -Mass1 * Mass2 * (bodies[id1]->state->press / (Rho1 * Rho1) + bodies[id2]->state->press / (Rho2 * Rho2))
* phys.kernelFunctionCurrentPressure(xixj.norm(), phys.h);
}
Vector3r fvisc = Vector3r::Zero();
if (Rho1 != 0.0 and Rho2 != 0.0) {
// from [Morris1997], (22), multiply by Mass2, because we need a force, not du/dt
fvisc = phys.mu * Mass1 * Mass2 * (-normalVelocity * geom.normal) / (Rho1 * Rho2) * 1 / (xixj.norm())
* phys.kernelFunctionCurrentPressure(xixj.norm(), phys.h);
//phys.kernelFunctionCurrentVisco(xixj.norm(), phys.h);
}
force = fpressure * geom.normal + fvisc;
return true;
} else {
return false;
}
}
YADE_PLUGIN((SPHEngine));
} // namespace yade
#endif
|