1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
// 2024 © Benjamin Dedieu <benjamin.dedieu@proton.me>
#include "TimeAverager.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Scene.hpp>
#include <pkg/common/NormShearPhys.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/DemXDofGeom.hpp>
#include <boost/unordered_map.hpp>
// The TimeAverager class is used to average data over time for specific sphere identified by ids.
// See description in TimeAverager.hpp
namespace yade {
YADE_PLUGIN((TimeAverager));
// PUBLIC METHODS
Vector3r TimeAverager::getPos(Body::id_t id) const { return getValueFromMap(pos, id); }
Vector3r TimeAverager::getVel(Body::id_t id) const { return getValueFromMap(vel, id); }
Vector3r TimeAverager::getAngVel(Body::id_t id) const { return getValueFromMap(angVel, id); }
Vector3r TimeAverager::getForce(Body::id_t id) const { return getValueFromMap(force, id); }
Vector3r TimeAverager::getTorque(Body::id_t id) const { return getValueFromMap(torque, id); }
Real TimeAverager::getNbContact(Body::id_t id) const { return getValueFromMap(nbContact, id); }
Vector3r TimeAverager::getContactForce(Body::id_t id) const { return getValueFromMap(contactForce, id); }
Vector3r TimeAverager::getContactTorque(Body::id_t id) const { return getValueFromMap(contactTorque, id); }
vector<Vector3r> TimeAverager::getContactForceField(Body::id_t id) const
{
if (computeContactForceField) { return getValueFromMap(contactForceField, id); }
throw std::runtime_error("No value to retrieve for contactForceField since computeContactForceField is false.");
}
void TimeAverager::initialization()
{
scene->forces.sync();
FOREACH(Body::id_t id, ids)
{
const shared_ptr<Body>& b = Body::byId(id, scene);
if (!b) continue;
pos[id] = b->state->pos;
vel[id] = b->state->vel;
angVel[id] = b->state->angVel;
force[id] = scene->forces.getForce(id);
torque[id] = scene->forces.getTorque(id);
nbContact[id] = getInstantNbContact(b);
contactForce[id] = getInstantContactForce(b);
contactTorque[id] = getInstantContactTorque(b);
if (computeContactForceField) { contactForceField[id] = getInstantContactForceField(b); }
}
tAccu = 0;
}
void TimeAverager::action()
{
const Real& dt = scene->dt;
scene->forces.sync();
FOREACH(Body::id_t id, ids)
{
const shared_ptr<Body>& b = Body::byId(id, scene);
if (!b) continue;
pos[id] = updateAverage(pos[id], b->state->pos, dt);
vel[id] = updateAverage(vel[id], b->state->vel, dt);
angVel[id] = updateAverage(angVel[id], b->state->angVel, dt);
force[id] = updateAverage(force[id], scene->forces.getForce(id), dt);
torque[id] = updateAverage(torque[id], scene->forces.getTorque(id), dt);
nbContact[id] = updateAverage(nbContact[id], getInstantNbContact(b), dt);
contactForce[id] = updateAverage(contactForce[id], getInstantContactForce(b), dt);
contactTorque[id] = updateAverage(contactTorque[id], getInstantContactTorque(b), dt);
if (computeContactForceField) {
// Can't average directly vector<Vector3r>, so we do it element by element
vector<Vector3r> instantContactForceField = getInstantContactForceField(b);
for (size_t i = 0; i < contactForceField[id].size(); ++i) {
contactForceField[id][i] = updateAverage(contactForceField[id][i], instantContactForceField[i], dt);
}
}
}
tAccu += dt;
}
// PRIVATE METHODS
template <typename T> T TimeAverager::updateAverage(const T& averagedVal, const T& instantVal, const Real& dt) const
{
if (tAccu + dt == 0) return averagedVal;
return (tAccu * averagedVal + dt * instantVal) / (tAccu + dt);
}
template <typename T> T TimeAverager::getValueFromMap(const boost::unordered_map<Body::id_t, T>& mapObject, Body::id_t id) const
{
auto it = mapObject.find(id);
if (it == mapObject.end()) { throw std::runtime_error("Particle ID not found in map"); }
return it->second;
}
Real TimeAverager::getInstantNbContact(const shared_ptr<Body>& b) const
{
// Get number of contacts from size of interaction map object and convert to floating point
return b->intrs.size();
}
Vector3r TimeAverager::getInstantContactForce(const shared_ptr<Body>& b) const
{
Vector3r instantContactForce = Vector3r::Zero();
for (Body::MapId2IntrT::iterator it = b->intrs.begin(), end = b->intrs.end(); it != end; ++it) {
const shared_ptr<Interaction>& I = (*it).second;
if (!I->isReal()) continue;
NormShearPhys* phys = YADE_CAST<NormShearPhys*>(I->phys.get());
instantContactForce += phys->shearForce + phys->normalForce;
}
return instantContactForce;
}
Vector3r TimeAverager::getInstantContactTorque(const shared_ptr<Body>& b) const
{
Vector3r instantContactTorque = Vector3r::Zero();
for (Body::MapId2IntrT::iterator it = b->intrs.begin(), end = b->intrs.end(); it != end; ++it) {
const shared_ptr<Interaction>& I = (*it).second;
if (!I->isReal()) continue;
NormShearPhys* phys = YADE_CAST<NormShearPhys*>(I->phys.get());
GenericSpheresContact* geom = YADE_CAST<GenericSpheresContact*>(I->geom.get());
Vector3r relativePos = geom->contactPoint - b->state->pos;
Vector3r forceSum = phys->shearForce + phys->normalForce;
instantContactTorque += relativePos.cross(forceSum);
}
return instantContactTorque;
}
vector<Vector3r> TimeAverager::getInstantContactForceField(const shared_ptr<Body>& b) const
{
vector<Vector3r> instantContactForceField(grid.size(), Vector3r::Zero());
// Loop on interaction map
for (Body::MapId2IntrT::iterator it = b->intrs.begin(), end = b->intrs.end(); it != end; ++it) {
// Retrieve Interaction object from the current map pair
const shared_ptr<Interaction>& I = (*it).second;
if (!I->isReal()) continue;
// Get physics and geom object from the interaction
NormShearPhys* phys = YADE_CAST<NormShearPhys*>(I->phys.get());
GenericSpheresContact* geom = YADE_CAST<GenericSpheresContact*>(I->geom.get());
// Compute Gaussian kernel weights associated to each grid point, according to the distance between
// the contact point and the grid point, and compute the sum of the weights for normalization purpose.
vector<Real> weights(grid.size());
Real normalizationFactor = 0.0;
for (size_t i = 0; i < grid.size(); i++) {
Real distanceToContact = (b->state->pos + grid[i] - geom->contactPoint).norm();
weights[i] = exp(-pow(distanceToContact, 2) / (2 * pow(sigma, 2)));
normalizationFactor += weights[i];
}
// Distribute the contact force on the grid
if (normalizationFactor > 0) { // Safety check for the division
for (size_t i = 0; i < grid.size(); i++) {
instantContactForceField[i] += (phys->shearForce + phys->normalForce) * weights[i] / normalizationFactor;
}
}
}
return instantContactForceField;
}
} // namespace yade
|