1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*************************************************************************
* Copyright (C) 2005 by Bruno Chareyre bruno.chareyre@grenoble-inp.fr *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#include "ElasticContactLaw.hpp"
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/DemXDofGeom.hpp>
#include <pkg/dem/FrictPhys.hpp>
#include <pkg/dem/ScGeom.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((Law2_ScGeom_FrictPhys_CundallStrack)(Law2_ScGeom_ViscoFrictPhys_CundallStrack)(ElasticContactLaw));
#if 1
Real Law2_ScGeom_FrictPhys_CundallStrack::getPlasticDissipation() const { return (Real)plasticDissipation; }
void Law2_ScGeom_FrictPhys_CundallStrack::initPlasticDissipation(Real initVal)
{
plasticDissipation.reset();
plasticDissipation += initVal;
}
Real Law2_ScGeom_FrictPhys_CundallStrack::elasticEnergy()
{
Real energy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
FrictPhys* phys = dynamic_cast<FrictPhys*>(I->phys.get());
if (phys) { energy += 0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks); }
}
return energy;
}
#endif
void ElasticContactLaw::action()
{
if (!functor) functor = shared_ptr<Law2_ScGeom_FrictPhys_CundallStrack>(new Law2_ScGeom_FrictPhys_CundallStrack);
functor->neverErase = neverErase;
functor->scene = scene;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
#ifdef YADE_DEBUG
// these checks would be redundant in the functor (LawDispatcher does that already)
if (!dynamic_cast<ScGeom*>(I->geom.get()) || !dynamic_cast<FrictPhys*>(I->phys.get())) continue;
#endif
functor->go(I->geom, I->phys, I.get());
}
}
CREATE_LOGGER(Law2_ScGeom_FrictPhys_CundallStrack);
bool Law2_ScGeom_FrictPhys_CundallStrack::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
ScGeom* geom = static_cast<ScGeom*>(ig.get());
FrictPhys* phys = static_cast<FrictPhys*>(ip.get());
if (geom->penetrationDepth < 0) {
if (neverErase) {
phys->shearForce = Vector3r::Zero();
phys->normalForce = Vector3r::Zero();
} else
return false;
}
Real& un = geom->penetrationDepth;
phys->normalForce = phys->kn * math::max(un, (Real)0) * geom->normal;
Vector3r& shearForce = geom->rotate(phys->shearForce);
const Vector3r& shearDisp = geom->shearIncrement();
shearForce -= phys->ks * shearDisp;
Real maxFs = phys->normalForce.squaredNorm() * math::pow(phys->tangensOfFrictionAngle, 2);
if (!scene->trackEnergy && !traceEnergy) { //Update force but don't compute energy terms (see below))
// PFC3d SlipModel, is using friction angle. CoulombCriterion
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
shearForce *= ratio;
}
} else {
//almost the same with additional Vector3r instatinated for energy tracing,
//duplicated block to make sure there is no cost for the instanciation of the vector when traceEnergy==false
if (shearForce.squaredNorm() > maxFs) {
Real ratio = sqrt(maxFs) / shearForce.norm();
Vector3r trialForce = shearForce; //store prev force for definition of plastic slip
//define the plastic work input and increment the total plastic energy dissipated
shearForce *= ratio;
Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
phys->frictDissip += dissip;
if (traceEnergy) plasticDissipation += dissip;
else if (dissip > 0)
scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset*/ false);
}
// compute elastic energy as well
scene->energy->add(
0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks),
"elastPotential",
elastPotentialIx,
/*reset at every timestep*/ true);
}
if (!scene->isPeriodic && !sphericalBodies) { // For non-periodic simulations only
State* de1 = Body::byId(id1, scene)->state.get();
State* de2 = Body::byId(id2, scene)->state.get();
applyForceAtContactPoint(-phys->normalForce - shearForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
} else if (sphericalBodies) { // For spheres only
Vector3r force = -phys->normalForce - shearForce;
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (geom->radius1 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
scene->forces.addTorque(id2, (geom->radius2 - 0.5 * geom->penetrationDepth) * geom->normal.cross(force));
} else { // The general case
Vector3r shift2 = scene->cell->hSize * contact->cellDist.cast<Real>();
State* de1 = Body::byId(id1, scene)->state.get();
State* de2 = Body::byId(id2, scene)->state.get();
applyForceAtContactPoint(-phys->normalForce - shearForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position + shift2);
}
return true;
}
bool Law2_ScGeom_ViscoFrictPhys_CundallStrack::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
ScGeom* geom = static_cast<ScGeom*>(ig.get());
ViscoFrictPhys* phys = static_cast<ViscoFrictPhys*>(ip.get());
if (shearCreep) {
const Real& dt = scene->dt;
geom->rotate(phys->creepedShear);
phys->creepedShear += creepStiffness * phys->ks * (phys->shearForce - phys->creepedShear) * dt / viscosity;
phys->shearForce -= phys->ks * ((phys->shearForce - phys->creepedShear) * dt / viscosity);
}
return Law2_ScGeom_FrictPhys_CundallStrack::go(ig, ip, contact);
}
} // namespace yade
|