1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
// 2009 © Václav Šmilauer <eudoxos@arcig.cz>
#include "GeneralIntegratorInsertionSortCollider.hpp"
#include <core/Dispatching.hpp>
#include <core/Interaction.hpp>
#include <core/InteractionContainer.hpp>
#include <core/Scene.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/Integrator.hpp>
#include <algorithm>
#include <boost/static_assert.hpp>
#include <vector>
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
YADE_PLUGIN((GeneralIntegratorInsertionSortCollider))
CREATE_LOGGER(GeneralIntegratorInsertionSortCollider);
// STRIDE
bool GeneralIntegratorInsertionSortCollider::isActivated()
{
// activated if number of bodies changes (hence need to refresh collision information)
// or the time of scheduled run already came, or we were never scheduled yet
if (!strideActive) return true;
if (!integrator) return true;
if (fastestBodyMaxDist < 0) {
fastestBodyMaxDist = 0;
return true;
}
fastestBodyMaxDist = integrator->maxVelocitySq;
if (fastestBodyMaxDist >= 1 || fastestBodyMaxDist == 0) return true;
if (BB[0].size() != 2 * scene->bodies->size()) return true;
if (scene->interactions->dirty) return true;
if (scene->doSort) {
scene->doSort = false;
return true;
}
return false;
}
void GeneralIntegratorInsertionSortCollider::action()
{
#ifdef ISC_TIMING
timingDeltas->start();
#endif
const size_t nBodies = scene->bodies->size();
InteractionContainer* interactions = scene->interactions.get();
scene->interactions->iterColliderLastRun = -1;
// periodicity changed, force reinit
if (scene->isPeriodic != periodic) {
for (int i = 0; i < 3; i++)
BB[i].clear();
periodic = scene->isPeriodic;
}
// pre-conditions
// adjust storage size
bool doInitSort = false;
if (doSort) {
doInitSort = true;
doSort = false;
}
if (BB[0].size() != 2 * nBodies) {
size_t BBsize = BB[0].size();
LOG_DEBUG("Resize bounds containers from " << BBsize << " to " << nBodies * 2 << ", will std::sort.");
// bodies deleted; clear the container completely, and do as if all bodies were added (rather slow…)
// future possibility: insertion sort with such operator that deleted bodies would all go to the end, then just trim bounds
if (2 * nBodies < BBsize) {
for (int i = 0; i < 3; i++)
BB[i].clear();
}
// more than 100 bodies was added, do initial sort again
// maybe: should rather depend on ratio of added bodies to those already present...?
if (2 * nBodies - BBsize > 200 || BBsize == 0) doInitSort = true;
assert((BBsize % 2) == 0);
for (int i = 0; i < 3; i++) {
BB[i].reserve(2 * nBodies);
// add lower and upper bounds; coord is not important, will be updated from bb shortly
for (size_t id = BBsize / 2; id < nBodies; id++) {
BB[i].push_back(Bounds(0, id, /*isMin=*/true));
BB[i].push_back(Bounds(0, id, /*isMin=*/false));
}
}
}
if (minima.size() != (size_t)3 * nBodies) {
minima.resize(3 * nBodies);
maxima.resize(3 * nBodies);
}
assert(BB[0].size() == 2 * scene->bodies->size());
// update periodicity
assert(BB[0].axis == 0);
assert(BB[1].axis == 1);
assert(BB[2].axis == 2);
if (periodic)
for (int i = 0; i < 3; i++)
BB[i].updatePeriodicity(scene);
if (verletDist < 0) {
Real minR = std::numeric_limits<Real>::infinity();
for (const auto& b : *scene->bodies) {
if (!b || !b->shape) continue;
Sphere* s = dynamic_cast<Sphere*>(b->shape.get());
if (!s) continue;
minR = min(s->radius, minR);
}
if (math::isinf(minR))
LOG_ERROR("verletDist is set to 0 because no spheres were found. It will result in suboptimal performances, consider setting a "
"positive verletDist in your script.");
// if no spheres, disable stride
verletDist = math::isinf(minR) ? 0 : math::abs(verletDist) * minR;
}
// update bounds via boundDispatcher
boundDispatcher->scene = scene;
boundDispatcher->sweepDist = verletDist;
boundDispatcher->minSweepDistFactor = minSweepDistFactor;
boundDispatcher->targetInterv = targetInterv;
boundDispatcher->updatingDispFactor = updatingDispFactor;
boundDispatcher->action();
// if interactions are dirty, force reinitialization
if (scene->interactions->dirty) {
doInitSort = true;
scene->interactions->dirty = false;
}
// STRIDE
if (verletDist > 0) {
// get the Integrator, to ask for the maximum velocity value
if (!integrator) {
FOREACH(shared_ptr<Engine> & e, scene->engines)
{
integrator = YADE_PTR_DYN_CAST<Integrator>(e);
if (integrator) break;
}
if (!integrator) { throw runtime_error("InsertionSortCollider.verletDist>0, but unable to locate any Integrator within O.engines."); }
}
}
ISC_CHECKPOINT("init");
// STRIDE
// get us ready for strides, if they were deactivated
if (!strideActive && verletDist > 0 && integrator->maxVelocitySq >= 0) { // maxVelocitySq is a really computed value
strideActive = true;
}
if (strideActive) {
assert(verletDist > 0);
assert(strideActive);
assert(integrator->maxVelocitySq >= 0);
integrator->updatingDispFactor = updatingDispFactor;
} else { /* !strideActive */
boundDispatcher->sweepDist = 0;
}
ISC_CHECKPOINT("bound");
// copy bounds along given axis into our arrays
for (size_t i = 0; i < 2 * nBodies; i++) {
for (int j = 0; j < 3; j++) {
VecBounds& BBj = BB[j];
const Body::id_t id = BBj[i].id;
const shared_ptr<Body>& b = Body::byId(id, scene);
if (b) {
const shared_ptr<Bound>& bv = b->bound;
// coordinate is min/max if has bounding volume, otherwise both are the position. Add periodic shift so that we are inside the cell
// watch out for the parentheses around ?: within ?: (there was unwanted conversion of the Reals to bools!)
BBj[i].coord = ((BBj[i].flags.hasBB = ((bool)bv)) ? (BBj[i].flags.isMin ? bv->min[j] : bv->max[j]) : (b->state->pos[j]))
- (periodic ? BBj.cellDim * BBj[i].period : 0.);
} else {
BBj[i].flags.hasBB = false; /* for vanished body, keep the coordinate as-is, to minimize inversions. */
}
// if initializing periodic, shift coords & record the period into BBj[i].period
if (doInitSort && periodic) { BBj[i].coord = cellWrap(BBj[i].coord, 0, BBj.cellDim, BBj[i].period); }
}
}
// for each body, copy its minima and maxima, for quick checks of overlaps later
BOOST_STATIC_ASSERT(sizeof(Vector3r) == 3 * sizeof(Real));
#if (YADE_REAL_BIT <= 64)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
// this is to remove warning about manipulating raw memory
#pragma GCC diagnostic ignored "-Wclass-memaccess"
for (size_t id = 0; id < nBodies; id++) {
const shared_ptr<Body>& b = Body::byId(id, scene);
if (b) {
const shared_ptr<Bound>& bv = b->bound;
if (bv) {
memcpy(&minima[3 * id], &bv->min, 3 * sizeof(Real));
memcpy(&maxima[3 * id], &bv->max, 3 * sizeof(Real));
} // ⇐ faster than 6 assignments
else {
const Vector3r& pos = b->state->pos;
memcpy(&minima[3 * id], &pos, 3 * sizeof(Real));
memcpy(&maxima[3 * id], &pos, 3 * sizeof(Real));
}
} else {
memset(&minima[3 * id], 0, 3 * sizeof(Real));
memset(&maxima[3 * id], 0, 3 * sizeof(Real));
}
}
#pragma GCC diagnostic pop
#else
for (size_t id = 0; id < nBodies; id++) {
const shared_ptr<Body>& b = Body::byId(id, scene);
if (b) {
const shared_ptr<Bound>& bv = b->bound;
if (bv) {
minima[3 * id] = bv->min[0];
minima[3 * id + 1] = bv->min[1];
minima[3 * id + 2] = bv->min[2];
maxima[3 * id] = bv->max[0];
maxima[3 * id + 1] = bv->max[1];
maxima[3 * id + 2] = bv->max[2];
} else {
const Vector3r& pos = b->state->pos;
minima[3 * id] = pos[0];
minima[3 * id + 1] = pos[1];
minima[3 * id + 2] = pos[2];
maxima[3 * id] = pos[0];
maxima[3 * id + 1] = pos[1];
maxima[3 * id + 2] = pos[2];
}
} else {
std::fill(minima.begin() + 3 * id, minima.begin() + 3 * id + 3, 0);
std::fill(maxima.begin() + 3 * id, maxima.begin() + 3 * id + 3, 0);
}
}
#endif
ISC_CHECKPOINT("copy");
// process interactions that the constitutive law asked to be erased
// interactions->erasePending(*this,scene);
interactions->conditionalyEraseNonReal(*this, scene);
ISC_CHECKPOINT("erase");
// sort
// the regular case
if (!doInitSort && !sortThenCollide) {
/* each inversion in insertionSort calls handleBoundInversion, which in turns may add/remove interaction */
if (!periodic)
for (int i = 0; i < 3; i++)
insertionSort(BB[i], interactions, scene);
else
for (int i = 0; i < 3; i++)
insertionSortPeri(BB[i], interactions, scene);
}
// create initial interactions (much slower)
else {
if (doInitSort) {
// the initial sort is in independent in 3 dimensions, may be run in parallel; it seems that there is no time gain running in parallel, though
// important to reset loInx for periodic simulation (!!)
for (int i = 0; i < 3; i++) {
BB[i].loIdx = 0;
BB[i].sort();
}
numReinit++;
} else { // sortThenCollide
if (!periodic)
for (int i = 0; i < 3; i++)
insertionSort(BB[i], interactions, scene, false);
else
for (int i = 0; i < 3; i++)
insertionSortPeri(BB[i], interactions, scene, false);
}
// traverse the container along requested axis
assert(sortAxis == 0 || sortAxis == 1 || sortAxis == 2);
VecBounds& V = BB[sortAxis];
// go through potential aabb collisions, create interactions as necessary
if (!periodic) {
for (size_t i = 0; i < 2 * nBodies; i++) {
// start from the lower bound (i.e. skipping upper bounds)
// skip bodies without bbox, because they don't collide
if (!(V[i].flags.isMin && V[i].flags.hasBB)) continue;
const Body::id_t& iid = V[i].id;
// go up until we meet the upper bound
for (size_t j = i + 1; /* handle case 2. of swapped min/max */ j < 2 * nBodies && V[j].id != iid; j++) {
const Body::id_t& jid = V[j].id;
// take 2 of the same condition (only handle collision [min_i..max_i]+min_j, not [min_i..max_i]+min_i (symmetric)
if (!V[j].flags.isMin) continue;
/* abuse the same function here; since it does spatial overlap check first, it is OK to use it */
handleBoundInversion(iid, jid, interactions, scene);
assert(j < 2 * nBodies - 1);
}
}
} else { // periodic case: see comments above
for (size_t i = 0; i < 2 * nBodies; i++) {
if (!(V[i].flags.isMin && V[i].flags.hasBB)) continue;
const Body::id_t& iid = V[i].id;
long cnt = 0;
// we might wrap over the periodic boundary here; that's why the condition is different from the aperiodic case
for (long j = V.norm(i + 1); V[j].id != iid; j = V.norm(j + 1)) {
const Body::id_t& jid = V[j].id;
if (!V[j].flags.isMin) continue;
handleBoundInversionPeri(iid, jid, interactions, scene);
if (cnt++ > 2 * (long)nBodies) {
LOG_FATAL("Uninterrupted loop in the initial sort?");
throw std::logic_error("loop??");
}
}
}
}
}
ISC_CHECKPOINT("sort&collide");
}
} // namespace yade
|