1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*************************************************************************
* Copyright (C) 2006 by Bruno Chareyre *
* bruno.chareyre@grenoble-inp.fr *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#include "GlobalStiffnessTimeStepper.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Clump.hpp>
#include <core/Interaction.hpp>
#include <core/Scene.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/DemXDofGeom.hpp>
#include <pkg/dem/FrictPhys.hpp>
#include <pkg/dem/ScGeom.hpp>
#include <pkg/dem/ViscoelasticPM.hpp>
#include <preprocessing/dem/Shop.hpp>
#ifdef YADE_MPI
#include <core/Subdomain.hpp>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wsuggest-override"
#pragma GCC diagnostic ignored "-Wcast-function-type"
#include <mpi.h>
#pragma GCC diagnostic pop
#endif
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
CREATE_LOGGER(GlobalStiffnessTimeStepper);
YADE_PLUGIN((GlobalStiffnessTimeStepper));
GlobalStiffnessTimeStepper::~GlobalStiffnessTimeStepper() { }
void GlobalStiffnessTimeStepper::findTimeStepFromBody(const shared_ptr<Body>& body, Scene* /*ncb*/)
{
State* sdec = body->state.get();
Vector3r& stiffness = stiffnesses[body->getId()];
Vector3r& Rstiffness = Rstiffnesses[body->getId()];
if (body->isClump()) { // if clump, we sum stifnesses of all members
const shared_ptr<Clump>& clump = YADE_PTR_CAST<Clump>(body->shape);
FOREACH(Clump::MemberMap::value_type & B, clump->members)
{
const shared_ptr<Body>& b = Body::byId(B.first, scene);
stiffness += stiffnesses[b->getId()];
Rstiffness += Rstiffnesses[b->getId()];
if (viscEl == true) {
viscosities[body->getId()] += viscosities[b->getId()];
Rviscosities[body->getId()] += Rviscosities[b->getId()];
}
}
}
Real dt;
if (!sdec || stiffness == Vector3r::Zero()) {
// No interaction on this body, return. If using density scaline fallback to PWaveTimestep-like equation for dt.
if (densityScaling) {
if (body->material and body->shape) {
shared_ptr<ElastMat> ebp = YADE_PTR_DYN_CAST<ElastMat>(body->material);
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(body->shape);
if (!ebp || !s) dt = defaultDt;
Real density = body->state->mass / ((4 / 3.) * Mathr::PI * pow(s->radius, 3));
dt = s->radius / sqrt(ebp->young / density);
// dt=defaultDt;
} else {
dt = defaultDt;
}
if (sdec->densityScaling <= 0) sdec->densityScaling = timestepSafetyCoefficient * pow(dt / targetDt, 2.0);
else
sdec->densityScaling = min(1.01 * sdec->densityScaling, timestepSafetyCoefficient * pow(dt / targetDt, 2.0));
}
return; // not possible to compute!
} else {
//Normal case: determine the elastic minimum eigenperiod (and if required determine also the viscous one separately and take the minimum of the two)
Real dtx, dty, dtz;
dt = max(max(stiffness.x(), stiffness.y()), stiffness.z());
if (dt != 0) {
dt = sdec->mass / dt;
computedSomething = true;
} //dt = squared eigenperiod of translational motion
else
dt = Mathr::MAX_REAL;
if (Rstiffness.x() != 0) {
dtx = sdec->inertia.x() / Rstiffness.x();
computedSomething = true;
} //dtx = squared eigenperiod of rotational motion around x
else
dtx = Mathr::MAX_REAL;
if (Rstiffness.y() != 0) {
dty = sdec->inertia.y() / Rstiffness.y();
computedSomething = true;
} else
dty = Mathr::MAX_REAL;
if (Rstiffness.z() != 0) {
dtz = sdec->inertia.z() / Rstiffness.z();
computedSomething = true;
} else
dtz = Mathr::MAX_REAL;
Real Rdt = math::min(math::min(dtx, dty), dtz); //Rdt = smallest squared eigenperiod for elastic rotational motions
dt = 1.41044 * timestepSafetyCoefficient * math::sqrt(math::min(dt, Rdt)); //1.41044 = sqrt(2)
}
//Viscous
if (viscEl == true) {
Vector3r& viscosity = viscosities[body->getId()];
Vector3r& Rviscosity = Rviscosities[body->getId()];
Real dtx_visc, dty_visc, dtz_visc;
Real dt_visc = max(max(viscosity.x(), viscosity.y()), viscosity.z());
if (dt_visc != 0) {
dt_visc = sdec->mass / dt_visc;
computedSomething = true;
} //dt = eigenperiod of the viscous translational motion
else {
dt_visc = Mathr::MAX_REAL;
}
if (Rviscosity.x() != 0) {
dtx_visc = sdec->inertia.x() / Rviscosity.x();
computedSomething = true;
} //dtx = eigenperiod of viscous rotational motion around x
else
dtx_visc = Mathr::MAX_REAL;
if (Rviscosity.y() != 0) {
dty_visc = sdec->inertia.y() / Rviscosity.y();
computedSomething = true;
} else
dty_visc = Mathr::MAX_REAL;
if (Rviscosity.z() != 0) {
dtz_visc = sdec->inertia.z() / Rviscosity.z();
computedSomething = true;
} else
dtz_visc = Mathr::MAX_REAL;
Real Rdt_visc = math::min(math::min(dtx_visc, dty_visc), dtz_visc); //Rdt = smallest squared eigenperiod for viscous rotational motions
dt_visc = 2 * timestepSafetyCoefficient * math::min(dt_visc, Rdt_visc);
//Take the minimum between the elastic and viscous minimum eigenperiod.
dt = math::min(dt, dt_visc);
}
//if there is a target dt, then we apply density scaling on the body, the inertia used in Newton will be mass/scaling, the weight is unmodified
if (densityScaling) {
if (sdec->densityScaling > 0) sdec->densityScaling = min(sdec->densityScaling * 1.05, pow(dt / targetDt, 2.0));
else
sdec->densityScaling = pow(dt / targetDt, 2.0);
newDt = targetDt;
}
//else we update dt normaly
else {
newDt = math::min(dt, newDt);
}
}
bool GlobalStiffnessTimeStepper::isActivated()
{
return (active && ((!computedOnce) || (scene->iter % timeStepUpdateInterval == 0) || (scene->iter < (long int)2)));
}
void GlobalStiffnessTimeStepper::computeTimeStep(Scene* ncb)
{
// for some reason, this line is necessary to have correct functioning (no idea _why_)
// see scripts/test/compare-identical.py, run with or without active=active.
active = active;
if (defaultDt < 0) defaultDt = timestepSafetyCoefficient * Shop::PWaveTimeStep(Omega::instance().getScene());
computeStiffnesses(ncb);
shared_ptr<BodyContainer>& bodies = ncb->bodies;
newDt = Mathr::MAX_REAL;
computedSomething = false;
for (const auto& b : *bodies) {
if (!b) { continue; }
if (b->isDynamic() && !b->isClumpMember()) findTimeStepFromBody(b, ncb);
}
if (densityScaling) (newDt = targetDt);
if (computedSomething || densityScaling) {
previousDt = min(
min(newDt, maxDt),
1.05 * previousDt); // at maximum, dt will be multiplied by 1.05 in one iterration, this is to prevent brutal switches from 0.000... to 1 in some computations
scene->dt = previousDt;
computedOnce = true;
} else if (!computedOnce)
scene->dt = defaultDt;
#ifdef YADE_MPI
if (parallelMode) {
if (scene->iter % timeStepUpdateInterval == 0) {
Real recvDt;
Real myDt = scene->dt;
MPI_Allreduce(&myDt, &recvDt, 1, MPI_DOUBLE, MPI_MIN, scene->getComm());
scene->dt = recvDt;
}
}
#endif
// LOG_INFO("computed timestep " << newDt <<
// (scene->dt==newDt ? string(", applied") :
// string(", BUT timestep is ")+boost::lexical_cast<string>(scene->dt))<<".");
}
void GlobalStiffnessTimeStepper::computeStiffnesses(Scene* rb)
{
/* check size */
size_t size = stiffnesses.size();
if (size < rb->bodies->size()) {
size = rb->bodies->size();
stiffnesses.resize(size);
Rstiffnesses.resize(size);
if (viscEl == true) {
viscosities.resize(size);
Rviscosities.resize(size);
}
}
#if (YADE_REAL_BIT <= 64)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
// this is to remove warning about manipulating raw memory
#pragma GCC diagnostic ignored "-Wclass-memaccess"
/* reset stored values */
memset(&stiffnesses[0], 0, sizeof(Vector3r) * size);
memset(&Rstiffnesses[0], 0, sizeof(Vector3r) * size);
if (viscEl == true) {
memset(&viscosities[0], 0, sizeof(Vector3r) * size);
memset(&Rviscosities[0], 0, sizeof(Vector3r) * size);
}
#pragma GCC diagnostic pop
#else
// the standard way, perfectly optimized by compiler.
std::fill(stiffnesses.begin(), stiffnesses.end(), Vector3r::Zero());
std::fill(Rstiffnesses.begin(), Rstiffnesses.end(), Vector3r::Zero());
if (viscEl == true) {
std::fill(viscosities.begin(), viscosities.end(), Vector3r::Zero());
std::fill(Rviscosities.begin(), Rviscosities.end(), Vector3r::Zero());
}
#endif
FOREACH(const shared_ptr<Interaction>& contact, *rb->interactions)
{
if (!contact->isReal()) continue;
GenericSpheresContact* geom = YADE_CAST<GenericSpheresContact*>(contact->geom.get());
assert(geom);
NormShearPhys* phys = YADE_CAST<NormShearPhys*>(contact->phys.get());
assert(phys);
// all we need for getting stiffness
Vector3r& normal = geom->normal;
Real& kn = phys->kn;
Real& ks = phys->ks;
Real& radius1 = geom->refR1;
Real& radius2 = geom->refR2;
Real fn = (static_cast<NormShearPhys*>(contact->phys.get()))->normalForce.squaredNorm();
if (fn == 0) continue; //Is it a problem with some laws? I still don't see why.
//Diagonal terms of the translational stiffness matrix
Vector3r diag_stiffness = Vector3r(math::pow(normal.x(), 2), math::pow(normal.y(), 2), math::pow(normal.z(), 2));
diag_stiffness *= kn - ks;
diag_stiffness = diag_stiffness + Vector3r(1, 1, 1) * ks;
//diagonal terms of the rotational stiffness matrix
// Vector3r branch1 = currentContactGeometry->normal*currentContactGeometry->radius1;
// Vector3r branch2 = currentContactGeometry->normal*currentContactGeometry->radius2;
Vector3r diag_Rstiffness = Vector3r(
math::pow(normal.y(), 2) + math::pow(normal.z(), 2),
math::pow(normal.x(), 2) + math::pow(normal.z(), 2),
math::pow(normal.x(), 2) + math::pow(normal.y(), 2));
diag_Rstiffness *= ks;
Vector3r diag_Mstiffness = Vector3r::Zero();
// If contact moments are present, add the diagonal of (n⊗n*k_twist + (I-n⊗n)*k_roll = (k_twist-k_roll)*n⊗n + I*k_roll ) :
const auto RotStiffFrictPhys_ptr = dynamic_cast<RotStiffFrictPhys*>(contact->phys.get());
if (RotStiffFrictPhys_ptr) {
// Rotational stiffness is supported
Vector3r kr = RotStiffFrictPhys_ptr->getRotStiffness(); //get the vector (k_twist,k_roll,k_roll)
Vector3r nn(math::pow(normal.x(), 2), math::pow(normal.y(), 2), math::pow(normal.z(), 2)); //n⊗n
diag_Mstiffness = (kr[0] - kr[1]) * nn + Vector3r(1, 1, 1) * kr[1];
}
stiffnesses[contact->getId1()] += diag_stiffness;
Rstiffnesses[contact->getId1()] += diag_Rstiffness * pow(radius1, 2) + diag_Mstiffness;
stiffnesses[contact->getId2()] += diag_stiffness;
Rstiffnesses[contact->getId2()] += diag_Rstiffness * pow(radius2, 2) + diag_Mstiffness;
//Same for the Viscous part, if required
if (viscEl == true) {
ViscElPhys* viscPhys = YADE_CAST<ViscElPhys*>(contact->phys.get());
assert(viscPhys);
Real& cn = viscPhys->cn;
Real& cs = viscPhys->cs;
//Diagonal terms of the translational viscous matrix
Vector3r diag_viscosity = Vector3r(math::pow(normal.x(), 2), math::pow(normal.y(), 2), math::pow(normal.z(), 2));
diag_viscosity *= cn - cs;
diag_viscosity = diag_viscosity + Vector3r(1, 1, 1) * cs;
//diagonal terms of the rotational viscous matrix
Vector3r diag_Rviscosity = Vector3r(
math::pow(normal.y(), 2) + math::pow(normal.z(), 2),
math::pow(normal.x(), 2) + math::pow(normal.z(), 2),
math::pow(normal.x(), 2) + math::pow(normal.y(), 2));
diag_Rviscosity *= cs;
// Add the contact stiffness matrix to the two particles one
viscosities[contact->getId1()] += diag_viscosity;
Rviscosities[contact->getId1()] += diag_Rviscosity * pow(radius1, 2);
viscosities[contact->getId2()] += diag_viscosity;
Rviscosities[contact->getId2()] += diag_Rviscosity * pow(radius2, 2);
}
}
}
} // namespace yade
|