1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
|
// 2010 © Chiara Modenese <c.modenese@gmail.com>
#include "HertzMindlin.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/ScGeom.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((MindlinPhys)(Ip2_FrictMat_FrictMat_MindlinPhys)(Law2_ScGeom_MindlinPhys_MindlinDeresiewitz)(Law2_ScGeom_MindlinPhys_HertzWithLinearShear)(
Law2_ScGeom_MindlinPhys_Mindlin)(MindlinCapillaryPhys)(Ip2_FrictMat_FrictMat_MindlinCapillaryPhys));
Real Law2_ScGeom_MindlinPhys_Mindlin::getfrictionDissipation() const { return (Real)frictionDissipation; }
Real Law2_ScGeom_MindlinPhys_Mindlin::getshearEnergy() const { return (Real)shearEnergy; }
Real Law2_ScGeom_MindlinPhys_Mindlin::getnormDampDissip() const { return (Real)normDampDissip; }
Real Law2_ScGeom_MindlinPhys_Mindlin::getshearDampDissip() const { return (Real)shearDampDissip; }
/* Functions to calculate velocity-dependent coefficient of restitution as in [Brilliantov1996]_ and [Mueller2011]_ */
// Function to calculate the restitution coefficient as a function of normalised velocity for the viscous damping model of [Brilliantov1996]_ using Pade approximation, as in [Mueller2011]_
Real restitutionCoefficient(const Real v_star)
{
// 3/6 coefficients
const Real a_i[] = { 1.0, 1.07232, 0.574198, 0.141552 };
const Real b_i[] = { 1.0, 1.07232, 1.72765, 1.37842, 1.19449, 0.467273, 0.235585 };
// Initialize sum to 0
Real A = 0.0, B = 0.0, n = 0.0;
for (auto& i : a_i) {
A += i * math::pow(v_star, n);
n += 1.0;
}
n = 0.0;
for (auto& i : b_i) {
B += i * math::pow(v_star, n);
n += 1.0;
}
return A / B;
}
// Function to calculate derivative used in Newton-Raphson iterations
Real restitutionCoefficientDeriv(const Real v_star)
{
// 3/6 coefficients
const Real a_i[] = { 1.0, 1.07232, 0.574198, 0.141552 };
const Real b_i[] = { 1.0, 1.07232, 1.72765, 1.37842, 1.19449, 0.467273, 0.235585 };
// Initialize sums to 0
Real A = 0.0, B = 0.0, dA = 0.0, dB = 0.0, n = 0.0;
for (auto& i : a_i) {
A += i * math::pow(v_star, n);
n += 1.0;
}
n = 0.0;
for (auto& i : b_i) {
B += i * math::pow(v_star, n);
n += 1.0;
}
// 3/6 coefficients Derivative
const Real da_i[] = { 1.07232, 0.574198, 0.141552 };
const Real db_i[] = { 1.07232, 1.72765, 1.37842, 1.19449, 0.467273, 0.235585 };
n = 0.0;
for (auto& i : da_i) {
dA += (n + 1.0) * i * math::pow(v_star, n);
n += 1.0;
}
n = 0.0;
for (auto& i : db_i) {
dB += (n + 1.0) * i * math::pow(v_star, n);
n += 1.0;
}
return (dA * B - A * dB) / (B * B);
}
// Function to calculate vstar as a function of the coefficient of restitution according to [Mueller2011]_
Real getVstar(const Real en)
{
const int max_iter = 1000; // Maximum number of iterations
int i = 0;
Real xr = 0.5; // Initial guess
// Check if en is in the range [0,1]
if (en == 1.0) return 0.0;
else if (en > 1.0)
throw std::runtime_error("getVstar: en > 1. Restitution coefficient must be between 0 and 1.");
else if (en < 0.0)
throw std::runtime_error("getVstar: en < 0. Restitution coefficient must be between 0 and 1.");
// Newton Rapshon method
for (i = 0; i < max_iter; ++i) {
// Check if root was found
if (math::abs(restitutionCoefficient(xr) - en) <= std::numeric_limits<Real>::epsilon()) break;
// New root approximation
xr -= (restitutionCoefficient(xr) - en) / restitutionCoefficientDeriv(xr);
}
// Check if maximum number of iterations was reached
if (i >= max_iter) {
std::cerr << "WARNING: getVstar: Maximum number of iterations reached. Root not found." << std::endl;
std::cerr << "WARNING: getVstar: | f(x) - targuet | = " << math::fabs(restitutionCoefficient(xr) - en) << std::endl;
}
return xr;
}
/******************** Ip2_FrictMat_FrictMat_MindlinPhys *******/
CREATE_LOGGER(Ip2_FrictMat_FrictMat_MindlinPhys);
void Ip2_FrictMat_FrictMat_MindlinPhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
if (interaction->phys) return; // no updates of an already existing contact necessary
shared_ptr<MindlinPhys> contactPhysics(new MindlinPhys());
interaction->phys = contactPhysics;
const auto mat1 = YADE_CAST<FrictMat*>(b1.get());
const auto mat2 = YADE_CAST<FrictMat*>(b2.get());
/* from interaction physics */
const Real Ea = mat1->young;
const Real Eb = mat2->young;
const Real Va = mat1->poisson;
const Real Vb = mat2->poisson;
const Real fa = mat1->frictionAngle;
const Real fb = mat2->frictionAngle;
/* from interaction geometry */
const auto scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
const Real Da = scg->refR1 > 0 ? scg->refR1 : scg->refR2;
const Real Db = scg->refR2 > 0 ? scg->refR2 : scg->refR1;
//Vector3r normal=scg->normal; //The variable set but not used
/* calculate stiffness coefficients */
const Real Ga = Ea / (2 * (1 + Va));
const Real Gb = Eb / (2 * (1 + Vb));
const Real G = 1.0 / ((2 - Va) / Ga + (2 - Vb) / Gb); // effective shear modulus
// const Real V = (Va + Vb) / 2; // average of poisson's ratio
const Real E = Ea * Eb / ((1. - math::pow(Va, 2)) * Eb + (1. - math::pow(Vb, 2)) * Ea); // effective Young modulus
const Real R = Da * Db / (Da + Db); // equivalent radius
const Real Rmean = (Da + Db) / 2.; // mean radius
const Real Kno = 4. / 3. * E * sqrt(R); // coefficient for normal stiffness
const Real Kso = 8 * sqrt(R) * G; // coefficient for shear stiffness
const Real frictionAngle = (!frictAngle) ? math::min(fa, fb) : (*frictAngle)(mat1->id, mat2->id, mat1->frictionAngle, mat2->frictionAngle);
const Real Adhesion = 4. * Mathr::PI * R * gamma; // calculate adhesion force as predicted by DMT theory
/* pass values calculated from above to MindlinPhys */
contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle);
//contactPhysics->prevNormal = scg->normal; // used to compute relative rotation
contactPhysics->kno = Kno; // this is just a coeff
contactPhysics->kso = Kso; // this is just a coeff
contactPhysics->adhesionForce = Adhesion;
contactPhysics->kr = krot;
contactPhysics->ktw = ktwist;
contactPhysics->maxBendPl = eta * Rmean; // does this make sense? why do we take Rmean?
/* compute viscous coefficients */
if (en && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of en, betan can be specified.");
if (es && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of es, betas can be specified.");
if (vn && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of vn, betan can be specified.");
if (vn && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of vn, betas can be specified.");
// en or es specified
if (en && vn) { // Velocity-dependent coefficient of restitution
Real vstar = getVstar((*en)(mat1->id, mat2->id));
contactPhysics->beta = vstar * vstar * math::pow((*vn)(mat1->id, mat2->id), -0.2); // ^-1/5 = ^-2/10
if (es) { std::cout << "Since vn is defined, the shear coefficient of restitution es will not be used." << endl; }
} else if (en || es) { // Constant coefficient of restitution
const Real h1 = -6.918798; // Fitting coefficients h_i from Table 2 - Thornton et al. (2013).
const Real h2 = -16.41105;
const Real h3 = 146.8049;
const Real h4 = -796.4559;
const Real h5 = 2928.711;
const Real h6 = -7206.864;
const Real h7 = 11494.29;
const Real h8 = -11342.18;
const Real h9 = 6276.757;
const Real h10 = -1489.915;
// Consider same coefficient of restitution if only one is given (en or es)
if (!en) { en = es; }
if (!es) { es = en; }
const Real En = (*en)(mat1->id, mat2->id);
const Real Es = (*es)(mat1->id, mat2->id);
const Real alphan = En
* (h1
+ En * (h2 + En * (h3 + En * (h4 + En * (h5 + En * (h6 + En * (h7 + En * (h8 + En * (h9 + En * h10))))))))); // Eq. (B7) from Thornton et al. (2013)
contactPhysics->betan = (En == 1.0) ? 0
: sqrt(1.0 / (1.0 - (math::pow(1.0 + En, 2)) * exp(alphan))
- 1.0); // Eq. (B6) from Thornton et al. (2013) - This is noted as 'gamma' in their paper
// although Thornton (2015) considered betan=betas, here we use his formulae (B6) and (B7) allowing for betas to take a different value, based on the input es
const Real alphas = Es * (h1 + Es * (h2 + Es * (h3 + Es * (h4 + Es * (h5 + Es * (h6 + Es * (h7 + Es * (h8 + Es * (h9 + Es * h10)))))))));
contactPhysics->betas = (Es == 1.0) ? 0 : sqrt(1.0 / (1.0 - (math::pow(1.0 + Es, 2)) * exp(alphas)) - 1.0);
// betan/betas specified, use that value directly
} else { // Constant coefficient of restitution
contactPhysics->betan = betan ? (*betan)(mat1->id, mat2->id) : 0;
contactPhysics->betas = betas ? (*betas)(mat1->id, mat2->id) : contactPhysics->betan;
}
}
/* Function to count the number of adhesive contacts in the simulation at each time step */
Real Law2_ScGeom_MindlinPhys_Mindlin::contactsAdhesive() // It is returning something rather than zero only if includeAdhesion is set to true
{
Real contactsAdhesive = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
if (phys->isAdhesive) { contactsAdhesive += 1; }
}
return contactsAdhesive;
}
/* Function which returns the ratio between the number of sliding contacts to the total number at a given time */
Real Law2_ScGeom_MindlinPhys_Mindlin::ratioSlidingContacts()
{
Real ratio(0);
int count(0);
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
if (phys->isSliding) { ratio += 1; }
count++;
}
ratio /= count;
return ratio;
}
/* Function to get the NORMAL elastic potential energy of the system */
Real Law2_ScGeom_MindlinPhys_Mindlin::normElastEnergy()
{
Real normEnergy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
ScGeom* scg = dynamic_cast<ScGeom*>(I->geom.get());
MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
if (phys) {
if (includeAdhesion) {
normEnergy += (math::pow(scg->penetrationDepth, 5. / 2.) * 2. / 5. * phys->kno - phys->adhesionForce * scg->penetrationDepth);
} else {
normEnergy += math::pow(scg->penetrationDepth, 5. / 2.) * 2. / 5. * phys->kno;
} // work done in the normal direction. NOTE: this is the integral
}
}
return normEnergy;
}
/* Function to get the adhesion energy of the system */
Real Law2_ScGeom_MindlinPhys_Mindlin::adhesionEnergy()
{
Real adhesionEnergy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
ScGeom* scg = dynamic_cast<ScGeom*>(I->geom.get());
MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
if (phys && includeAdhesion) {
Real R = scg->radius1 * scg->radius2 / (scg->radius1 + scg->radius2);
Real gammapi = phys->adhesionForce / (4. * R);
adhesionEnergy += gammapi * pow(phys->radius, 2);
} // note that contact radius is calculated if we calculate energy components
}
return adhesionEnergy;
}
bool Law2_ScGeom_MindlinPhys_MindlinDeresiewitz::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
Body::id_t id1(contact->getId1()), id2(contact->getId2());
ScGeom* geom = static_cast<ScGeom*>(ig.get());
MindlinPhys* phys = static_cast<MindlinPhys*>(ip.get());
const Real uN = geom->penetrationDepth;
if (uN < 0) {
if (neverErase) {
phys->shearForce = phys->normalForce = Vector3r::Zero();
phys->kn = phys->ks = 0;
return true;
} else {
return false;
}
}
// normal force
Real Fn = phys->kno * pow(uN, 3 / 2.);
phys->normalForce = Fn * geom->normal;
// exactly zero would not work with the shear formulation, and would give zero shear force anyway
if (Fn == 0) return true;
//phys->kn=3./2.*phys->kno*math::pow(uN,0.5); // update stiffness, not needed
// contact radius
Real R = geom->radius1 * geom->radius2 / (geom->radius1 + geom->radius2);
phys->radius = pow(Fn * pow(R, 3 / 2.) / phys->kno, 1 / 3.);
// shear force: transform, but keep the old value for now
geom->rotate(phys->usTotal);
//Vector3r usOld=phys->usTotal; //The variable set but not used
Vector3r dUs = geom->shearIncrement();
phys->usTotal -= dUs;
#if 0
Vector3r shearIncrement;
shearIncrement=geom->shearIncrement();
Fs-=ks*shearIncrement;
// Mohr-Coulomb slip
Real maxFs2=pow(Fn,2)*pow(phys->tangensOfFrictionAngle,2);
if(Fs.squaredNorm()>maxFs2) Fs*=sqrt(maxFs2)/Fs.norm();
#endif
// apply forces
Vector3r f = -phys->normalForce - phys->shearForce;
scene->forces.addForce(id1, f);
scene->forces.addForce(id2, -f);
scene->forces.addTorque(id1, (geom->radius1 - .5 * geom->penetrationDepth) * geom->normal.cross(f));
scene->forces.addTorque(id2, (geom->radius2 - .5 * geom->penetrationDepth) * geom->normal.cross(f));
return true;
}
bool Law2_ScGeom_MindlinPhys_HertzWithLinearShear::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
Body::id_t id1(contact->getId1()), id2(contact->getId2());
ScGeom* geom = static_cast<ScGeom*>(ig.get());
MindlinPhys* phys = static_cast<MindlinPhys*>(ip.get());
const Real uN = geom->penetrationDepth;
if (uN < 0) {
if (neverErase) {
phys->shearForce = phys->normalForce = Vector3r::Zero();
phys->kn = phys->ks = 0;
return true;
} else
return false;
}
// normal force
Real Fn = phys->kno * pow(uN, 3 / 2.);
phys->normalForce = Fn * geom->normal;
//phys->kn=3./2.*phys->kno*math::pow(uN,0.5); // update stiffness, not needed
// shear force
Vector3r& Fs = geom->rotate(phys->shearForce);
Real ks = nonLin > 0 ? phys->kso * math::pow(uN, 0.5) : phys->kso;
const Vector3r& shearIncrement = geom->shearIncrement();
Fs -= ks * shearIncrement;
// Mohr-Coulomb slip
Real maxFs2 = pow(Fn, 2) * pow(phys->tangensOfFrictionAngle, 2);
if (Fs.squaredNorm() > maxFs2) Fs *= sqrt(maxFs2) / Fs.norm();
// apply forces
Vector3r f = -phys->normalForce - phys->shearForce; /* should be a reference returned by geom->rotate */
assert(phys->shearForce == Fs);
scene->forces.addForce(id1, f);
scene->forces.addForce(id2, -f);
scene->forces.addTorque(id1, (geom->radius1 - .5 * geom->penetrationDepth) * geom->normal.cross(f));
scene->forces.addTorque(id2, (geom->radius2 - .5 * geom->penetrationDepth) * geom->normal.cross(f));
return true;
}
/******************** Law2_ScGeom_MindlinPhys_Mindlin *********/
CREATE_LOGGER(Law2_ScGeom_MindlinPhys_Mindlin);
bool Law2_ScGeom_MindlinPhys_Mindlin::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
const Real& dt = scene->dt; // get time step
Body::id_t id1 = contact->getId1(); // get id body 1
Body::id_t id2 = contact->getId2(); // get id body 2
auto* de1 = Body::byId(id1, scene)->state.get();
auto* de2 = Body::byId(id2, scene)->state.get();
ScGeom* scg = static_cast<ScGeom*>(ig.get());
MindlinPhys* phys = static_cast<MindlinPhys*>(ip.get());
const shared_ptr<Body>& b1 = Body::byId(id1, scene);
const shared_ptr<Body>& b2 = Body::byId(id2, scene);
bool useDamping = (phys->betan != 0. || phys->betas != 0. || phys->beta != 0.);
#ifdef PARTIALSAT
if (contact->isFresh(scene)) {
phys->initD = scg->penetrationDepth; // only useful for partialsat break criteria
}
#endif
Real cn = 0, cs = 0;
/****************/
/* NORMAL FORCE */
/****************/
Real uN = scg->penetrationDepth; // get overlapping
if (uN < 0) {
if (neverErase) {
phys->shearForce = phys->normalForce = Vector3r::Zero();
phys->kn = phys->ks = 0;
return true;
} else
return false;
}
/* Hertz-Mindlin's formulation (PFC)
Note that the normal stiffness here is a secant value (so as it is cannot be used in the GSTS)
In the first place we get the normal force and then we store kn to be passed to the GSTS */
Real Fn = phys->kno * math::pow(uN, 1.5); // normal Force (scalar)
if (includeAdhesion) {
Fn -= phys->adhesionForce; // include adhesion force to account for the effect of Van der Waals interactions
phys->isAdhesive = (Fn < 0); // set true the bool to count the number of adhesive contacts
}
phys->normalForce = Fn * scg->normal; // normal Force (vector)
if (calcEnergy) {
Real R = scg->radius1 * scg->radius2 / (scg->radius1 + scg->radius2);
phys->radius
= pow((Fn + (includeAdhesion ? phys->adhesionForce : 0.)) * pow(R, 3 / 2.) / phys->kno,
1 / 3.); // attribute not used anywhere, we do not need it
}
/*******************************/
/* TANGENTIAL NORMAL STIFFNESS */
/*******************************/
phys->kn = 3. / 2. * phys->kno * math::pow(uN, 0.5); // here we store the value of kn to compute the time step
/******************************/
/* TANGENTIAL SHEAR STIFFNESS */
/******************************/
phys->ks = phys->kso * math::pow(uN, 0.5); // get tangential stiffness (this is a tangent value, so we can pass it to the GSTS)
/************************/
/* DAMPING COEFFICIENTS */
/************************/
if (useDamping) {
Real mbar = (!b1->isDynamic() && b2->isDynamic())
? de2->mass
: ((!b2->isDynamic() && b1->isDynamic())
? de1->mass
: (de1->mass * de2->mass
/ (de1->mass
+ de2->mass))); // get equivalent mass if both bodies are dynamic, if not set it equal to the one of the dynamic body
if (phys->betan != 0. || phys->betas != 0.) { // Constant coefficient of restitution (see Thornton, 2015)
Real Cn_crit = 2. * sqrt(mbar * phys->kn); // Critical damping coefficient (normal direction)
Real Cs_crit = 2. * sqrt(mbar * phys->ks); // Critical damping coefficient (shear direction)
cn = Cn_crit * phys->betan; // Damping normal coefficient
cs = Cs_crit * phys->betas; // Damping tangential coefficient
if (phys->kn < 0 || phys->ks < 0) {
cerr << "Negative stiffness kn=" << phys->kn << " ks=" << phys->ks << " for ##" << b1->getId() << "+" << b2->getId()
<< ", step " << scene->iter << endl;
}
} else if (phys->beta != 0.) { // Velocity-dependent coefficient of restitution
const Real A = 2.0 * phys->beta * math::pow(phys->kno / mbar, -0.4) / 3; // ^-2/5
cn = A * phys->kn;
cs = A * phys->kn;
}
}
/***************/
/* SHEAR FORCE */
/***************/
Vector3r& shearElastic = phys->shearElastic; // reference for shearElastic force
// Define shifts to handle periodicity
const Vector3r shift2 = scene->isPeriodic ? scene->cell->intrShiftPos(contact->cellDist) : Vector3r::Zero();
const Vector3r shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(contact->cellDist) : Vector3r::Zero();
// 1. Rotate shear force
shearElastic = scg->rotate(shearElastic);
Vector3r prev_FsElastic = shearElastic; // save shear force at previous time step
// 2. Get incident velocity, get shear and normal components
// NOTE: below, the normal component is obtained from getIncidentVel(), OTOH, the shear component computed at next line would be wrong for sphere-facet
// and possibly other Ig types incompatible with preventGranularRatcheting=true. We thus use the precomputed shearIncrement from the Ig2, which should be always correct.
Vector3r incidentV = scg->getIncidentVel(de1, de2, dt, shift2, shiftVel, false);
// Vector3r incidentV = geom->shearIncrement()/dt;
Vector3r incidentVn = scg->normal.dot(incidentV) * scg->normal; // contact normal velocity
Vector3r incidentVs = scg->shearIncrement() / dt; // contact shear velocity
// 3. Get shear force (incrementally)
shearElastic = shearElastic - phys->ks * (incidentVs * dt);
/**************************************/
/* VISCOUS DAMPING (Normal direction) */
/**************************************/
// normal force must be updated here before we apply the Mohr-Coulomb criterion
if (useDamping) { // get normal viscous component
phys->normalViscous = cn * incidentVn;
Vector3r normTemp = phys->normalForce - phys->normalViscous; // temporary normal force
// viscous force should not exceed the value of current normal force, i.e. no attraction force should be permitted if particles are non-adhesive
// if particles are adhesive, then fixed the viscous force at maximum equal to the adhesion force
// *** enforce normal force to zero if no adhesion is permitted ***
if (phys->adhesionForce == 0.0 || !includeAdhesion) {
if (normTemp.dot(scg->normal) < 0.0) {
phys->normalForce = Vector3r::Zero();
phys->normalViscous = phys->normalViscous
+ normTemp; // normal viscous force is such that the total applied force is null - it is necessary to compute energy correctly!
} else {
phys->normalForce -= phys->normalViscous;
}
} else if (includeAdhesion && phys->adhesionForce != 0.0) {
// *** limit viscous component to the max adhesive force ***
if (normTemp.dot(scg->normal) < 0.0 && (phys->normalViscous.norm() > phys->adhesionForce)) {
Real normVisc = phys->normalViscous.norm();
Vector3r normViscVector = phys->normalViscous / normVisc;
phys->normalViscous = phys->adhesionForce * normViscVector;
phys->normalForce -= phys->normalViscous;
}
// *** apply viscous component - in the presence of adhesion ***
else {
phys->normalForce -= phys->normalViscous;
}
}
if (calcEnergy) { normDampDissip += phys->normalViscous.dot(incidentVn * dt); } // calc dissipation of energy due to normal damping
}
/*************************************/
/* SHEAR DISPLACEMENT (elastic only) */
/*************************************/
Vector3r& us_elastic = phys->usElastic;
us_elastic = scg->rotate(us_elastic); // rotate vector
Vector3r prevUs_el = us_elastic; // store previous elastic shear displacement (already rotated)
us_elastic -= incidentVs * dt; // add shear increment
/****************************************/
/* SHEAR DISPLACEMENT (elastic+plastic) */
/****************************************/
Vector3r& us_total = phys->usTotal;
us_total = scg->rotate(us_total); // rotate vector
Vector3r prevUs_tot = us_total; // store previous total shear displacement (already rotated)
us_total -= incidentVs
* dt; // add shear increment NOTE: this vector is not passed into the failure criterion, hence it holds also the plastic part of the shear displacement
bool noShearDamp = false; // bool to decide whether we need to account for shear damping dissipation or not
/********************/
/* MOHR-COULOMB law */
/********************/
phys->isSliding = false;
phys->shearViscous = Vector3r::Zero(); // reset so that during sliding, the previous values is not there
Fn = phys->normalForce.norm();
if (!includeAdhesion) {
Real maxFs = Fn * phys->tangensOfFrictionAngle;
if (shearElastic.squaredNorm() > maxFs * maxFs) {
phys->isSliding = true;
noShearDamp = true; // no damping is added in the shear direction, hence no need to account for shear damping dissipation
Real ratio = maxFs / shearElastic.norm();
shearElastic *= ratio;
phys->shearForce = shearElastic; /*store only elastic shear displacement*/
us_elastic *= ratio;
if (calcEnergy) {
frictionDissipation += (us_total - prevUs_tot).dot(shearElastic);
} // calculate energy dissipation due to sliding behavior
} else if (useDamping) { // add current contact damping if we do not slide and if damping is requested
phys->shearViscous = cs * incidentVs; // get shear viscous component
phys->shearForce = shearElastic - phys->shearViscous;
} else if (!useDamping) {
phys->shearForce = shearElastic;
} // update the shear force at the elastic value if no damping is present and if we passed MC
} else { // Mohr-Coulomb formulation adpated due to the presence of adhesion (see Thornton, 1991).
Real maxFs = phys->tangensOfFrictionAngle * (phys->adhesionForce + Fn); // adhesionForce already included in normalForce (above)
if (shearElastic.squaredNorm() > maxFs * maxFs) {
phys->isSliding = true;
noShearDamp = true; // no damping is added in the shear direction, hence no need to account for shear damping dissipation
Real ratio = maxFs / shearElastic.norm();
shearElastic *= ratio;
phys->shearForce = shearElastic; /*store only elastic shear displacement*/
us_elastic *= ratio;
if (calcEnergy) {
frictionDissipation += (us_total - prevUs_tot).dot(shearElastic);
} // calculate energy dissipation due to sliding behavior
} else if (useDamping) { // add current contact damping if we do not slide and if damping is requested
phys->shearViscous = cs * incidentVs; // get shear viscous component
phys->shearForce = shearElastic - phys->shearViscous;
} else if (!useDamping) {
phys->shearForce = shearElastic;
} // update the shear force at the elastic value if no damping is present and if we passed MC
}
/************************/
/* SHEAR ELASTIC ENERGY */
/************************/
// NOTE: shear elastic energy calculation must come after the MC criterion, otherwise displacements and forces are not updated
if (calcEnergy) {
shearEnergy
+= (us_elastic - prevUs_el)
.dot((shearElastic + prev_FsElastic)
/ 2.); // NOTE: no additional energy if we perform sliding since us_elastic and prevUs_el will hold the same value (in fact us_elastic is only keeping the elastic part). We work out the area of the trapezium.
}
/**************************************************/
/* VISCOUS DAMPING (energy term, shear direction) */
/**************************************************/
if (useDamping) { // get normal viscous component (the shear one is calculated inside Mohr-Coulomb criterion, see above)
if (calcEnergy) {
if (!noShearDamp) { shearDampDissip += phys->shearViscous.dot(incidentVs * dt); }
} // calc energy dissipation due to viscous linear damping
}
/****************/
/* APPLY FORCES */
/****************/
if (!scene->isPeriodic)
applyForceAtContactPoint(-phys->normalForce - phys->shearForce, scg->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
else { // in scg we do not wrap particles positions, hence "applyForceAtContactPoint" cannot be used
Vector3r force = -phys->normalForce - phys->shearForce;
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (scg->radius1 - 0.5 * scg->penetrationDepth) * scg->normal.cross(force));
scene->forces.addTorque(id2, (scg->radius2 - 0.5 * scg->penetrationDepth) * scg->normal.cross(force));
}
/********************************************/
/* MOMENT CONTACT LAW */
/********************************************/
if (includeMoment) {
// *** Bending ***//
// new code to compute relative particle rotation (similar to the way the shear is computed)
// use scg function to compute relAngVel
Vector3r relAngVel = scg->getRelAngVel(de1, de2, dt);
//Vector3r relAngVel = (b2->state->angVel-b1->state->angVel);
Vector3r relAngVelBend = relAngVel - scg->normal.dot(relAngVel) * scg->normal; // keep only the bending part
Vector3r relRot = relAngVelBend * dt; // relative rotation due to rolling behaviour
// incremental formulation for the bending moment (as for the shear part)
Vector3r& momentBend = phys->momentBend;
momentBend = scg->rotate(momentBend); // rotate moment vector (updated)
momentBend = momentBend - phys->kr * relRot; // add incremental rolling to the rolling vector
// ----------------------------------------------------------------------------------------
// *** Torsion ***//
Vector3r relAngVelTwist = scg->normal.dot(relAngVel) * scg->normal;
Vector3r relRotTwist = relAngVelTwist * dt; // component of relative rotation along n
// incremental formulation for the torsional moment
Vector3r& momentTwist = phys->momentTwist;
momentTwist = scg->rotate(momentTwist); // rotate moment vector (updated)
momentTwist = momentTwist - phys->ktw * relRotTwist;
#if 0
// code to compute the relative particle rotation
if (includeMoment){
Real rMean = (scg->radius1+scg->radius2)/2.;
// sliding motion
Vector3r duS1 = scg->radius1*(phys->prevNormal-scg->normal);
Vector3r duS2 = scg->radius2*(scg->normal-phys->prevNormal);
// rolling motion
Vector3r duR1 = scg->radius1*dt*b1->state->angVel.cross(scg->normal);
Vector3r duR2 = -scg->radius2*dt*b2->state->angVel.cross(scg->normal);
// relative position of the old contact point with respect to the new one
Vector3r relPosC1 = duS1+duR1;
Vector3r relPosC2 = duS2+duR2;
Vector3r duR = (relPosC1+relPosC2)/2.; // incremental displacement vector (same radius is temporarily assumed)
// check wheter rolling will be present, if not do nothing
Vector3r x=scg->normal.cross(duR);
Vector3r normdThetaR(Vector3r::Zero()); // initialize
if(x.squaredNorm()==0) { /* no rolling */ }
else {
Vector3r normdThetaR = x/x.norm(); // moment unit vector
phys->dThetaR = duR.norm()/rMean*normdThetaR;} // incremental rolling
// incremental formulation for the bending moment (as for the shear part)
Vector3r& momentBend = phys->momentBend;
momentBend = scg->rotate(momentBend); // rotate moment vector
momentBend = momentBend+phys->kr*phys->dThetaR; // add incremental rolling to the rolling vector FIXME: is the sign correct?
#endif
// check plasticity condition (only bending part for the moment)
Real MomentMax = phys->maxBendPl * phys->normalForce.norm();
Real scalarMoment = phys->momentBend.norm();
if (MomentMax > 0) {
if (scalarMoment > MomentMax) {
Real ratio = MomentMax / scalarMoment; // to fix the moment to its yielding value
phys->momentBend *= ratio;
}
}
// apply moments
Vector3r moment = phys->momentTwist + phys->momentBend;
scene->forces.addTorque(id1, -moment);
scene->forces.addTorque(id2, moment);
}
return true;
// update variables
//phys->prevNormal = scg->normal;
}
// The following code was moved from Ip2_FrictMat_FrictMat_MindlinCapillaryPhys.cpp
void Ip2_FrictMat_FrictMat_MindlinCapillaryPhys::go(
const shared_ptr<Material>& b1 //FrictMat
,
const shared_ptr<Material>& b2 // FrictMat
,
const shared_ptr<Interaction>& interaction)
{
if (interaction->phys) return; // no updates of an already existing contact necessary
shared_ptr<MindlinCapillaryPhys> contactPhysics(new MindlinCapillaryPhys());
interaction->phys = contactPhysics;
const auto mat1 = YADE_CAST<FrictMat*>(b1.get());
const auto mat2 = YADE_CAST<FrictMat*>(b2.get());
/* from interaction physics */
const Real Ea = mat1->young;
const Real Eb = mat2->young;
const Real Va = mat1->poisson;
const Real Vb = mat2->poisson;
const Real fa = mat1->frictionAngle;
const Real fb = mat2->frictionAngle;
/* from interaction geometry */
const auto scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
const Real Da = scg->refR1 > 0 ? scg->refR1 : scg->refR2;
const Real Db = scg->refR2 > 0 ? scg->refR2 : scg->refR1;
//Vector3r normal=scg->normal; //The variable set but not used
/* calculate stiffness coefficients */
const Real Ga = Ea / (2 * (1 + Va));
const Real Gb = Eb / (2 * (1 + Vb));
const Real G = 1.0 / ((2 - Va) / Ga + (2 - Vb) / Gb); //(Ga + Gb) / 2; // effective shear modulus
// const Real V = (Va + Vb) / 2; // average of poisson's ratio
const Real E = Ea * Eb / ((1. - math::pow(Va, 2)) * Eb + (1. - math::pow(Vb, 2)) * Ea); // Young modulus
const Real R = Da * Db / (Da + Db); // equivalent radius
const Real Rmean = (Da + Db) / 2.; // mean radius
const Real Kno = 4. / 3. * E * sqrt(R); // coefficient for normal stiffness
const Real Kso = 8 * sqrt(R) * G; // coefficient for shear stiffness
const Real frictionAngle = math::min(fa, fb);
const Real Adhesion = 4. * Mathr::PI * R * gamma; // calculate adhesion force as predicted by DMT theory
/* pass values calculated from above to MindlinCapillaryPhys */
contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle);
//mindlinPhys->prevNormal = scg->normal; // used to compute relative rotation
contactPhysics->kno = Kno; // this is just a coeff
contactPhysics->kso = Kso; // this is just a coeff
contactPhysics->adhesionForce = Adhesion;
contactPhysics->kr = krot;
contactPhysics->ktw = ktwist;
contactPhysics->maxBendPl = eta * Rmean; // does this make sense? why do we take Rmean?
/* compute viscous coefficients */
if (en && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinCapillaryPhys: only one of en, betan can be specified.");
if (es && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinCapillaryPhys: only one of es, betas can be specified.");
// en or es specified
if (en || es) {
const Real h1 = -6.918798; // Fitting coefficients h_i from Table 2 - Thornton et al. (2013).
const Real h2 = -16.41105;
const Real h3 = 146.8049;
const Real h4 = -796.4559;
const Real h5 = 2928.711;
const Real h6 = -7206.864;
const Real h7 = 11494.29;
const Real h8 = -11342.18;
const Real h9 = 6276.757;
const Real h10 = -1489.915;
// Consider same coefficient of restitution if only one is given (en or es)
if (!en) { en = es; }
if (!es) { es = en; }
const Real En = (*en)(mat1->id, mat2->id);
const Real Es = (*es)(mat1->id, mat2->id);
const Real alphan = En
* (h1
+ En * (h2 + En * (h3 + En * (h4 + En * (h5 + En * (h6 + En * (h7 + En * (h8 + En * (h9 + En * h10))))))))); // Eq. (B7) from Thornton et al. (2013)
contactPhysics->betan = (En == 1.0) ? 0
: sqrt(1.0 / (1.0 - (math::pow(1.0 + En, 2)) * exp(alphan))
- 1.0); // Eq. (B6) from Thornton et al. (2013) - This is noted as 'gamma' in their paper
// although Thornton (2015) considered betan=betas, here we use his formulae (B6) and (B7) allowing for betas to take a different value, based on the input es
const Real alphas = Es * (h1 + Es * (h2 + Es * (h3 + Es * (h4 + Es * (h5 + Es * (h6 + Es * (h7 + Es * (h8 + Es * (h9 + Es * h10)))))))));
contactPhysics->betas = (Es == 1.0) ? 0 : sqrt(1.0 / (1.0 - (math::pow(1.0 + Es, 2)) * exp(alphas)) - 1.0);
// betan/betas specified, use that value directly
} else {
contactPhysics->betan = betan ? (*betan)(mat1->id, mat2->id) : 0;
contactPhysics->betas = betas ? (*betas)(mat1->id, mat2->id) : contactPhysics->betan;
}
};
} // namespace yade
|