1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/*
2016 - Bettina Suhr
extension of Hertz-Mindlin model (see HertzMindlin.cpp):
normal direction: conical damage model
tangential direction: stress dependent interparticle friction coefficient
both models can be switched on/off separately
references:
Harkness, Zervos, Le Pen, Aingaran, Powrie: Discrete element simulation of railway ballast: modelling cell pressure effects in triaxial tests, Granular Matter, (2016) 18:65
Suhr & Six 2017: Parametrisation of a DEM model for railway ballast under different load cases, Granular Matter, (2017) 19:64
Suhr & Six 2016: On the effect of stress dependent interparticle friction in direct shear tests Powder Technology , (2016) 294:211 - 220
*/
#include "HertzMindlinExtended.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/ScGeom.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((FrictMatCDM)(MindlinPhysCDM)(Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM)(Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM)(
Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM));
CREATE_LOGGER(Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM);
void Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
if (interaction->phys) return; // no updates of an already existing contact necessary
interaction->phys = shared_ptr<MindlinPhysCDM>(new MindlinPhysCDM());
const shared_ptr<MindlinPhysCDM>& contactPhysics = YADE_PTR_CAST<MindlinPhysCDM>(interaction->phys);
const FrictMatCDM* mat1 = YADE_CAST<FrictMatCDM*>(b1.get());
const FrictMatCDM* mat2 = YADE_CAST<FrictMatCDM*>(b2.get());
/* from interaction physics */
const Real Ea = mat1->young;
const Real Eb = mat2->young;
const Real Va = mat1->poisson;
const Real Vb = mat2->poisson;
const Real fa = mat1->frictionAngle;
const Real fb = mat2->frictionAngle;
/* from interaction geometry */
const GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
/* calculate stiffness coefficients */
const Real Ga = Ea / (2 * (1 + Va));
const Real Gb = Eb / (2 * (1 + Vb));
//Real V = (Va+Vb)/2; // average of poisson's ratio
const Real E = Ea * Eb / ((1. - math::pow(Va, 2)) * Eb + (1. - math::pow(Vb, 2)) * Ea); // equivalent Young's modulus
//CHANGED use equivalent radius from geometry!!
const Real Da = scg->refR1 > 0 ? scg->refR1 : scg->refR2;
const Real Db = scg->refR2;
const Real R = Da * Db / (Da + Db); // equivalent radius
const Real Kno = 4. / 3. * E * sqrt(R); // coefficient for normal stiffness
//Real Kso = 2*sqrt(4*R)*G/(2-V); // coefficient for shear stiffness
//CHANGED
const Real Kso = 8 * sqrt(R) / ((2 - Va) / Ga + (2 - Vb) / Gb); // coefficient for shear stiffness
const Real frictionAngle = (!frictAngle) ? math::min(fa, fb) : (*frictAngle)(mat1->id, mat2->id, mat1->frictionAngle, mat2->frictionAngle);
/* pass values calculated from above to MindlinPhys */
//contactPhysics->prevNormal = scg->normal; // used to compute relative rotation
contactPhysics->E = E; // equiv young modulus
contactPhysics->G = 1.0 / ((2 - Va) / Ga + (2 - Vb) / Gb); //equiv shear modulus
contactPhysics->kno = Kno; // this is just a coeff, will be changed
contactPhysics->kso = Kso; // this is just a coeff, will be changed
//parameters for conical damage model
contactPhysics->R = R; //save current contact radius, will increase during yielding
contactPhysics->radius = R; //HERE Rmin is stored!! will not be changed during contact lifetime
contactPhysics->sigmaMax = math::min(mat1->sigmaMax, mat2->sigmaMax);
contactPhysics->alphaFac = (1.0 - math::sin(math::min(mat1->alpha, mat2->alpha))) / math::sin(math::min(mat1->alpha, mat2->alpha));
//parameter for stress dependent interparticle friction coefficient
contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle); //current value of friction coefficient is stored here, will change
contactPhysics->mu0
= math::tan(frictionAngle); // parameter for stress dependent interparticle friction coefficient, will not change during contact lifetime
contactPhysics->c1 = math::min(mat1->c1, mat2->c1);
contactPhysics->c2 = math::min(mat1->c2, mat2->c2);
if (math::min(mat1->alpha, mat2->alpha) <= 0 or math::min(mat1->alpha, mat2->alpha) >= Mathr::PI / 2.0)
throw std::invalid_argument("Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM: alpha must in (0,pi/2) radians ,NOT equal to 0 or pi/2");
if (contactPhysics->mu0 <= 0) throw std::invalid_argument("Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM: mu0/friction angle must be > 0");
if (contactPhysics->sigmaMax <= 0) throw std::invalid_argument("Ip2_FrictMatCDM_FrictMatCDM_MindlinPhysCDM: sigmaMax must be > 0");
if (contactPhysics->sigmaMax >= E) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: sigmaMax must be < Young's modulus!");
if (contactPhysics->c1 < 0) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: c1 must be >=0!");
if (contactPhysics->c2 < 0) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: c2 must be >=0!");
//damping currently cot used-----------------------------------------------------
contactPhysics->betan = 0.0;
contactPhysics->betas = 0.0;
//adhesion, bending currently cot used-----------------------------------------------------
contactPhysics->adhesionForce = 0; //Skipped at the moment! Adhesion;
contactPhysics->kr = 0; //Skipped at the moment! krot;
contactPhysics->ktw = 0; //Skipped at the moment! ktwist;
contactPhysics->maxBendPl = 0; //Skipped at the moment!
};
CREATE_LOGGER(Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM);
void Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
if (interaction->phys) return; // no updates of an already existing contact necessary
shared_ptr<MindlinPhysCDM> contactPhysics(new MindlinPhysCDM());
interaction->phys = contactPhysics;
const FrictMat* matFrictMat;
const FrictMatCDM* matFrictMatCDM;
// check which interaction partner is of which material class
// try to cast b1 to FrictMatCDM, returns null if b1 is FrictMat
const FrictMatCDM* matFrictMatCDM1 = dynamic_cast<FrictMatCDM*>(b1.get());
if (matFrictMatCDM1) {
// b1 is FrictMatCDM, b2 is FrictMat
matFrictMatCDM = YADE_CAST<FrictMatCDM*>(b1.get());
matFrictMat = YADE_CAST<FrictMat*>(b2.get());
} else {
// b1 is FrictMat, b2 is FrictMatCDM
matFrictMatCDM = YADE_CAST<FrictMatCDM*>(b2.get());
matFrictMat = YADE_CAST<FrictMat*>(b1.get());
}
/* from interaction physics */
const Real Ea = matFrictMat->young;
const Real Eb = matFrictMatCDM->young;
const Real Va = matFrictMat->poisson;
const Real Vb = matFrictMatCDM->poisson;
const Real fa = matFrictMat->frictionAngle;
const Real fb = matFrictMatCDM->frictionAngle;
/* from interaction geometry */
const GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
if (Va <= 0 or Vb <= 0) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: Poisson's ratio must be > 0");
/* calculate stiffness coefficients */
const Real Ga = Ea / (2 * (1 + Va));
const Real Gb = Eb / (2 * (1 + Vb));
//Real V = (Va+Vb)/2; // average of poisson's ratio
const Real E = Ea * Eb / ((1. - math::pow(Va, 2)) * Eb + (1. - math::pow(Vb, 2)) * Ea); //equivalent Young's modulus
const Real Da = scg->refR1 > 0 ? scg->refR1 : scg->refR2;
const Real Db = scg->refR2;
const Real R = Da * Db / (Da + Db); // equivalent radius
const Real Kno = 4. / 3. * E * sqrt(R); // coefficient for normal stiffness
const Real Kso = 8 * sqrt(R) / ((2 - Va) / Ga + (2 - Vb) / Gb); // coefficient for shear stiffness
const Real frictionAngle = (!frictAngle)
? math::min(fa, fb)
: (*frictAngle)(matFrictMat->id, matFrictMatCDM->id, matFrictMat->frictionAngle, matFrictMatCDM->frictionAngle);
/* pass values calculated from above to MindlinPhys */
contactPhysics->E = E; // equiv Young's modulus
contactPhysics->G = 1.0 / ((2 - Va) / Ga + (2 - Vb) / Gb); //equiv shear modulus
contactPhysics->kno = Kno; // this is just a coeff, will be changed
contactPhysics->kso = Kso; // this is just a coeff, will be changed
//parameters for conical damage model
contactPhysics->R = R; //save current contact radius, will increase during yielding
contactPhysics->radius = R; //HERE Rmin is stored!! will not be changed during contact lifetime
contactPhysics->sigmaMax = matFrictMatCDM->sigmaMax;
contactPhysics->alphaFac = (1.0 - math::sin(matFrictMatCDM->alpha)) / math::sin(matFrictMatCDM->alpha);
//parameter for stress dependent interparticle friction coefficient
//friction coeff is ALWAYS constant!!
contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle);
contactPhysics->mu0 = math::tan(frictionAngle);
contactPhysics->c1 = 0.0;
contactPhysics->c2 = 0.0;
if (matFrictMatCDM->alpha <= 0 or matFrictMatCDM->alpha >= Mathr::PI / 2.0)
throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: alpha must in (0,pi/2) radians ,NOT equal to 0 or pi/2");
if (contactPhysics->mu0 <= 0) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: mu0/frictionAngle must be > 0");
if (contactPhysics->sigmaMax <= 0) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: sigmaMax must be > 0");
if (contactPhysics->sigmaMax >= E) throw std::invalid_argument("Ip2_FrictMat_FrictMatCDM_MindlinPhysCDM: sigmaMax must be < Young's modulus!");
//damping currently cot used-----------------------------------------------------
contactPhysics->betan = 0.0;
contactPhysics->betas = 0.0;
//adhesion, bending currently cot used-----------------------------------------------------
contactPhysics->adhesionForce = 0; //Skipped at the moment! Adhesion;
contactPhysics->kr = 0; //Skipped at the moment! krot;
contactPhysics->ktw = 0; //Skipped at the moment! ktwist;
contactPhysics->maxBendPl = 0; //Skipped at the moment!
};
/* Function which returns the ratio between the number of sliding contacts to the total number at a given time */
Real Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM::ratioSlidingContacts()
{
Real ratio(0);
int count(0);
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
const MindlinPhysCDM* phys = dynamic_cast<MindlinPhysCDM*>(I->phys.get());
if (phys->isSliding) { ratio += 1; }
count++;
}
ratio /= count;
return ratio;
}
/* Function which returns the ratio between the number of yielding contacts to the total number at a given time */
Real Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM::ratioYieldingContacts()
{
Real ratio(0);
int count(0);
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
const MindlinPhysCDM* phys = dynamic_cast<MindlinPhysCDM*>(I->phys.get());
if (phys->isYielding) { ratio += 1; }
count++;
}
ratio /= count;
return ratio;
}
/******************** Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM *********/
CREATE_LOGGER(Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM);
bool Law2_ScGeom_MindlinPhysCDM_HertzMindlinCDM::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
//const Body::id_t id1 = contact->getId1(); // get id body 1
//const Body::id_t id2 = contact->getId2(); // get id body 2
const auto id1 = contact->getId1();
const auto id2 = contact->getId2();
const State* de1 = Body::byId(id1, scene)->state.get();
const State* de2 = Body::byId(id2, scene)->state.get();
const ScGeom* scg = static_cast<ScGeom*>(ig.get());
MindlinPhysCDM* phys = static_cast<MindlinPhysCDM*>(ip.get());
/****************/
/* NORMAL FORCE */
/****************/
const Real uDEM = scg->penetrationDepth; // get DEM overlap
if (uDEM < 0) {
if (neverErase) {
phys->shearForce = phys->normalForce = Vector3r::Zero();
phys->kn = phys->ks = 0;
return true;
} else
return false;
}
// Hertz-Mindlin's formulation + conical damage model
//conical damage model: Harkness et al. 2016 (see header for full reference)
//modification in Suhr&Six 2017 (see header for full reference)
//DIFFERENT INTERPRETATION OF OVERLAP DEFINITION
//phys->radius: R_eq as in Hertz law
//phys->R: current contact radius
Real uN = uDEM + (phys->radius - phys->R) * phys->alphaFac; //elastic overlap
if (uN < 0) {
phys->shearForce = phys->normalForce = Vector3r::Zero();
phys->kn = phys->ks = 0;
return true;
}
//reformulated formula
phys->isYielding = false;
//check yield condition
if (2.0 * phys->E / Mathr::PI * math::pow(uN / phys->R, 0.5) > phys->sigmaMax) {
phys->isYielding = true;
Real hfac = math::pow(Mathr::PI * phys->sigmaMax / 2.0 / phys->E, 2.0);
phys->R = (uDEM + phys->radius * phys->alphaFac) / (hfac + phys->alphaFac);
uN = uDEM + (phys->radius - phys->R) * phys->alphaFac; //adapted elastic overlap
}
// here we store the value of kn to compute the time step
phys->kn = 4. / 3.0 * phys->E * math::pow(phys->R * uN, 0.5);
Real Fn = phys->kn * uN; // normal Force (scalar)
phys->normalForce = Fn * scg->normal; // normal Force (vector)
/***************/
/* SHEAR FORCE */
/***************/
phys->ks = 8.0 * phys->G * math::pow(phys->R * uN, 0.5); //adapted tangential stiffness
// 1. Rotate shear force
Vector3r& shearElastic = scg->rotate(phys->shearElastic);
// 2. Get shear force (incrementally)
const Vector3r& shearDisp = scg->shearIncrement();
shearElastic = shearElastic - phys->ks * (shearDisp);
/********************/
/* MOHR-COULOMB law */
/********************/
phys->isSliding = false;
phys->shearViscous = Vector3r::Zero(); // reset so that during sliding, the previous values is not there
// NO ADHESION
//-------Suhr&Six16---------------------------------------------------------
//change mu to be pressure dependent!
Real pm;
if (Fn > 0.0) {
//divide force with contact area (circular), radius: sqrt(phys->R*uN)
pm = Fn / (phys->R * uN * M_PI); //mean pressure of contact
} else {
pm = 0.0;
}
Real mu = phys->mu0 + phys->c1 / (1.0 + phys->c2 * pm);
phys->tangensOfFrictionAngle = mu;
Real maxFs = Fn * phys->tangensOfFrictionAngle;
if (shearElastic.squaredNorm() > maxFs * maxFs) {
phys->isSliding = true;
Real ratio = maxFs / shearElastic.norm();
shearElastic *= ratio;
phys->shearForce = shearElastic; /*store only elastic shear displacement*/
} else {
phys->shearForce = shearElastic;
} // update the shear force at the elastic value if no damping is present and if we passed MC
/****************/
/* APPLY FORCES */
/****************/
if (!scene->isPeriodic)
applyForceAtContactPoint(-phys->normalForce - phys->shearForce, scg->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
else { // in scg we do not wrap particles positions, hence "applyForceAtContactPoint" cannot be used
Vector3r force = -phys->normalForce - phys->shearForce;
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (scg->radius1 - 0.5 * scg->penetrationDepth) * scg->normal.cross(force));
scene->forces.addTorque(id2, (scg->radius2 - 0.5 * scg->penetrationDepth) * scg->normal.cross(force));
}
return true;
}
} // namespace yade
|