1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
#include "InelastCohFrictPM.hpp"
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
YADE_PLUGIN((InelastCohFrictMat)(InelastCohFrictPhys)(Ip2_2xInelastCohFrictMat_InelastCohFrictPhys)(Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment));
void Ip2_2xInelastCohFrictMat_InelastCohFrictPhys::go(
const shared_ptr<Material>& b1 // InelastCohFrictMat
,
const shared_ptr<Material>& b2 // InelastCohFrictMat
,
const shared_ptr<Interaction>& interaction)
{
InelastCohFrictMat* sdec1 = static_cast<InelastCohFrictMat*>(b1.get());
InelastCohFrictMat* sdec2 = static_cast<InelastCohFrictMat*>(b2.get());
ScGeom6D* geom = YADE_CAST<ScGeom6D*>(interaction->geom.get());
//FIXME : non cohesive contact are not implemented, it would be useful to use setCohesionNow, setCohesionOnNewContacts etc ...
if (geom) {
if (!interaction->phys) {
interaction->phys = shared_ptr<InelastCohFrictPhys>(new InelastCohFrictPhys());
InelastCohFrictPhys* contactPhysics = YADE_CAST<InelastCohFrictPhys*>(interaction->phys.get());
Real pi = 3.14159265;
Real r1 = geom->radius1;
Real r2 = geom->radius2;
Real f1 = sdec1->frictionAngle;
Real f2 = sdec2->frictionAngle;
contactPhysics->tangensOfFrictionAngle = tan(min(f1, f2));
// harmonic average of modulus
contactPhysics->knC = 2.0 * sdec1->compressionModulus * r1 * sdec2->compressionModulus * r2
/ (sdec1->compressionModulus * r1 + sdec2->compressionModulus * r2);
contactPhysics->knT
= 2.0 * sdec1->tensionModulus * r1 * sdec2->tensionModulus * r2 / (sdec1->tensionModulus * r1 + sdec2->tensionModulus * r2);
contactPhysics->ks = 2.0 * sdec1->shearModulus * r1 * sdec2->shearModulus * r2 / (sdec1->shearModulus * r1 + sdec2->shearModulus * r2);
// harmonic average of coeficients for bending and twist coeficients
Real AlphaKr = 2.0 * sdec1->alphaKr * sdec2->alphaKr / (sdec1->alphaKr + sdec2->alphaKr);
Real AlphaKtw = 2.0 * sdec1->alphaKtw * sdec2->alphaKtw / (sdec1->alphaKtw + sdec2->alphaKtw);
contactPhysics->kr = r1 * r2 * contactPhysics->ks * AlphaKr;
contactPhysics->ktw = r1 * r2 * contactPhysics->ks * AlphaKtw;
contactPhysics->kTCrp = contactPhysics->knT * min(sdec1->creepTension, sdec2->creepTension);
contactPhysics->kRCrp = contactPhysics->kr * min(sdec1->creepBending, sdec2->creepBending);
contactPhysics->kTwCrp = contactPhysics->ktw * min(sdec1->creepTwist, sdec2->creepTwist);
contactPhysics->kRUnld = contactPhysics->kr * min(sdec1->unloadBending, sdec2->unloadBending);
contactPhysics->kTUnld = contactPhysics->knT * min(sdec1->unloadTension, sdec2->unloadTension);
contactPhysics->kTwUnld = contactPhysics->ktw * min(sdec1->unloadTwist, sdec2->unloadTwist);
contactPhysics->maxElC = min(sdec1->sigmaCompression, sdec2->sigmaCompression) * pow(min(r2, r1), 2);
contactPhysics->maxElT = min(sdec1->sigmaTension, sdec2->sigmaTension) * pow(min(r2, r1), 2);
contactPhysics->maxElB = min(sdec1->nuBending, sdec2->nuBending) * pow(min(r2, r1), 3);
contactPhysics->maxElTw = min(sdec1->nuTwist, sdec2->nuTwist) * pow(min(r2, r1), 3);
contactPhysics->shearAdhesion = min(sdec1->shearCohesion, sdec2->shearCohesion) * pow(min(r1, r2), 2);
contactPhysics->maxExten = min(sdec1->epsilonMaxTension * r1, sdec2->epsilonMaxTension * r2);
contactPhysics->maxContract = min(sdec1->epsilonMaxCompression * r1, sdec2->epsilonMaxCompression * r2);
contactPhysics->maxBendMom = min(sdec1->etaMaxBending, sdec2->etaMaxBending) * pow(min(r2, r1), 3);
contactPhysics->maxTwist = 2 * pi * min(sdec1->etaMaxTwist, sdec2->etaMaxTwist);
}
}
};
Real Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment::normElastEnergy()
{ //FIXME : this have to be checked and adapted
Real normEnergy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
InelastCohFrictPhys* phys = YADE_CAST<InelastCohFrictPhys*>(I->phys.get());
if (phys) { normEnergy += 0.5 * (phys->normalForce.squaredNorm() / phys->kn); }
}
return normEnergy;
}
Real Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment::shearElastEnergy()
{ //FIXME : this have to be checked and adapted
Real shearEnergy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
InelastCohFrictPhys* phys = YADE_CAST<InelastCohFrictPhys*>(I->phys.get());
if (phys) { shearEnergy += 0.5 * (phys->shearForce.squaredNorm() / phys->ks); }
}
return shearEnergy;
}
bool Law2_ScGeom6D_InelastCohFrictPhys_CohesionMoment::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
//FIXME : non cohesive contact are not implemented, it would be useful to use setCohesionNow, setCohesionOnNewContacts etc ...
const int& id1 = contact->getId1();
const int& id2 = contact->getId2();
const Real& dt = scene->dt;
ScGeom6D* geom = YADE_CAST<ScGeom6D*>(ig.get());
InelastCohFrictPhys* phys = YADE_CAST<InelastCohFrictPhys*>(ip.get());
if (contact->isFresh(scene)) phys->shearForce = Vector3r::Zero();
Real un = geom->penetrationDepth - phys->unp;
Real Fn;
State* de1 = Body::byId(id1, scene)->state.get();
State* de2 = Body::byId(id2, scene)->state.get();
if (un <= 0) { /// tension ///
if (-un > phys->maxExten || phys->isBroken) { //plastic failure.
phys->isBroken = 1;
phys->normalForce = phys->shearForce = phys->moment_twist = phys->moment_bending = Vector3r(0, 0, 0);
return false;
}
Fn = phys->knT * un; //elasticity
if (-Fn > phys->maxElT || phys->onPlastT) { //so we are on plastic deformation.
phys->onPlastT = 1;
phys->onPlastC = 1; //if plasticity is reached on tension, set it to compression too.
if (phys->maxCrpRchdT[0] < un) { //unloading/reloading on plastic deformation.
Fn = phys->kTUnld * (un - phys->maxCrpRchdT[0]) + phys->maxCrpRchdT[1];
} else { //loading on plastic deformation : creep.
Fn = -phys->maxElT + phys->kTCrp * (un + phys->maxElT / phys->knT);
phys->maxCrpRchdT[0] = un; //new maximum is reached.
phys->maxCrpRchdT[1] = Fn;
}
if (Fn > 0) { //so the contact just passed the equilibrium state, set new "unp" who stores the plastic equilibrium state.
phys->unp = geom->penetrationDepth;
phys->maxCrpRchdT[0] = 1e20;
phys->maxElT = 0;
}
} else { //elasticity
phys->maxCrpRchdT[0] = un;
phys->maxCrpRchdT[1] = Fn;
}
}
else { /// compression /// similar to tension.
if (un > phys->maxContract || phys->isBroken) {
phys->isBroken = 1;
phys->normalForce = phys->shearForce = phys->moment_twist = phys->moment_bending = Vector3r(0, 0, 0);
if (geom->penetrationDepth <= 0) { //do not erase the contact while penetrationDepth<0 because it would be recreated at next timestep.
return false;
}
return true;
}
Fn = phys->knC * un;
if (Fn > phys->maxElC || phys->onPlastC) {
phys->onPlastC = 1;
if (phys->maxCrpRchdC[0] > un) {
Fn = phys->kTUnld * (un - phys->maxCrpRchdC[0]) + phys->maxCrpRchdC[1];
} else {
Fn = phys->maxElC + phys->kTCrp * (un - phys->maxElC / phys->knC);
phys->maxCrpRchdC[0] = un;
phys->maxCrpRchdC[1] = Fn;
}
if (Fn < 0) {
phys->unp = geom->penetrationDepth;
phys->maxCrpRchdC[0] = -1e20;
phys->maxElC = 0;
}
} else {
phys->maxCrpRchdC[0] = un;
phys->maxCrpRchdC[1] = Fn;
}
}
/// Shear ///
Vector3r shearForce = geom->rotate(phys->shearForce);
const Vector3r& dus = geom->shearIncrement();
//Linear elasticity giving "trial" shear force
shearForce += phys->ks * dus;
Real Fs = shearForce.norm();
Real maxFs = phys->shearAdhesion;
if (maxFs == 0) maxFs = Fn * phys->tangensOfFrictionAngle;
maxFs = math::max((Real)0, maxFs);
if (Fs > maxFs) { //Plasticity condition on shear force
if (!phys->cohesionBroken) {
phys->cohesionBroken = 1;
phys->shearAdhesion = 0;
maxFs = max((Real)0, Fn * phys->tangensOfFrictionAngle);
}
maxFs = maxFs / Fs;
shearForce *= maxFs;
}
//rotational moment are only applied if the cohesion is not broken.
/// Twist /// the twist law is driven by twist displacement ("getTwist()").
if (!phys->cohesionBroken) {
Real twist = geom->getTwist() - phys->twp;
Real twistM = twist * phys->ktw; //elastic twist moment.
bool sgnChanged = 0; //whether the twist moment just passed the equilibrium state.
if (!contact->isFresh(scene) && phys->moment_twist.dot(twistM * geom->normal) < 0) sgnChanged = 1;
if (math::abs(twist) > phys->maxTwist) {
phys->cohesionBroken = 1;
twistM = 0;
} else {
if (math::abs(twistM) > phys->maxElTw || phys->onPlastTw) { //plastic deformation.
phys->onPlastTw = 1;
if (math::abs(phys->maxCrpRchdTw[0]) > math::abs(twist)) { //unloading/reloading
twistM = phys->kTwUnld * (twist - phys->maxCrpRchdTw[0]) + phys->maxCrpRchdTw[1];
} else { //creep loading.
int sign = twist < 0 ? -1 : 1;
twistM = sign * phys->maxElTw + phys->kTwCrp * (twist - sign * phys->maxElTw / phys->ktw); //creep
phys->maxCrpRchdTw[0] = twist; //new maximum reached
phys->maxCrpRchdTw[1] = twistM;
}
if (sgnChanged) {
phys->maxElTw = 0;
phys->twp = geom->getTwist();
phys->maxCrpRchdTw[0] = 0;
}
} else { //elasticity
phys->maxCrpRchdTw[0] = twist;
phys->maxCrpRchdTw[1] = twistM;
}
}
phys->moment_twist = twistM * geom->normal;
} else
phys->moment_twist = Vector3r(0, 0, 0);
/// Bending /// incremental form.
if (!phys->cohesionBroken) {
Vector3r bendM = phys->moment_bending;
Vector3r relAngVel = geom->getRelAngVel(de1, de2, dt);
Vector3r relRotBend = (relAngVel - geom->normal.dot(relAngVel) * geom->normal) * dt; // relative rotation due to rolling behaviour
bendM = geom->rotate(phys->moment_bending); // rotate moment vector (updated)
phys->pureCreep = geom->rotate(phys->pureCreep); // pure creep is updated to compute the damage.
Vector3r bendM_elast = bendM - phys->kr * relRotBend;
if (bendM_elast.norm() > phys->maxElB || phys->onPlastB) { // plastic behavior
phys->onPlastB = 1;
bendM = bendM - phys->kDam * relRotBend; //trial bending
if (bendM.norm() < phys->moment_bending.norm()) { // if bending decreased, we are unloading ...
bendM = bendM + phys->kDam * relRotBend - phys->kRUnld * relRotBend; // ... so undo bendM and apply unload coefficient.
Vector3r newPureCreep = phys->pureCreep - phys->kRCrp * relRotBend; // trial pure creep.
phys->pureCreep = newPureCreep.norm() < phys->pureCreep.norm()
? newPureCreep
: phys->pureCreep + phys->kRCrp * relRotBend; // while unloading, pure creep must decrease.
phys->kDam = phys->kr
+ (phys->kRCrp - phys->kr) * (phys->maxCrpRchdB.norm() - phys->maxElB)
/ (phys->maxBendMom - phys->maxElB); // compute the damage coefficient.
} else { // bending increased, so we are loading (bendM has to be unchanged).
Vector3r newPureCreep = phys->pureCreep - phys->kRCrp * relRotBend;
phys->pureCreep = newPureCreep.norm() > phys->pureCreep.norm()
? newPureCreep
: phys->pureCreep + phys->kRCrp * relRotBend; // while loading, pure creep must increase.
if (phys->pureCreep.norm() < bendM.norm()) bendM = phys->pureCreep; // bending moment can't be greather than pure creep.
if (phys->pureCreep.norm() > phys->maxCrpRchdB.norm())
phys->maxCrpRchdB = phys->pureCreep; // maxCrpRchdB must follow the maximum of pure creep.
if (phys->pureCreep.norm() > phys->maxBendMom) {
phys->cohesionBroken = 1;
bendM = bendM_elast = Vector3r(0, 0, 0);
}
}
phys->moment_bending = bendM;
} else { //elasticity
phys->pureCreep = phys->moment_bending = phys->maxCrpRchdB = bendM_elast;
phys->kDam = phys->kRCrp;
}
}
phys->shearForce = shearForce;
phys->normalForce = -Fn * geom->normal;
applyForceAtContactPoint(
phys->normalForce + phys->shearForce,
geom->contactPoint,
id1,
de1->se3.position,
id2,
de2->se3.position + (scene->isPeriodic ? scene->cell->intrShiftPos(contact->cellDist) : Vector3r::Zero()));
scene->forces.addTorque(id1, -phys->moment_bending - phys->moment_twist);
scene->forces.addTorque(id2, phys->moment_bending + phys->moment_twist);
return true;
}
} // namespace yade
|