1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*************************************************************************
* Copyright (C) 2010 by Jerome Duriez *
* jerome.duriez@hmg.inpg.fr *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#include <lib/high-precision/Constants.hpp>
#include <pkg/dem/KinemSimpleShearBox.hpp>
#include <core/State.hpp>
#include <pkg/common/Box.hpp>
#include <pkg/dem/FrictPhys.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((KinemSimpleShearBox))
void KinemSimpleShearBox::computeAlpha()
{
Quaternionr orientationLeftBox, orientationRightBox;
orientationLeftBox = leftbox->state->ori;
orientationRightBox = rightbox->state->ori;
if (orientationLeftBox.matrix() != orientationRightBox.matrix()) {
cout << "WARNING !!! your lateral boxes have not the same orientation, you're not in the case of a box imagined for creating these engines"
<< endl;
}
Real angle;
AngleAxisr aa(orientationLeftBox);
angle = aa.angle();
// orientationLeftBox.ToAxisAngle(axis,angle);
alpha = Mathr::PI / 2.0
- angle; // right if the initial orientation of the body (on the beginning of the simulation) is q =(1,0,0,0) = FromAxisAngle((0,0,1),0)
}
void KinemSimpleShearBox::computeScontact()
{
Real Xleft = leftbox->state->pos.x() + (YADE_CAST<Box*>(leftbox->shape.get()))->extents.x();
Real Xright = rightbox->state->pos.x() - (YADE_CAST<Box*>(rightbox->shape.get()))->extents.x();
Real Zfront = frontbox->state->pos.z() - YADE_CAST<Box*>(frontbox->shape.get())->extents.z();
Real Zback = backbox->state->pos.z() + (YADE_CAST<Box*>(backbox->shape.get()))->extents.z();
Scontact = (Xright - Xleft) * (Zfront - Zback); // that's so the value of section at the middle of the height of the box
}
void KinemSimpleShearBox::letMove(Real dX, Real dY)
{
if (LOG) cout << "It : " << scene->iter << endl;
// const Real& dt = scene->dt; // dt value obtained by getBoxes_Dt
Real Ysup = topbox->state->pos.y();
Real Ylat = leftbox->state->pos.y();
// Changes in vertical and horizontal velocities :
topbox->state->vel = Vector3r(dX / dt, dY / dt, 0);
leftbox->state->vel = Vector3r(dX / (2.0 * dt), dY / (2.0 * dt), 0);
rightbox->state->vel = Vector3r(dX / (2.0 * dt), dY / (2.0 * dt), 0);
if (LOG) cout << "dY that will be applied by NewtonIntegrator :" << dY << endl;
Real Ysup_mod = Ysup + dY;
Real Ylat_mod = Ylat + dY;
computeAlpha();
// Then computation of the angle of the rotation,dalpha, to be done :
if (alpha == Mathr::PI / 2.0) // Case of the very beginning
{
dalpha = -atan(dX / (Ysup_mod - Ylat_mod));
} else {
Real A = (Ysup_mod - Ylat_mod) * 2.0 * tan(alpha) / (2.0 * (Ysup - Ylat) + dX * tan(alpha));
dalpha = atan((A - tan(alpha)) / (1.0 + A * tan(alpha)));
}
Quaternionr qcorr(AngleAxisr(dalpha, Vector3r::UnitZ()));
// Rotation is applied through velocities (and NewtonIntegrator)
leftbox->state->angVel = Vector3r(0, 0, 1) * dalpha / dt;
rightbox->state->angVel = Vector3r(0, 0, 1) * dalpha / dt;
}
void KinemSimpleShearBox::stopMovement()
{
// upper plate's speed is zeroed
topbox->state->vel = Vector3r(0, 0, 0);
// same for left box
leftbox->state->vel = Vector3r(0, 0, 0);
leftbox->state->angVel = Vector3r(0, 0, 0);
// and for rightbox
rightbox->state->vel = Vector3r(0, 0, 0);
rightbox->state->angVel = Vector3r(0, 0, 0);
}
void KinemSimpleShearBox::computeStiffness()
{
int nbre_contacts = 0;
stiffness = 0.0;
InteractionContainer::iterator ii = scene->interactions->begin();
InteractionContainer::iterator iiEnd = scene->interactions->end();
for (; ii != iiEnd; ++ii) {
if ((*ii)->isReal()) {
const shared_ptr<Interaction>& contact = *ii;
Real fn = (static_cast<FrictPhys*>(contact->phys.get()))->normalForce.norm();
if (fn != 0) {
int id1 = contact->getId1(), id2 = contact->getId2();
if (id_topbox == id1 || id_topbox == id2) {
FrictPhys* currentContactPhysics = static_cast<FrictPhys*>(contact->phys.get());
stiffness += currentContactPhysics->kn;
nbre_contacts += 1;
}
}
}
}
if (LOG) cout << "nbre billes en contacts : " << nbre_contacts << endl;
if (LOG) cout << "rigidite echantillon calculee : " << stiffness << endl;
}
void KinemSimpleShearBox::getBoxes_Dt()
{
leftbox = Body::byId(id_boxleft);
rightbox = Body::byId(id_boxright);
frontbox = Body::byId(id_boxfront);
backbox = Body::byId(id_boxback);
topbox = Body::byId(id_topbox);
boxbas = Body::byId(id_boxbas);
dt = scene->dt;
}
void KinemSimpleShearBox::computeDY(Real KnC)
{
scene->forces.sync();
Vector3r fSup = scene->forces.getForce(id_topbox);
if (firstRun) {
alpha = Mathr::PI / 2.0;
;
y0 = topbox->state->pos.y();
f0 = fSup.y();
firstRun = false;
}
computeStiffness();
Real hCurrent = topbox->state->pos.y();
computeScontact();
Real fDesired = f0 + KnC * 1.0e9 * Scontact * (hCurrent - y0); // The value of the force desired, with the fact that KnC is in MPa/mm
if (stiffness == 0) {
deltaH = 0;
cerr << "Stiffness(sample) = 0 => DNC in fact : not CNL or CNS..." << endl;
} else {
deltaH = (fSup.y() - fDesired) / (stiffness);
}
if (LOG) cout << "Alors q je veux KnC = " << KnC << " depuis f0 = " << f0 << " et y0 = " << y0 << endl;
if (LOG) cout << "deltaH a permettre normalement :" << deltaH << endl;
deltaH = (1 - wallDamping) * deltaH;
if (LOG) cout << "deltaH apres amortissement :" << deltaH << endl;
if (math::abs(deltaH) > max_vel * scene->dt) {
deltaH = deltaH / math::abs(deltaH) * max_vel * scene->dt;
if (LOG) cout << "Correction appliquee pour ne pas depasser vmax(comp)" << endl;
}
}
} // namespace yade
|