File: L3Geom.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (434 lines) | stat: -rw-r--r-- 19,713 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

#include <lib/high-precision/Constants.hpp>
#include <pkg/common/Facet.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/common/Wall.hpp>
#include <pkg/dem/L3Geom.hpp>

#ifdef YADE_OPENGL
#include <lib/opengl/GLUtils.hpp>
#include <lib/opengl/OpenGLWrapper.hpp>
#endif

namespace yade { // Cannot have #include directive inside.

using math::max;
using math::min; // using inside .cpp file is ok.

YADE_PLUGIN((L3Geom)(L6Geom)(Ig2_Sphere_Sphere_L3Geom)(Ig2_Wall_Sphere_L3Geom)(Ig2_Facet_Sphere_L3Geom)(Ig2_Sphere_Sphere_L6Geom)(
        Law2_L3Geom_FrictPhys_ElPerfPl)(Law2_L6Geom_FrictPhys_Linear)
#ifdef YADE_OPENGL
                    (Gl1_L3Geom)(Gl1_L6Geom)
#endif

);

L3Geom::~L3Geom() { }
void L3Geom::applyLocalForceTorque(const Vector3r& localF, const Vector3r& localT, const Interaction* I, Scene* scene, NormShearPhys* nsp) const
{
	Vector3r globF = trsf.transpose() * localF; // trsf is orthonormal, therefore inverse==transpose
	Vector3r x1c(normal * (refR1 + .5 * u[0])), x2c(-normal * (refR2 + .5 * u[0]));
	if (nsp) {
		nsp->normalForce = normal * globF.dot(normal);
		nsp->shearForce  = globF - nsp->normalForce;
	}
	Vector3r globT = Vector3r::Zero();
	if (localT != Vector3r::Zero()) { globT = trsf.transpose() * localT; }
	// apply force and torque
	scene->forces.addForce(I->getId1(), globF);
	scene->forces.addTorque(I->getId1(), x1c.cross(globF) + globT);
	scene->forces.addForce(I->getId2(), -globF);
	scene->forces.addTorque(I->getId2(), x2c.cross(-globF) - globT);
}

void L3Geom::applyLocalForce(const Vector3r& localF, const Interaction* I, Scene* scene, NormShearPhys* nsp) const
{
	applyLocalForceTorque(localF, Vector3r::Zero(), I, scene, nsp);
}


L6Geom::~L6Geom() { }

bool Ig2_Sphere_Sphere_L3Geom::go(
        const shared_ptr<Shape>&       s1,
        const shared_ptr<Shape>&       s2,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        const bool&                    force,
        const shared_ptr<Interaction>& I)
{
	return genericGo(/*is6Dof*/ false, s1, s2, state1, state2, shift2, force, I);
};

bool Ig2_Sphere_Sphere_L6Geom::go(
        const shared_ptr<Shape>&       s1,
        const shared_ptr<Shape>&       s2,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        const bool&                    force,
        const shared_ptr<Interaction>& I)
{
	return genericGo(/*is6Dof*/ true, s1, s2, state1, state2, shift2, force, I);
};


CREATE_LOGGER(Ig2_Sphere_Sphere_L3Geom);

bool Ig2_Sphere_Sphere_L3Geom::genericGo(
        bool                           is6Dof,
        const shared_ptr<Shape>&       s1,
        const shared_ptr<Shape>&       s2,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        const bool&                    force,
        const shared_ptr<Interaction>& I)
{
	// temporary hack only, to not have elastic potential energy in rigid packings with overlapping spheres
	//if(state1.blockedDOFs==State::DOF_ALL && state2.blockedDOFs==State::DOF_ALL) return false;

	const Real& r1       = s1->cast<Sphere>().radius;
	const Real& r2       = s2->cast<Sphere>().radius;
	Vector3r    relPos   = state2.pos + shift2 - state1.pos;
	Real        unDistSq = relPos.squaredNorm() - pow(math::abs(distFactor) * (r1 + r2), 2);
	if (unDistSq > 0 && !I->isReal() && !force) return false;

	// contact exists, go ahead

	Real     dist   = relPos.norm();
	Real     uN     = dist - (r1 + r2);
	Vector3r normal = relPos / dist;
	Vector3r contPt = state1.pos + (r1 + 0.5 * uN) * normal;

	handleSpheresLikeContact(I, state1, state2, shift2, is6Dof, normal, contPt, uN, r1, r2);

	return true;
};

/*
Generic function to compute L3Geom (with colinear points), used for {sphere,facet,wall}+sphere contacts now
*/
void Ig2_Sphere_Sphere_L3Geom::handleSpheresLikeContact(
        const shared_ptr<Interaction>& I,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        bool                           is6Dof,
        const Vector3r&                normal,
        const Vector3r&                contPt,
        Real                           uN,
        Real                           r1,
        Real                           r2)
{
	// create geometry
	if (!I->geom) {
		if (is6Dof) I->geom = shared_ptr<L6Geom>(new L6Geom);
		else
			I->geom = shared_ptr<L3Geom>(new L3Geom);
		L3Geom& g(I->geom->cast<L3Geom>());
		g.contactPoint = contPt;
		g.refR1        = r1;
		g.refR2        = r2;
		g.normal       = normal;
		// g.trsf.setFromTwoVectors(Vector3r::UnitX(),g.normal); // quaternion just from the X-axis; does not seem to work for some reason?!
		const Vector3r& locX(g.normal);
		// initial local y-axis orientation, in the xz or xy plane, depending on which component is larger to avoid singularities
		Vector3r locY = normal.cross(math::abs(normal[1]) < math::abs(normal[2]) ? Vector3r::UnitY() : Vector3r::UnitZ());
		locY -= locX * locY.dot(locX);
		locY.normalize();
		Vector3r locZ = normal.cross(locY);
		g.trsf.row(0) = locX;
		g.trsf.row(1) = locY;
		g.trsf.row(2) = locZ;
		g.u           = Vector3r(uN, 0, 0); // zero shear displacement
		if (distFactor < 0) g.u0[0] = uN;
		// L6Geom::phi is initialized to Vector3r::Zero() automatically
		//cerr<<"Init trsf=\n"<<g.trsf<<endl<<"locX="<<locX<<", locY="<<locY<<", locZ="<<locZ<<endl;
		return;
	}

	// update geometry

	/* motion of the conctact consists in rigid motion (normRotVec, normTwistVec) and mutual motion (relShearDu);
	   they are used to update trsf and u
	*/

	L3Geom&         g(I->geom->cast<L3Geom>());
	const Vector3r& currNormal(normal);
	const Vector3r& prevNormal(g.normal);
	// normal rotation vector, between last steps
	Vector3r normRotVec = prevNormal.cross(currNormal);
	// contrary to what ScGeom::precompute does now (r2486), we take average normal, i.e. .5*(prevNormal+currNormal),
	// so that all terms in the equation are in the previous mid-step
	// the re-normalization might not be necessary for very small increments, but better do it
	Vector3r avgNormal = (approxMask & APPROX_NO_MID_NORMAL) ? prevNormal : .5 * (prevNormal + currNormal);
	if (!(approxMask & APPROX_NO_RENORM_MID_NORMAL) && !(approxMask & APPROX_NO_MID_NORMAL))
		avgNormal.normalize(); // normalize only if used and if requested via approxMask
	// twist vector of the normal from the last step
	Vector3r normTwistVec = avgNormal * scene->dt * .5 * avgNormal.dot(state1.angVel + state2.angVel);
	// compute relative velocity
	// noRatch: take radius or current distance as the branch vector; see discussion in ScGeom::precompute (avoidGranularRatcheting)
	Vector3r c1x = ((noRatch && !(r1 > 0)) ? (r1 * normal).eval() : (contPt - state1.pos).eval()); // used only for sphere-sphere
	Vector3r c2x = (noRatch ? (-r2 * normal).eval() : (contPt - state2.pos + shift2).eval());
	//Vector3r state2velCorrected=state2.vel+(scene->isPeriodic?scene->cell->intrShiftVel(I->cellDist):Vector3r::Zero()); // velocity of the second particle, corrected with meanfield velocity if necessary
	//cerr<<"correction "<<(scene->isPeriodic?scene->cell->intrShiftVel(I->cellDist):Vector3r::Zero())<<endl;
	Vector3r relShearVel = (state2.vel + state2.angVel.cross(c2x)) - (state1.vel + state1.angVel.cross(c1x));
	// account for relative velocity of particles in different cell periods
	if (scene->isPeriodic) relShearVel += scene->cell->intrShiftVel(I->cellDist);
	relShearVel -= avgNormal.dot(relShearVel) * avgNormal;
	Vector3r relShearDu = relShearVel * scene->dt;

	/* Update of quantities in global coords consists in adding 3 increments we have computed; in global coords (a is any vector)

		1. +relShearVel*scene->dt;      // mutual motion of the contact
		2. -a.cross(normRotVec);   // rigid rotation perpendicular to the normal
		3. -a.cross(normTwistVec); // rigid rotation parallel to the normal

	*/

	// compute current transformation, by updating previous axes
	// the X axis can be prescribed directly (copy of normal)
	// the mutual motion on the contact does not change transformation
	const Matrix3r prevTrsf(g.trsf); // could be reference perhaps, but we need it to compute midTrsf (if applicable)
	Matrix3r       currTrsf;
	currTrsf.row(0) = currNormal;
	for (int i = 1; i < 3; i++) {
		currTrsf.row(i) = prevTrsf.row(i) - prevTrsf.row(i).cross(normRotVec) - prevTrsf.row(i).cross(normTwistVec);
	}
	if ((scene->iter % trsfRenorm) == 0 && trsfRenorm > 0) {
		currTrsf.row(0).normalize();
		currTrsf.row(1) -= currTrsf.row(0) * currTrsf.row(1).dot(currTrsf.row(0)); // take away y projected on x, to stabilize numerically
		currTrsf.row(1).normalize();
		currTrsf.row(2) = currTrsf.row(0).cross(currTrsf.row(1));
		currTrsf.row(2).normalize();
#ifdef YADE_DEBUG
		if (math::abs(currTrsf.determinant() - 1) > .05) {
			LOG_ERROR("##" << I->getId1() << "+" << I->getId2() << ", |trsf|=" << currTrsf.determinant());
			g.trsf = currTrsf;
			throw runtime_error("Transformation matrix far from orthonormal.");
		}
#endif
	}

	/* Previous local trsf u'⁻ must be updated to current u'⁰. We have transformation T⁻ and T⁰,
		δ(a) denotes increment of a as defined above.  Two possibilities:

		1. convert to global, update, convert back: T⁰(T⁻*(u'⁻)+δ(T⁻*(u'⁻))). Quite heavy.
		2. update u'⁻ straight, using relShearVel in local coords; since relShearVel is computed 
			at (t-Δt/2), we would have to find intermediary transformation (same axis, half angle;
			the same as slerp at t=.5 between the two).

			This could be perhaps simplified by using T⁰ or T⁻ since they will not differ much,
			but it would have to be verified somehow.
	*/
	// if requested via approxMask, just use prevTrsf
	Quaternionr midTrsf = (approxMask & APPROX_NO_MID_TRSF) ? Quaternionr(prevTrsf) : Quaternionr(prevTrsf).slerp(.5, Quaternionr(currTrsf));

	// updates of geom here

	// midTrsf*relShearVel should have the 0-th component (approximately) zero -- to be checked
	g.u += midTrsf * relShearDu;
	//cerr<<"midTrsf=\n"<<midTrsf<<",relShearDu="<<relShearDu<<", transformed "<<midTrsf*relShearDu<<endl;
	g.u[0] = uN; // this does not have to be computed incrementally
	g.trsf = currTrsf;

	// GenericSpheresContact
	g.refR1        = r1;
	g.refR2        = r2;
	g.normal       = currNormal;
	g.contactPoint = contPt;

	if (is6Dof) {
		// update phi, from the difference of angular velocities
		// the difference is transformed to local coord using the midTrsf transformation
		// perhaps not consistent when spheres have different radii (depends how bending moment is computed)
		I->geom->cast<L6Geom>().phi += midTrsf * (scene->dt * (state2.angVel - state1.angVel));
	}
};

bool Ig2_Wall_Sphere_L3Geom::go(
        const shared_ptr<Shape>&       s1,
        const shared_ptr<Shape>&       s2,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        const bool&                    force,
        const shared_ptr<Interaction>& I)
{
	if (scene->isPeriodic) throw std::logic_error("Ig2_Wall_Sphere_L3Geom does not handle periodic boundary conditions.");
	const Real& radius = s2->cast<Sphere>().radius;
	const int&  ax(s1->cast<Wall>().axis);
	const int&  sense(s1->cast<Wall>().sense);
	Real        dist = state2.pos[ax] + shift2[ax] - state1.pos[ax];          // signed "distance" between centers
	if (!I->isReal() && math::abs(dist) > radius && !force) { return false; } // wall and sphere too far from each other
	// contact point is sphere center projected onto the wall
	Vector3r contPt = state2.pos + shift2;
	contPt[ax]      = state1.pos[ax];
	Vector3r normal = Vector3r::Zero();
	// wall interacting from both sides: normal depends on sphere's position
	assert(sense == -1 || sense == 0 || sense == 1);
	if (sense == 0) normal[ax] = dist > 0 ? 1. : -1.;
	else
		normal[ax] = (sense == 1 ? 1. : -1);
	Real uN = normal[ax] * dist - radius; // takes in account sense, radius and distance

	// check that the normal did not change orientation (would be abrup here)
	if (I->geom && I->geom->cast<L3Geom>().normal != normal) {
		std::ostringstream oss;
		oss << "Ig2_Wall_Sphere_L3Geom: normal changed from (" << I->geom->cast<L3Geom>().normal << " to " << normal << " in Wall+Sphere ##"
		    << I->getId1() << "+" << I->getId2() << " (with Wall.sense=0, a particle might cross the Wall plane, if Δt is too high)";
		throw std::logic_error(oss.str().c_str());
	}
	handleSpheresLikeContact(I, state1, state2, shift2, /*is6Dof*/ false, normal, contPt, uN, /*r1*/ 0, /*r2*/ radius);
	return true;
};

bool Ig2_Facet_Sphere_L3Geom::go(
        const shared_ptr<Shape>&       s1,
        const shared_ptr<Shape>&       s2,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        const bool&                    force,
        const shared_ptr<Interaction>& I)
{
	const Facet& facet(s1->cast<Facet>());
	Real         radius = s2->cast<Sphere>().radius;
	// begin facet-local coordinates
	Vector3r cogLine   = state1.ori.conjugate() * (state2.pos + shift2 - state1.pos); // connect centers of gravity
	Vector3r normal    = facet.normal;                                                // trial contact normal
	Real     planeDist = normal.dot(cogLine);
	if (math::abs(planeDist) > radius && !I->isReal() && !force) return false; // sphere too far
	if (planeDist < 0) {
		normal *= -1;
		planeDist *= -1;
	}
	Vector3r planarPt = cogLine - planeDist * normal; // project sphere center to the facet plane
	Vector3r contactPt;                               // facet's point closes to the sphere
	Real     normDotPt[3];                            // edge outer normals dot products
	for (int i = 0; i < 3; i++)
		normDotPt[i] = facet.ne[i].dot(planarPt - facet.vertices[i]);
	short w = (normDotPt[0] > 0 ? 1 : 0) + (normDotPt[1] > 0 ? 2 : 0)
	        + (normDotPt[2] > 0 ? 4 : 0); // bitmask whether the closest point is outside (1,2,4 for respective edges)
	switch (w) {
		case 0: contactPt = planarPt; break;                                                            // ---: inside triangle
		case 1: contactPt = getClosestSegmentPt(planarPt, facet.vertices[0], facet.vertices[1]); break; // +-- (n1)
		case 2: contactPt = getClosestSegmentPt(planarPt, facet.vertices[1], facet.vertices[2]); break; // -+- (n2)
		case 4: contactPt = getClosestSegmentPt(planarPt, facet.vertices[2], facet.vertices[0]); break; // --+ (n3)
		case 3: contactPt = facet.vertices[1]; break;                                                   // ++- (v1)
		case 5: contactPt = facet.vertices[0]; break;                                                   // +-+ (v0)
		case 6: contactPt = facet.vertices[2]; break;                                                   // -++ (v2)
		case 7:
			throw logic_error("Ig2_Facet_Sphere_L3Geom: Impossible sphere-facet intersection (all points are outside the edges). (please report "
			                  "bug)"); // +++ (impossible)
		default: throw logic_error("Ig2_Facet_Sphere_L3Geom: Nonsense intersection value. (please report bug)");
	}
	normal = cogLine - contactPt;                                                           // normal is now the contact normal, still in local coords
	if (!I->isReal() && normal.squaredNorm() > radius * radius && !force) { return false; } // fast test before sqrt
	Real dist = normal.norm();
	normal /= dist; // normal is unit vector now
	// end facet-local coordinates
	normal = state1.ori * normal; // normal is in global coords now
	handleSpheresLikeContact(
	        I, state1, state2, shift2, /*is6Dof*/ false, normal, /*contact pt*/ state2.pos + shift2 - normal * dist, dist - radius, 0, radius);
	return true;
}

bool Law2_L3Geom_FrictPhys_ElPerfPl::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* I)
{
	L3Geom*    geom = static_cast<L3Geom*>(ig.get());
	FrictPhys* phys = static_cast<FrictPhys*>(ip.get());

	// compute force
	Vector3r& localF(geom->F);
	localF = geom->relU().cwiseProduct(Vector3r(phys->kn, phys->ks, phys->ks));
	// break if necessary
	if (localF[0] > 0 && !noBreak) return false;

	if (!noSlip) {
		// plastic slip, if necessary; non-zero elastic limit only for compression
		Real                 maxFs = -min((Real)0., localF[0] * phys->tangensOfFrictionAngle);
		Eigen::Map<Vector2r> Fs(&localF[1]);
		//cerr<<"u="<<geom->relU()<<", maxFs="<<maxFs<<", Fn="<<localF[0]<<", |Fs|="<<Fs.norm()<<", Fs="<<Fs<<endl;
		if (Fs.squaredNorm() > maxFs * maxFs) {
			Real     ratio  = sqrt(maxFs * maxFs / Fs.squaredNorm());
			Vector3r u0slip = (1 - ratio) * Vector3r(/*no slip in the normal sense*/ 0, geom->relU()[1], geom->relU()[2]);
			geom->u0 += u0slip; // increment plastic displacement
			Fs *= ratio;        // decrement shear force value;
			if (scene->trackEnergy) {
				Real dissip = Fs.norm() * u0slip.norm();
				if (dissip > 0) scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset*/ false);
			}
		}
	}
	if (scene->trackEnergy) {
		scene->energy->add(
		        0.5 * (pow(geom->relU()[0], 2) * phys->kn + (pow(geom->relU()[1], 2) + pow(geom->relU()[2], 2)) * phys->ks),
		        "elastPotential",
		        elastPotentialIx,
		        /*reset at every timestep*/ true);
	}
	// apply force: this converts the force to global space, updates NormShearPhys::{normal,shear}Force, applies to particles
	geom->applyLocalForce(localF, I, scene, phys);
	return true;
}


bool Law2_L6Geom_FrictPhys_Linear::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* I)
{
	L6Geom&    geom = ig->cast<L6Geom>();
	FrictPhys& phys = ip->cast<FrictPhys>();

	// simple linear relationships
	Vector3r localF = geom.relU().cwiseProduct(Vector3r(phys.kn, phys.ks, phys.ks));
	Vector3r localT = charLen * (geom.relPhi().cwiseProduct(Vector3r(phys.kn, phys.ks, phys.ks)));

	geom.applyLocalForceTorque(localF, localT, I, scene, static_cast<NormShearPhys*>(ip.get()));
	return true;
}

#ifdef YADE_OPENGL
bool Gl1_L3Geom::axesLabels;
Real Gl1_L3Geom::axesWd;
Real Gl1_L3Geom::axesScale;
Real Gl1_L3Geom::uPhiWd;
Real Gl1_L3Geom::uScale;
Real Gl1_L6Geom::phiScale;

void Gl1_L3Geom::go(const shared_ptr<IGeom>& ig, const shared_ptr<Interaction>&, const shared_ptr<Body>&, const shared_ptr<Body>&, bool) { draw(ig); }
void Gl1_L6Geom::go(const shared_ptr<IGeom>& ig, const shared_ptr<Interaction>&, const shared_ptr<Body>&, const shared_ptr<Body>&, bool)
{
	draw(ig, true, phiScale);
}

void Gl1_L3Geom::draw(const shared_ptr<IGeom>& ig, bool isL6Geom, const Real& phiScale)
{
	const L3Geom& g(ig->cast<L3Geom>());
	glTranslatev(g.contactPoint);
	glMultMatrix(Eigen::Transform<Real, 3, Eigen::Affine>(g.trsf.transpose()).data());
	Real rMin = g.refR1 <= 0 ? g.refR2 : (g.refR2 <= 0 ? g.refR1 : min(g.refR1, g.refR2));
	if (axesWd > 0) {
		glLineWidth(axesWd);
		for (int i = 0; i < 3; i++) {
			Vector3r pt    = Vector3r::Zero();
			pt[i]          = .5 * rMin * axesScale;
			Vector3r color = .3 * Vector3r::Ones();
			color[i]       = 1;
			GLUtils::GLDrawLine(Vector3r::Zero(), pt, color);
			if (axesLabels) GLUtils::GLDrawText(string(i == 0 ? "x" : (i == 1 ? "y" : "z")), pt, color);
		}
	}
	if (uPhiWd > 0) {
		glLineWidth(uPhiWd);
		if (uScale != 0) GLUtils::GLDrawLine(Vector3r::Zero(), uScale * g.relU(), Vector3r(0, 1, .5));
		if (isL6Geom && phiScale > 0)
			GLUtils::GLDrawLine(Vector3r::Zero(), ig->cast<L6Geom>().relPhi() / Mathr::PI * rMin * phiScale, Vector3r(.8, 0, 1));
	}
	glLineWidth(1.);
};

#endif

} // namespace yade