1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
#include "Lubrication.hpp"
#include <lib/high-precision/Constants.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((Ip2_FrictMat_FrictMat_LubricationPhys)(LubricationPhys)(Law2_ScGeom_ImplicitLubricationPhys)(Law2_ScGeom_VirtualLubricationPhys)(
LubricationPDFEngine)(PDFEngine))
LubricationPhys::~LubricationPhys() { }
CREATE_LOGGER(LubricationPhys);
CREATE_LOGGER(Law2_ScGeom_ImplicitLubricationPhys);
CREATE_LOGGER(Law2_ScGeom_VirtualLubricationPhys);
void Ip2_FrictMat_FrictMat_LubricationPhys::go(
const shared_ptr<Material>& material1, const shared_ptr<Material>& material2, const shared_ptr<Interaction>& interaction)
{
if (interaction->phys) return;
// Cast to Lubrication
shared_ptr<LubricationPhys> phys(new LubricationPhys());
FrictMat* mat1 = YADE_CAST<FrictMat*>(material1.get());
FrictMat* mat2 = YADE_CAST<FrictMat*>(material2.get());
/* from interaction geometry */
GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
Real Da = scg->refR1 > 0 ? scg->refR1 : scg->refR2;
Real Db = scg->refR2;
/* Physical parameters */
Real Ea = mat1->young;
Real Eb = mat2->young;
Real Va = mat1->poisson;
Real Vb = mat2->poisson;
Real fa = mat1->frictionAngle;
Real fb = mat2->frictionAngle;
/* Hertz-like contact */
/* calculate stiffness coefficients */
// Real Ga = Ea/(2.*(1.+Va));
// Real Gb = Eb/(2.*(1.+Vb));
// Real G = (Ga+Gb)/2.; // average of shear modulus
// Real V = (Va+Vb)/2.; // average of poisson's ratio
Real E = Ea * Eb / ((1. - math::pow(Va, 2.)) * Eb + (1. - math::pow(Vb, 2.)) * Ea); // Young modulus
Real R = Da * Db / (Da + Db); // equivalent radius
Real Kno = 4. / 3. * E * sqrt(R); // coefficient for normal stiffness
// Real Kso = 2.*sqrt(4.*R)*G/(2.-V); // coefficient for shear stiffness
phys->kno = Kno;
/* Cundall-stack-like contact */
Real Kn = 2. * Ea * Da * Eb * Db / (Ea * Da + Eb * Db);
Real Ks = 2. * Ea * Da * Va * Eb * Db * Vb / (Ea * Da * Va + Eb * Db * Vb);
phys->kn = Kn;
phys->keps = Kn * keps;
phys->ks = Ks;
/* Friction */
phys->mum = math::tan(math::min(fa, fb));
/* Fluid (lubrication) */
Real a = (Da + Db) / 2.;
phys->a = a;
phys->nun = M_PI * eta * a * a;
phys->eta = eta;
phys->eps = eps;
/* Integration sheme memory */
phys->u = -1.;
phys->prevDotU = 0.;
interaction->phys = phys;
}
CREATE_LOGGER(Ip2_FrictMat_FrictMat_LubricationPhys);
// Force calculation with variable change, dimentionless
Real Law2_ScGeom_ImplicitLubricationPhys::normalForce_AdimExp(LubricationPhys* phys, ScGeom* geom, Real undot, bool isNew, bool dichotomie)
{
// Dry contact
if (phys->nun <= 0.) {
LOG_DEBUG("Can't solve with dimentionless-exponential method without fluid! using exact.");
return normalForce_trapezoidal(phys, geom, undot, isNew);
}
Real a((geom->radius1 + geom->radius2) / 2.);
if (isNew) {
phys->u = -geom->penetrationDepth;
if (phys->u < 0.) LOG_ERROR("phys->u < 0 at starting point!!! Increase interaction detection distance." << phys->u);
phys->delta = math::log(phys->u / a);
}
Real d;
if (dichotomie)
d = DichoAdimExp_integrate_u(
-geom->penetrationDepth / a,
2. * phys->eps,
1.,
phys->prevDotU,
scene->dt * a * phys->kn / (phys->nun * 3. / 2.),
phys->delta,
(3. / 2. * phys->nun) / phys->kn / math::pow(a, 2) * undot);
else
d = NRAdimExp_integrate_u(
-geom->penetrationDepth / a,
2. * phys->eps,
1.,
phys->prevDotU,
scene->dt * a * phys->kn / (phys->nun * 3. / 2.),
phys->delta,
(3. / 2. * phys->nun) / phys->kn / math::pow(a, 2) * undot); // Newton-Rafson
phys->contact = math::exp(d) < 2. * phys->eps;
phys->normalForce = phys->kn * (-geom->penetrationDepth - a * math::exp(d)) * geom->normal;
phys->normalContactForce = (phys->contact) ? Vector3r(-phys->kn * a * (2. * phys->eps - math::exp(d)) * geom->normal) : Vector3r::Zero();
phys->normalLubricationForce = phys->kn * a * phys->prevDotU * geom->normal;
phys->delta = d;
phys->u = a * math::exp(d);
phys->ue = -geom->penetrationDepth - phys->u;
return phys->u;
}
// Dimentionless Newton-Rafson solver
Real Law2_ScGeom_ImplicitLubricationPhys::NRAdimExp_integrate_u(
Real const& un, Real const& eps, Real const& alpha, Real& prevDotU, Real const& dt, Real const& prev_d, Real const& undot, int depth)
{
Real d = prev_d;
int i;
Real a(0), F { math::NaN };
for (i = 0; i < MaxIter; i++) {
a = (math::exp(d) < eps) ? alpha : 0.; // Alpha = 0 for non-contact
Real ratio = (dt * (theta * (-(1. + a) * math::exp(d) + a * eps + un) + (1. - theta) * math::exp(prev_d - d) * prevDotU) - 1.
+ math::exp(prev_d - d))
/ (dt * theta * (-2. * (1. + a) * math::exp(d) + a * eps + un) - 1.);
F = theta * math::exp(d) * (-(1. + a) * math::exp(d) + a * eps + un) + (1. - theta) * math::exp(prev_d) * prevDotU
- 1. / dt * (math::exp(d) - math::exp(prev_d));
d = d - ratio;
if (math::abs(F) < SolutionTol) break;
LOG_DEBUG("d " << d << " ratio " << ratio << " F " << F << " i " << i << " a " << a << " depth " << depth);
}
if (i < MaxIter || depth > maxSubSteps) {
if (depth > maxSubSteps) LOG_WARN("Max Substepping reach: results may be inconsistant F=" << F);
prevDotU = -(1. + a) * math::exp(d) + a * eps + un;
return d;
} else {
// Substepping
Real d_mid = NRAdimExp_integrate_u(un - undot * dt / 2., eps, alpha, prevDotU, dt / 2., prev_d, undot, depth + 1);
return NRAdimExp_integrate_u(un, eps, alpha, prevDotU, dt / 2., d_mid, undot, depth + 1);
}
}
// Dimentionless dichotomy solver
Real Law2_ScGeom_ImplicitLubricationPhys::DichoAdimExp_integrate_u(
Real const& un, Real const& eps, Real const& alpha, Real& prevDotU, Real const& dt, Real const& prev_d, Real const& undot)
{
Real F = 0.;
Real d_left(prev_d - 1.), d_right(prev_d + 1.);
Real F_left(ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_left));
Real F_right(ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_right));
Real d;
// Init: search for interval that contain sign change
Real inc = (F_left < 0.) ? 1. : -1;
inc = (F_left < F_right) ? inc : -inc;
while (F_left * F_right >= 0. && math::isfinite(F_left) && math::isfinite(F_right)) {
d_left += inc;
d_right += inc;
F_left = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_left);
F_right = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_right);
}
if ((!math::isfinite(F_left) || !math::isfinite(F_right))) {
LOG_DEBUG("Wrong direction");
inc = -inc; // RE-INIT
d_left = prev_d - 1.;
d_right = prev_d + 1.;
while (F_left * F_right >= 0. && math::isfinite(F_left) && math::isfinite(F_right)) {
d_left += inc;
d_right += inc;
F_left = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_left);
F_right = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_right);
}
}
if (!math::isfinite(F_left) || !math::isfinite(F_right)) {
LOG_FATAL("Initial point problem!!");
TRVAR4(d_left, d_right, F_left, F_right);
TRVAR5(un, prevDotU, dt, prev_d, undot);
throw std::runtime_error("Lubrication law error.");
}
// Iterate to find the zero.
int i;
for (i = 0; i < MaxIter; i++) {
if (F_left * F_right > 0.)
LOG_ERROR(
"Both function have same sign!! d_left=" << d_left << " F_left=" << F_left << " d_right=" << d_right << " F_right=" << F_right);
d = (d_left + d_right) / 2.;
F = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d);
if (math::abs(F) < SolutionTol) break;
if (F * F_left < 0.) {
F_right = F;
d_right = d;
} else {
F_left = F;
d_left = d;
}
}
if (i == MaxIter) LOG_DEBUG("Max iteration reach: d_left=" << d_left << " F_left=" << F_left << " d_right=" << d_right << " F_right=" << F_right);
Real a = (math::exp(d) < eps) ? alpha : 0.;
prevDotU = -(1. + a) * math::exp(d) + a * eps + un;
return d;
}
Real Law2_ScGeom_ImplicitLubricationPhys::ObjF(
Real const& un, Real const& eps, Real const& alpha, Real const& prevDotU, Real const& dt, Real const& prev_d, Real const& /*undot*/, Real const& d)
{
Real a = (math::exp(d) < (eps)) ? alpha : 0.;
return theta * (-(1. + a) * math::exp(d) + a * eps + un) + (1. - theta) * prevDotU * math::exp(prev_d - d) - 1. / dt * (1. - math::exp(prev_d - d));
}
// Dimentionless exact solution, with contact prediction
Real Law2_ScGeom_ImplicitLubricationPhys::normalForce_trpz_adim(LubricationPhys* phys, ScGeom* geom, Real undot, bool isNew)
{
// Dry contact
if (phys->nun <= 0.) {
LOG_DEBUG("Can't solve with dimentionless-exponential method without fluid! using dimentional exact.");
return normalForce_trapezoidal(phys, geom, undot, isNew);
}
Real a((geom->radius1 + geom->radius2) / 2.);
if (isNew) { phys->u = -geom->penetrationDepth; }
Real uprim = trapz_integrate_u_adim(
-geom->penetrationDepth / a, 2. * phys->eps, scene->dt * a * phys->kn / (phys->nun * 3. / 2.), phys->u / a, phys->contact, phys->prevDotU);
phys->u = a * uprim;
//if(debug) LOG_DEBUG("uprim " << uprim << " u " << phys->u);
phys->contact = uprim < 2. * phys->eps;
phys->normalForce = phys->kn * (-geom->penetrationDepth - phys->u) * geom->normal;
phys->normalContactForce = (phys->contact) ? Vector3r(-phys->kn * (2. * a * phys->eps - phys->u) * geom->normal) : Vector3r::Zero();
phys->normalLubricationForce = phys->kn * a * phys->prevDotU * geom->normal;
phys->ue = -geom->penetrationDepth - phys->u;
return phys->u;
}
// Dimentionless exact solution solver
Real Law2_ScGeom_ImplicitLubricationPhys::trapz_integrate_u_adim(
Real const& u_n, Real const& eps, Real const& dt, Real const& prev_u, bool const& inContact, Real& prevDotU)
{
Real dtc((prev_u - eps) / (theta * (eps) * (eps - u_n) + (1. - theta) * prevDotU * prev_u)); // Critical timestep
Real u_(prev_u);
bool c(inContact);
Real dt_(dt);
if (dtc > 0. && dt > dtc) {
c = !c;
u_ = eps;
dt_ = dt - dtc;
} // Contact transition will occur. Starting from intermediate solution.
Real a((c) ? 1. : 0.);
Real b(theta * (u_n + a * eps) - 1. / dt_);
Real ac(4. * theta * (1. + a) * ((1. - theta) * prevDotU * prev_u + u_ / dt_));
Real u = (b + math::sqrt(b * b + ac)) / (2. * theta * (1. + a));
LOG_TRACE("b " << b << " ac " << ac);
prevDotU = -(1. + a) * u + a * eps + u_n; // dotu/u
return u;
}
// Exact solution
Real Law2_ScGeom_ImplicitLubricationPhys::normalForce_trapezoidal(LubricationPhys* phys, ScGeom* geom, Real undot, bool isNew)
{
Real a((geom->radius1 + geom->radius2) / 2.);
if (isNew) {
phys->prev_un = -geom->penetrationDepth - undot * scene->dt;
phys->prevDotU = undot * (phys->nun * 3. / 2.);
phys->u = phys->prev_un;
}
phys->normalForce = geom->normal
* trapz_integrate_u(phys->prevDotU,
phys->prev_un /*prev. un*/,
phys->u,
-geom->penetrationDepth,
(phys->nun * 3. / 2.),
phys->kn,
phys->keps /*should be keps, currently both are equal*/,
2. * phys->eps * a,
scene->dt,
phys->u < (2 * phys->eps * a),
isNew ? (maxSubSteps + 1) : 0 /* depth = maxSubSteps+1 will trigger backward Euler for initialization*/);
phys->contact = phys->u < 2. * phys->eps * a;
phys->normalContactForce = ((phys->contact) ? phys->keps * (phys->u - 2 * phys->eps * a) : 0.) * geom->normal;
phys->normalLubricationForce = phys->normalForce - phys->normalContactForce;
phys->ue = -geom->penetrationDepth - phys->u;
return phys->u;
}
// Exact solution solver
Real Law2_ScGeom_ImplicitLubricationPhys::trapz_integrate_u(
Real& prevDotU,
Real& un_prev,
Real& u_prev,
Real un_curr,
const Real& nu,
Real k,
const Real& keps,
const Real& eps,
Real dt,
bool withContact,
int depth,
bool force)
{
Real u = 0; // gap distance (by which normal lubrication terms are divided)
Real /*a=1*/ b, c;
Real keff, un_eff; //effective values, including roughness if contact
// if contact through roughness is assumed it implies modified coefficients in the ODE compared to no-contact solution.
// Changes of status are checked at the end
if (withContact) {
keff = k + keps;
un_eff = (k * un_curr + keps * eps) / (k + keps);
} else {
keff = k;
un_eff = un_curr;
}
Real w = nu / (dt * keff);
if (depth <= maxSubSteps) {
// polynomial a*u²+b*u+c=0 with a=1, integrating du/dt=k*u*(un-u)/nu with the theta method
b = w / theta - un_eff;
c = (-prevDotU * (1 - theta) / keff - w * u_prev) / theta;
} else {
b = nu / dt / keff - un_eff;
c = -w * u_prev; /*implicit backward Euler 1st order*/
}
Real rr[2] = { 0, 0 };
Real delta = b * b - 4 * c; //note: a=1
if (delta >= 0) {
// there is an accuracy issue when computing (-b+√(b²-4ac))/2a, use 1st order approx when needed (first case): r=-c/b
if ((-c) < (1e-12 * delta)) {
rr[0] = -c / b;
rr[1] = c / b;
} else {
rr[0] = 0.5 * (-b + sqrt(delta));
rr[1] = 0.5 * (-b - sqrt(delta));
}
}
if (delta < 0 or rr[0] < 0) { // recursive calls after halving the time increment if no positive solution found (no need to check r[1], always smaller)
if (depth < maxSubSteps) { //sub-stepping
//LOG_WARN("delta<0 or negative roots, sub-stepping with dt="<<dt/2.);
Real un_mid = un_prev + 0.5 * (un_curr - un_prev);
trapz_integrate_u(prevDotU, un_prev, u_prev, un_mid, nu, k, keps, eps, dt / 2., withContact, depth + 1);
return trapz_integrate_u(prevDotU, un_prev, u_prev, un_curr, nu, k, keps, eps, dt / 2., withContact, depth + 1);
} else { // switch to backward Euler (theta = 1) by increasing depth again (see above)
LOG_WARN(
"minimal sub-step reached (depth=" << maxSubSteps << ")" << rr[0] << " " << rr[1] << " " << b << " " << c << " " << delta << " "
<< w);
return trapz_integrate_u(prevDotU, un_prev, u_prev, un_curr, nu, k, keps, eps, dt, withContact, depth + 1);
}
} else { // normal case, keep the positive solution closest to the previous one, and check contact status
// select the nearest strictly positive solution, keep 0 only if there is no positive solution
if (rr[0] == 0)
LOG_WARN(
"nul gap found " << delta << " " << b << " " << c << " " << keff << " " << un_eff << " " << w << " " << dt << " " << depth
<< " " << u_prev << " " << un_curr)
if ((math::abs(rr[0] - u_prev) < math::abs(rr[1] - u_prev) and rr[0] > 0) or rr[1] <= 0) u = rr[0];
else {
LOG_WARN("root 1 was used")
u = rr[1];
}
bool hasContact = u < eps;
// if contact appeared/disappeared recalculate with different coefficients (another recursion)
// the argument "force=true" is used here to avoid entering a (rare) infinite recursion when "u" (the gap) and "eps" are nearly equal;
// in such case roundoff errors make it possible that the no-contact integration predicts a contact, whereas the with-contact intergation predicts no contact.
// with force=true the status is switched only once
if (withContact != hasContact and not force)
return trapz_integrate_u(prevDotU, un_prev, u_prev, un_curr, nu, k, keps, eps, dt, hasContact, depth, /*force?*/ true);
// The normal non-recursive case, finally.
// After a successful integration update the variables and return total force
prevDotU = keff * u * (un_eff - u); //set for next iteration
un_prev = un_curr;
u_prev = u;
return k * (un_curr - u);
}
}
// Compute shear force from exact resolution
void Law2_ScGeom_VirtualLubricationPhys::shearForce_firstOrder(LubricationPhys* phys, ScGeom* geom)
{
Vector3r Ft(Vector3r::Zero());
Vector3r Ft_ = geom->rotate(phys->shearForce);
Real a((geom->radius1 + geom->radius2) / 2.);
const Vector3r& dus = geom->shearIncrement();
Real kt = phys->ks;
Real nut = (phys->eta > 0.) ? M_PI * phys->eta / 2. * (-2. * a + (2. * a + phys->u) * (math::log(2. * a + phys->u) - math::log(phys->u))) : 0.;
phys->shearForce = Vector3r::Zero();
phys->shearLubricationForce = Vector3r::Zero();
phys->shearContactForce = Vector3r::Zero();
phys->cs = nut;
phys->slip = false;
// Also work without fluid (nut == 0)
if (phys->contact) {
Ft = Ft_ + kt * dus; // Trial force
phys->shearContactForce = Ft; // If no slip: no lubrication!
#if 1
if (Ft.norm() > phys->normalContactForce.norm() * math::max(0., phys->mum)) { // If slip
//LOG_INFO("SLIP");
Ft *= phys->normalContactForce.norm() * math::max(0., phys->mum) / Ft.norm();
phys->shearContactForce = Ft;
Ft = (kt * (Ft * scene->dt + dus * nut) + Ft_ * nut) / (kt * scene->dt + nut);
phys->slip = true;
phys->shearLubricationForce = nut * dus / scene->dt;
}
#endif
} else {
Ft = (Ft_ + dus * kt) * nut / (nut + kt * scene->dt);
phys->shearLubricationForce = Ft;
}
phys->shearForce = Ft;
}
// Compute shearforce from adim-log resolution
void Law2_ScGeom_VirtualLubricationPhys::shearForce_firstOrder_log(LubricationPhys* phys, ScGeom* geom)
{
Vector3r Ft(Vector3r::Zero());
Vector3r Ft_ = geom->rotate(phys->shearForce);
Real a((geom->radius1 + geom->radius2) / 2.);
const Vector3r& dus = geom->shearIncrement();
Real kt = phys->ks;
Real nut = (phys->eta > 0.) ? M_PI * phys->eta / 2. * a * (-2. + (2. + math::exp(phys->delta)) * (math::log(2. + math::exp(phys->delta)) - phys->delta))
: 0.;
phys->shearForce = Vector3r::Zero();
phys->shearLubricationForce = Vector3r::Zero();
phys->shearContactForce = Vector3r::Zero();
phys->cs = nut;
phys->slip = false;
// Also work without fluid (nut == 0)
if (phys->contact) {
Ft = Ft_ + kt * dus; // Trial force
phys->shearContactForce = Ft; // If no slip: no lubrication!
#if 1
if (Ft.norm() > phys->normalContactForce.norm() * math::max(0., phys->mum)) // If slip
{
//LOG_INFO("SLIP");
Ft *= phys->normalContactForce.norm() * math::max(0., phys->mum) / Ft.norm();
phys->shearContactForce = Ft;
Ft = (Ft * kt * scene->dt + Ft_ * nut + dus * kt * nut) / (kt * scene->dt + nut);
phys->slip = true;
phys->shearLubricationForce = nut * dus / scene->dt;
}
#endif
} else {
Ft = (Ft_ + dus * kt) * nut / (nut + kt * scene->dt);
phys->shearLubricationForce = Ft;
}
phys->shearForce = Ft;
}
bool Law2_ScGeom_ImplicitLubricationPhys::go(shared_ptr<IGeom>& iGeom, shared_ptr<IPhys>& iPhys, Interaction* interaction)
{
// Physic
LubricationPhys* phys = static_cast<LubricationPhys*>(iPhys.get());
// Geometry
ScGeom* geom = static_cast<ScGeom*>(iGeom.get());
// Get bodies properties
Body::id_t id1 = interaction->getId1();
Body::id_t id2 = interaction->getId2();
const shared_ptr<Body> b1 = Body::byId(id1, scene);
const shared_ptr<Body> b2 = Body::byId(id2, scene);
State* s1 = b1->state.get();
State* s2 = b2->state.get();
// geometric parameters
Real a((geom->radius1 + geom->radius2) / 2.);
bool isNew = false;
// Speeds
Vector3r shiftVel = scene->isPeriodic ? Vector3r(scene->cell->velGrad * scene->cell->hSize * interaction->cellDist.cast<Real>()) : Vector3r::Zero();
Vector3r shift2 = scene->isPeriodic ? Vector3r(scene->cell->hSize * interaction->cellDist.cast<Real>()) : Vector3r::Zero();
Vector3r relV = geom->getIncidentVel(s1, s2, scene->dt, shift2, shiftVel, false);
// Vector3r relVN = relV.dot(norm)*norm; // Normal velocity
// Vector3r relVT = relV - relVN; // Tangeancial velocity
Real undot = relV.dot(geom->normal); // Normal velocity norm
// the second condition below is to keep alive soft sticking contacts (large elastic forces between distant particles)
if (-geom->penetrationDepth > MaxDist * a and (phys->u > (-0.99 * geom->penetrationDepth))) return false;
// inititalization
if (phys->u == -1.) {
phys->u = -geom->penetrationDepth;
isNew = true;
}
// reset forces
phys->normalForce = Vector3r::Zero();
phys->normalContactForce = Vector3r::Zero();
phys->normalLubricationForce = Vector3r::Zero();
phys->normalPotentialForce = Vector3r::Zero();
if (phys->keps != phys->kn and resolution > 0) LOG_WARN("keps!=1 not implemented for resolution>0");
switch (resolution) {
case 0: normalForce_trapezoidal(phys, geom, undot, isNew); break;
case 1: normalForce_AdimExp(phys, geom, undot, isNew, false); break;
case 2: normalForce_AdimExp(phys, geom, undot, isNew, true); break;
case 3: normalForce_trpz_adim(phys, geom, undot, isNew); break;
default:
LOG_WARN("Nonexistant resolution method. Using exact (0).");
normalForce_trapezoidal(phys, geom, undot, isNew);
resolution = 0;
break;
}
if (phys->u == 0) LOG_WARN("NULL GAP ON " << id1 << " " << id2)
Vector3r C1 = Vector3r::Zero();
Vector3r C2 = Vector3r::Zero();
if (resolution == 0 || resolution == 3) computeShearForceAndTorques(phys, geom, s1, s2, C1, C2);
else
computeShearForceAndTorques_log(phys, geom, s1, s2, C1, C2);
// Apply!
scene->forces.addForce(id1, phys->normalForce + phys->shearForce);
scene->forces.addTorque(id1, C1);
scene->forces.addForce(id2, -(phys->normalForce + phys->shearForce));
scene->forces.addTorque(id2, C2);
return true;
}
// Compute shear force and torques from linear
void Law2_ScGeom_VirtualLubricationPhys::computeShearForceAndTorques(LubricationPhys* phys, ScGeom* geom, State* s1, State* s2, Vector3r& C1, Vector3r& C2)
{
Real a((geom->radius1 + geom->radius2) / 2.);
if (phys->eta <= 0. || phys->u > 0.) {
if (activateTangencialLubrication) shearForce_firstOrder(phys, geom);
else {
phys->shearForce = Vector3r::Zero();
phys->shearContactForce = Vector3r::Zero();
phys->shearLubricationForce = Vector3r::Zero();
}
if (phys->nun > 0.) phys->cn = 3. / 2. * phys->nun / phys->u;
Vector3r Cr = Vector3r::Zero();
Vector3r Ct = Vector3r::Zero();
// Rolling and twist torques
Vector3r relAngularVelocity = geom->getRelAngVel(s1, s2, scene->dt);
Vector3r relTwistVelocity = relAngularVelocity.dot(geom->normal) * geom->normal;
Vector3r relRollVelocity = relAngularVelocity - relTwistVelocity;
if (a > phys->u) {
if (activateRollLubrication && phys->eta > 0.)
Cr = phys->nun * (3. / 2. * a + 63. / 500. * phys->u) * (math::log(a) - math::log(phys->u)) * relRollVelocity;
if (activateTwistLubrication && phys->eta > 0.) Ct = phys->nun * phys->u * (math::log(a) - math::log(phys->u)) * relTwistVelocity;
}
// total torque
C1 = -(geom->radius1 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) + Cr + Ct;
C2 = -(geom->radius2 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) - Cr - Ct;
} else {
LOG_ERROR("Gap is negative or null with lubrication: inconsistant results: skip shear force and torques calculation" << phys->u);
}
}
// Compute shear force and torques from adim-log
void Law2_ScGeom_VirtualLubricationPhys::computeShearForceAndTorques_log(LubricationPhys* phys, ScGeom* geom, State* s1, State* s2, Vector3r& C1, Vector3r& C2)
{
Real a((geom->radius1 + geom->radius2) / 2.);
LOG_TRACE("This method use log(u/a) for shear and torque component calculation. Make sure phys->delta is set before calling this method.");
if (activateTangencialLubrication) shearForce_firstOrder_log(phys, geom);
else {
phys->shearForce = Vector3r::Zero();
phys->shearContactForce = Vector3r::Zero();
phys->shearLubricationForce = Vector3r::Zero();
}
if (phys->nun > 0.) phys->cn = 3. / 2. * phys->nun / phys->u;
Vector3r Cr = Vector3r::Zero();
Vector3r Ct = Vector3r::Zero();
// Rolling and twist torques
Vector3r relAngularVelocity = geom->getRelAngVel(s1, s2, scene->dt);
Vector3r relTwistVelocity = relAngularVelocity.dot(geom->normal) * geom->normal;
Vector3r relRollVelocity = relAngularVelocity - relTwistVelocity;
if (phys->delta > 0.) {
if (activateRollLubrication && phys->eta > 0.)
Cr = -phys->nun * a * 3. / 2. * (21. / 250. * math::exp(phys->delta) + 1.) * phys->delta * relRollVelocity;
if (activateTwistLubrication && phys->eta > 0.) Ct = -phys->nun * a * math::exp(phys->delta) * phys->delta * relTwistVelocity;
}
// total torque
C1 = -(geom->radius1 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) + Cr + Ct;
C2 = -(geom->radius2 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) - Cr - Ct;
}
void Law2_ScGeom_VirtualLubricationPhys::getStressForEachBody(
vector<Matrix3r>& NCStresses, vector<Matrix3r>& SCStresses, vector<Matrix3r>& NLStresses, vector<Matrix3r>& SLStresses, vector<Matrix3r>& NPStresses)
{
const shared_ptr<Scene>& scene = Omega::instance().getScene();
NCStresses.resize(scene->bodies->size());
SCStresses.resize(scene->bodies->size());
NLStresses.resize(scene->bodies->size());
SLStresses.resize(scene->bodies->size());
NPStresses.resize(scene->bodies->size());
for (size_t k = 0; k < scene->bodies->size(); k++) {
NCStresses[k] = Matrix3r::Zero();
SCStresses[k] = Matrix3r::Zero();
NLStresses[k] = Matrix3r::Zero();
SLStresses[k] = Matrix3r::Zero();
NPStresses[k] = Matrix3r::Zero();
}
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
GenericSpheresContact* geom = YADE_CAST<GenericSpheresContact*>(I->geom.get());
LubricationPhys* phys = YADE_CAST<LubricationPhys*>(I->phys.get());
if (phys) {
Vector3r lV1 = (3.0 / (4.0 * Mathr::PI * pow(geom->refR1, 3))) * ((geom->contactPoint - Body::byId(I->getId1(), scene)->state->pos));
Vector3r lV2 = Vector3r::Zero();
if (!scene->isPeriodic)
lV2 = (3.0 / (4.0 * Mathr::PI * pow(geom->refR2, 3))) * ((geom->contactPoint - (Body::byId(I->getId2(), scene)->state->pos)));
else
lV2 = (3.0 / (4.0 * Mathr::PI * pow(geom->refR2, 3)))
* ((geom->contactPoint
- (Body::byId(I->getId2(), scene)->state->pos + (scene->cell->hSize * I->cellDist.cast<Real>()))));
NCStresses[I->getId1()] += phys->normalContactForce * lV1.transpose();
NCStresses[I->getId2()] -= phys->normalContactForce * lV2.transpose();
SCStresses[I->getId1()] += phys->shearContactForce * lV1.transpose();
SCStresses[I->getId2()] -= phys->shearContactForce * lV2.transpose();
NLStresses[I->getId1()] += phys->normalLubricationForce * lV1.transpose();
NLStresses[I->getId2()] -= phys->normalLubricationForce * lV2.transpose();
SLStresses[I->getId1()] += phys->shearLubricationForce * lV1.transpose();
SLStresses[I->getId2()] -= phys->shearLubricationForce * lV2.transpose();
NPStresses[I->getId1()] += phys->normalPotentialForce * lV1.transpose();
NPStresses[I->getId2()] -= phys->normalPotentialForce * lV2.transpose();
}
}
}
py::tuple Law2_ScGeom_VirtualLubricationPhys::PyGetStressForEachBody()
{
py::list nc, sc, nl, sl, np;
vector<Matrix3r> NCs, SCs, NLs, SLs, NPs;
getStressForEachBody(NCs, SCs, NLs, SLs, NPs);
FOREACH(const Matrix3r& m, NCs) nc.append(m);
FOREACH(const Matrix3r& m, SCs) sc.append(m);
FOREACH(const Matrix3r& m, NLs) nl.append(m);
FOREACH(const Matrix3r& m, SLs) sl.append(m);
FOREACH(const Matrix3r& m, NPs) np.append(m);
return py::make_tuple(nc, sc, nl, sl);
}
void Law2_ScGeom_VirtualLubricationPhys::getTotalStresses(
Matrix3r& NCStresses, Matrix3r& SCStresses, Matrix3r& NLStresses, Matrix3r& SLStresses, Matrix3r& NPStresses)
{
vector<Matrix3r> NCs, SCs, NLs, SLs, NPs;
getStressForEachBody(NCs, SCs, NLs, SLs, NPs);
const shared_ptr<Scene>& scene = Omega::instance().getScene();
if (!scene->isPeriodic) {
LOG_ERROR("This method can only be used in periodic simulations");
return;
}
for (unsigned int i(0); i < NCs.size(); i++) {
Sphere* s = YADE_CAST<Sphere*>(Body::byId(i, scene)->shape.get());
if (s) {
Real vol = 4. / 3. * M_PI * pow(s->radius, 3);
NCStresses += NCs[i] * vol;
SCStresses += SCs[i] * vol;
NLStresses += NLs[i] * vol;
SLStresses += SLs[i] * vol;
NPStresses += NPs[i] * vol;
}
}
NCStresses /= scene->cell->getVolume();
SCStresses /= scene->cell->getVolume();
NLStresses /= scene->cell->getVolume();
SLStresses /= scene->cell->getVolume();
NPStresses /= scene->cell->getVolume();
}
py::tuple Law2_ScGeom_VirtualLubricationPhys::PyGetTotalStresses()
{
Matrix3r nc(Matrix3r::Zero()), sc(Matrix3r::Zero()), nl(Matrix3r::Zero()), sl(Matrix3r::Zero()), np(Matrix3r::Zero());
getTotalStresses(nc, sc, nl, sl, np);
return py::make_tuple(nc, sc, nl, sl, np);
}
void LubricationPDFEngine::action()
{
vector<PDFEngine::PDF> pdfs;
pdfs.resize(9);
for (uint i(0); i < pdfs.size(); i++) {
pdfs[i].resize(boost::extents[numDiscretizeAngleTheta][numDiscretizeAnglePhi]);
}
// Hint: If you want data on particular points, allocate only those pointers.
for (uint t(0); t < numDiscretizeAngleTheta; t++)
for (uint p(0); p < numDiscretizeAnglePhi; p++) {
pdfs[0][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::normalContactForce, "NC"));
pdfs[1][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::shearContactForce, "SC"));
pdfs[2][t][p]
= shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::normalLubricationForce, "NL"));
pdfs[3][t][p]
= shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::shearLubricationForce, "SL"));
pdfs[4][t][p]
= shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::normalPotentialForce, "NP"));
pdfs[5][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresDistanceCalculator("h"));
pdfs[6][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresVelocityCalculator("v"));
pdfs[7][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresIntrsCalculator("P"));
pdfs[8][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresIntrsCalculator("Pc", [](shared_ptr<Interaction> const& I) -> bool {
ScGeom* geom = dynamic_cast<ScGeom*>(I->geom.get());
LubricationPhys* ph = dynamic_cast<LubricationPhys*>(I->phys.get());
if (geom && ph) { return ph->contact; }
return false;
}));
}
getSpectrums(pdfs); // Where the magic happen :)
writeToFile(pdfs);
}
CREATE_LOGGER(LubricationPDFEngine);
} // namespace yade
|