File: Lubrication.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (789 lines) | stat: -rw-r--r-- 31,319 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

#include "Lubrication.hpp"
#include <lib/high-precision/Constants.hpp>

namespace yade { // Cannot have #include directive inside.

YADE_PLUGIN((Ip2_FrictMat_FrictMat_LubricationPhys)(LubricationPhys)(Law2_ScGeom_ImplicitLubricationPhys)(Law2_ScGeom_VirtualLubricationPhys)(
        LubricationPDFEngine)(PDFEngine))

LubricationPhys::~LubricationPhys() { }

CREATE_LOGGER(LubricationPhys);
CREATE_LOGGER(Law2_ScGeom_ImplicitLubricationPhys);
CREATE_LOGGER(Law2_ScGeom_VirtualLubricationPhys);

void Ip2_FrictMat_FrictMat_LubricationPhys::go(
        const shared_ptr<Material>& material1, const shared_ptr<Material>& material2, const shared_ptr<Interaction>& interaction)
{
	if (interaction->phys) return;

	// Cast to Lubrication
	shared_ptr<LubricationPhys> phys(new LubricationPhys());
	FrictMat*                   mat1 = YADE_CAST<FrictMat*>(material1.get());
	FrictMat*                   mat2 = YADE_CAST<FrictMat*>(material2.get());

	/* from interaction geometry */
	GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
	Real                   Da  = scg->refR1 > 0 ? scg->refR1 : scg->refR2;
	Real                   Db  = scg->refR2;

	/* Physical parameters */
	Real Ea = mat1->young;
	Real Eb = mat2->young;
	Real Va = mat1->poisson;
	Real Vb = mat2->poisson;
	Real fa = mat1->frictionAngle;
	Real fb = mat2->frictionAngle;

	/* Hertz-like contact */
	/* calculate stiffness coefficients */
	//   Real Ga = Ea/(2.*(1.+Va));
	//   Real Gb = Eb/(2.*(1.+Vb));
	//   Real G = (Ga+Gb)/2.; // average of shear modulus
	//   Real V = (Va+Vb)/2.; // average of poisson's ratio
	Real E   = Ea * Eb / ((1. - math::pow(Va, 2.)) * Eb + (1. - math::pow(Vb, 2.)) * Ea); // Young modulus
	Real R   = Da * Db / (Da + Db);                                                       // equivalent radius
	Real Kno = 4. / 3. * E * sqrt(R);                                                     // coefficient for normal stiffness
	//    Real Kso = 2.*sqrt(4.*R)*G/(2.-V); // coefficient for shear stiffness

	phys->kno = Kno;

	/* Cundall-stack-like contact */
	Real Kn = 2. * Ea * Da * Eb * Db / (Ea * Da + Eb * Db);
	Real Ks = 2. * Ea * Da * Va * Eb * Db * Vb / (Ea * Da * Va + Eb * Db * Vb);

	phys->kn   = Kn;
	phys->keps = Kn * keps;
	phys->ks   = Ks;

	/* Friction */
	phys->mum = math::tan(math::min(fa, fb));

	/* Fluid (lubrication) */
	Real a    = (Da + Db) / 2.;
	phys->a   = a;
	phys->nun = M_PI * eta * a * a;
	phys->eta = eta;
	phys->eps = eps;

	/* Integration sheme memory */
	phys->u        = -1.;
	phys->prevDotU = 0.;

	interaction->phys = phys;
}
CREATE_LOGGER(Ip2_FrictMat_FrictMat_LubricationPhys);


// Force calculation with variable change, dimentionless
Real Law2_ScGeom_ImplicitLubricationPhys::normalForce_AdimExp(LubricationPhys* phys, ScGeom* geom, Real undot, bool isNew, bool dichotomie)
{
	// Dry contact
	if (phys->nun <= 0.) {
		LOG_DEBUG("Can't solve with dimentionless-exponential method without fluid! using exact.");
		return normalForce_trapezoidal(phys, geom, undot, isNew);
	}

	Real a((geom->radius1 + geom->radius2) / 2.);
	if (isNew) {
		phys->u = -geom->penetrationDepth;
		if (phys->u < 0.) LOG_ERROR("phys->u < 0 at starting point!!! Increase interaction detection distance." << phys->u);
		phys->delta = math::log(phys->u / a);
	}

	Real d;
	if (dichotomie)
		d = DichoAdimExp_integrate_u(
		        -geom->penetrationDepth / a,
		        2. * phys->eps,
		        1.,
		        phys->prevDotU,
		        scene->dt * a * phys->kn / (phys->nun * 3. / 2.),
		        phys->delta,
		        (3. / 2. * phys->nun) / phys->kn / math::pow(a, 2) * undot);
	else
		d = NRAdimExp_integrate_u(
		        -geom->penetrationDepth / a,
		        2. * phys->eps,
		        1.,
		        phys->prevDotU,
		        scene->dt * a * phys->kn / (phys->nun * 3. / 2.),
		        phys->delta,
		        (3. / 2. * phys->nun) / phys->kn / math::pow(a, 2) * undot); // Newton-Rafson

	phys->contact = math::exp(d) < 2. * phys->eps;

	phys->normalForce            = phys->kn * (-geom->penetrationDepth - a * math::exp(d)) * geom->normal;
	phys->normalContactForce     = (phys->contact) ? Vector3r(-phys->kn * a * (2. * phys->eps - math::exp(d)) * geom->normal) : Vector3r::Zero();
	phys->normalLubricationForce = phys->kn * a * phys->prevDotU * geom->normal;

	phys->delta = d;
	phys->u     = a * math::exp(d);
	phys->ue    = -geom->penetrationDepth - phys->u;

	return phys->u;
}

// Dimentionless Newton-Rafson solver
Real Law2_ScGeom_ImplicitLubricationPhys::NRAdimExp_integrate_u(
        Real const& un, Real const& eps, Real const& alpha, Real& prevDotU, Real const& dt, Real const& prev_d, Real const& undot, int depth)
{
	Real d = prev_d;

	int  i;
	Real a(0), F { math::NaN };

	for (i = 0; i < MaxIter; i++) {
		a = (math::exp(d) < eps) ? alpha : 0.; // Alpha = 0 for non-contact

		Real ratio = (dt * (theta * (-(1. + a) * math::exp(d) + a * eps + un) + (1. - theta) * math::exp(prev_d - d) * prevDotU) - 1.
		              + math::exp(prev_d - d))
		        / (dt * theta * (-2. * (1. + a) * math::exp(d) + a * eps + un) - 1.);

		F = theta * math::exp(d) * (-(1. + a) * math::exp(d) + a * eps + un) + (1. - theta) * math::exp(prev_d) * prevDotU
		        - 1. / dt * (math::exp(d) - math::exp(prev_d));

		d = d - ratio;

		if (math::abs(F) < SolutionTol) break;

		LOG_DEBUG("d " << d << " ratio " << ratio << " F " << F << " i " << i << " a " << a << " depth " << depth);
	}

	if (i < MaxIter || depth > maxSubSteps) {
		if (depth > maxSubSteps) LOG_WARN("Max Substepping reach: results may be inconsistant F=" << F);

		prevDotU = -(1. + a) * math::exp(d) + a * eps + un;
		return d;
	} else {
		// Substepping
		Real d_mid = NRAdimExp_integrate_u(un - undot * dt / 2., eps, alpha, prevDotU, dt / 2., prev_d, undot, depth + 1);
		return NRAdimExp_integrate_u(un, eps, alpha, prevDotU, dt / 2., d_mid, undot, depth + 1);
	}
}

// Dimentionless dichotomy solver
Real Law2_ScGeom_ImplicitLubricationPhys::DichoAdimExp_integrate_u(
        Real const& un, Real const& eps, Real const& alpha, Real& prevDotU, Real const& dt, Real const& prev_d, Real const& undot)
{
	Real F = 0.;
	Real d_left(prev_d - 1.), d_right(prev_d + 1.);
	Real F_left(ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_left));
	Real F_right(ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_right));
	Real d;

	// Init: search for interval that contain sign change
	Real inc = (F_left < 0.) ? 1. : -1;
	inc      = (F_left < F_right) ? inc : -inc;
	while (F_left * F_right >= 0. && math::isfinite(F_left) && math::isfinite(F_right)) {
		d_left += inc;
		d_right += inc;
		F_left  = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_left);
		F_right = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_right);
	}

	if ((!math::isfinite(F_left) || !math::isfinite(F_right))) {
		LOG_DEBUG("Wrong direction");
		inc     = -inc; // RE-INIT
		d_left  = prev_d - 1.;
		d_right = prev_d + 1.;
		while (F_left * F_right >= 0. && math::isfinite(F_left) && math::isfinite(F_right)) {
			d_left += inc;
			d_right += inc;
			F_left  = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_left);
			F_right = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d_right);
		}
	}

	if (!math::isfinite(F_left) || !math::isfinite(F_right)) {
		LOG_FATAL("Initial point problem!!");
		TRVAR4(d_left, d_right, F_left, F_right);
		TRVAR5(un, prevDotU, dt, prev_d, undot);
		throw std::runtime_error("Lubrication law error.");
	}

	// Iterate to find the zero.
	int i;
	for (i = 0; i < MaxIter; i++) {
		if (F_left * F_right > 0.)
			LOG_ERROR(
			        "Both function have same sign!! d_left=" << d_left << " F_left=" << F_left << " d_right=" << d_right << " F_right=" << F_right);

		d = (d_left + d_right) / 2.;
		F = ObjF(un, eps, alpha, prevDotU, dt, prev_d, undot, d);

		if (math::abs(F) < SolutionTol) break;

		if (F * F_left < 0.) {
			F_right = F;
			d_right = d;
		} else {
			F_left = F;
			d_left = d;
		}
	}

	if (i == MaxIter) LOG_DEBUG("Max iteration reach: d_left=" << d_left << " F_left=" << F_left << " d_right=" << d_right << " F_right=" << F_right);

	Real a   = (math::exp(d) < eps) ? alpha : 0.;
	prevDotU = -(1. + a) * math::exp(d) + a * eps + un;

	return d;
}

Real Law2_ScGeom_ImplicitLubricationPhys::ObjF(
        Real const& un, Real const& eps, Real const& alpha, Real const& prevDotU, Real const& dt, Real const& prev_d, Real const& /*undot*/, Real const& d)
{
	Real a = (math::exp(d) < (eps)) ? alpha : 0.;
	return theta * (-(1. + a) * math::exp(d) + a * eps + un) + (1. - theta) * prevDotU * math::exp(prev_d - d) - 1. / dt * (1. - math::exp(prev_d - d));
}


// Dimentionless exact solution, with contact prediction
Real Law2_ScGeom_ImplicitLubricationPhys::normalForce_trpz_adim(LubricationPhys* phys, ScGeom* geom, Real undot, bool isNew)
{
	// Dry contact
	if (phys->nun <= 0.) {
		LOG_DEBUG("Can't solve with dimentionless-exponential method without fluid! using dimentional exact.");
		return normalForce_trapezoidal(phys, geom, undot, isNew);
	}

	Real a((geom->radius1 + geom->radius2) / 2.);
	if (isNew) { phys->u = -geom->penetrationDepth; }

	Real uprim = trapz_integrate_u_adim(
	        -geom->penetrationDepth / a, 2. * phys->eps, scene->dt * a * phys->kn / (phys->nun * 3. / 2.), phys->u / a, phys->contact, phys->prevDotU);

	phys->u = a * uprim;

	//if(debug) LOG_DEBUG("uprim " << uprim << " u " << phys->u);

	phys->contact = uprim < 2. * phys->eps;

	phys->normalForce            = phys->kn * (-geom->penetrationDepth - phys->u) * geom->normal;
	phys->normalContactForce     = (phys->contact) ? Vector3r(-phys->kn * (2. * a * phys->eps - phys->u) * geom->normal) : Vector3r::Zero();
	phys->normalLubricationForce = phys->kn * a * phys->prevDotU * geom->normal;

	phys->ue = -geom->penetrationDepth - phys->u;

	return phys->u;
}

// Dimentionless exact solution solver
Real Law2_ScGeom_ImplicitLubricationPhys::trapz_integrate_u_adim(
        Real const& u_n, Real const& eps, Real const& dt, Real const& prev_u, bool const& inContact, Real& prevDotU)
{
	Real dtc((prev_u - eps) / (theta * (eps) * (eps - u_n) + (1. - theta) * prevDotU * prev_u)); // Critical timestep
	Real u_(prev_u);
	bool c(inContact);
	Real dt_(dt);

	if (dtc > 0. && dt > dtc) {
		c   = !c;
		u_  = eps;
		dt_ = dt - dtc;
	} // Contact transition will occur. Starting from intermediate solution.

	Real a((c) ? 1. : 0.);

	Real b(theta * (u_n + a * eps) - 1. / dt_);
	Real ac(4. * theta * (1. + a) * ((1. - theta) * prevDotU * prev_u + u_ / dt_));

	Real u = (b + math::sqrt(b * b + ac)) / (2. * theta * (1. + a));

	LOG_TRACE("b " << b << " ac " << ac);

	prevDotU = -(1. + a) * u + a * eps + u_n; // dotu/u
	return u;
}

// Exact solution
Real Law2_ScGeom_ImplicitLubricationPhys::normalForce_trapezoidal(LubricationPhys* phys, ScGeom* geom, Real undot, bool isNew)
{
	Real a((geom->radius1 + geom->radius2) / 2.);

	if (isNew) {
		phys->prev_un  = -geom->penetrationDepth - undot * scene->dt;
		phys->prevDotU = undot * (phys->nun * 3. / 2.);
		phys->u        = phys->prev_un;
	}

	phys->normalForce = geom->normal
	        * trapz_integrate_u(phys->prevDotU,
	                            phys->prev_un /*prev. un*/,
	                            phys->u,
	                            -geom->penetrationDepth,
	                            (phys->nun * 3. / 2.),
	                            phys->kn,
	                            phys->keps /*should be keps, currently both are equal*/,
	                            2. * phys->eps * a,
	                            scene->dt,
	                            phys->u < (2 * phys->eps * a),
	                            isNew ? (maxSubSteps + 1) : 0 /* depth = maxSubSteps+1 will trigger backward Euler for initialization*/);

	phys->contact                = phys->u < 2. * phys->eps * a;
	phys->normalContactForce     = ((phys->contact) ? phys->keps * (phys->u - 2 * phys->eps * a) : 0.) * geom->normal;
	phys->normalLubricationForce = phys->normalForce - phys->normalContactForce;
	phys->ue                     = -geom->penetrationDepth - phys->u;

	return phys->u;
}

// Exact solution solver
Real Law2_ScGeom_ImplicitLubricationPhys::trapz_integrate_u(
        Real&       prevDotU,
        Real&       un_prev,
        Real&       u_prev,
        Real        un_curr,
        const Real& nu,
        Real        k,
        const Real& keps,
        const Real& eps,
        Real        dt,
        bool        withContact,
        int         depth,
        bool        force)
{
	Real         u = 0; // gap distance (by which normal lubrication terms are divided)
	Real /*a=1*/ b, c;
	Real         keff, un_eff; //effective values, including roughness if contact
	// if contact through roughness is assumed it implies modified coefficients in the ODE compared to no-contact solution.
	// Changes of status are checked at the end
	if (withContact) {
		keff   = k + keps;
		un_eff = (k * un_curr + keps * eps) / (k + keps);
	} else {
		keff   = k;
		un_eff = un_curr;
	}
	Real w = nu / (dt * keff);

	if (depth <= maxSubSteps) {
		// polynomial a*u²+b*u+c=0 with a=1, integrating du/dt=k*u*(un-u)/nu with the theta method
		b = w / theta - un_eff;
		c = (-prevDotU * (1 - theta) / keff - w * u_prev) / theta;
	} else {
		b = nu / dt / keff - un_eff;
		c = -w * u_prev; /*implicit backward Euler 1st order*/
	}
	Real rr[2] = { 0, 0 };
	Real delta = b * b - 4 * c; //note: a=1
	if (delta >= 0) {
		// there is an accuracy issue when computing (-b+√(b²-4ac))/2a, use 1st order approx when needed (first case): r=-c/b
		if ((-c) < (1e-12 * delta)) {
			rr[0] = -c / b;
			rr[1] = c / b;
		} else {
			rr[0] = 0.5 * (-b + sqrt(delta));
			rr[1] = 0.5 * (-b - sqrt(delta));
		}
	}

	if (delta < 0 or rr[0] < 0) { // recursive calls after halving the time increment if no positive solution found (no need to check r[1], always smaller)
		if (depth < maxSubSteps) { //sub-stepping
			                   //LOG_WARN("delta<0 or negative roots, sub-stepping with dt="<<dt/2.);
			Real un_mid = un_prev + 0.5 * (un_curr - un_prev);
			trapz_integrate_u(prevDotU, un_prev, u_prev, un_mid, nu, k, keps, eps, dt / 2., withContact, depth + 1);
			return trapz_integrate_u(prevDotU, un_prev, u_prev, un_curr, nu, k, keps, eps, dt / 2., withContact, depth + 1);
		} else { // switch to backward Euler (theta = 1) by increasing depth again (see above)
			LOG_WARN(
			        "minimal sub-step reached (depth=" << maxSubSteps << ")" << rr[0] << " " << rr[1] << " " << b << " " << c << " " << delta << " "
			                                           << w);
			return trapz_integrate_u(prevDotU, un_prev, u_prev, un_curr, nu, k, keps, eps, dt, withContact, depth + 1);
		}
	} else { // normal case, keep the positive solution closest to the previous one, and check contact status
		// select the nearest strictly positive solution, keep 0 only if there is no positive solution
		if (rr[0] == 0)
			LOG_WARN(
			        "nul gap found " << delta << " " << b << " " << c << " " << keff << " " << un_eff << " " << w << " " << dt << " " << depth
			                         << " " << u_prev << " " << un_curr)
		if ((math::abs(rr[0] - u_prev) < math::abs(rr[1] - u_prev) and rr[0] > 0) or rr[1] <= 0) u = rr[0];
		else {
			LOG_WARN("root 1 was used")
			u = rr[1];
		}
		bool hasContact = u < eps;
		// if contact appeared/disappeared recalculate with different coefficients (another recursion)
		// the argument "force=true" is used here to avoid entering a (rare) infinite recursion when "u" (the gap) and "eps" are nearly equal;
		// in such case roundoff errors make it possible that the no-contact integration predicts a contact, whereas the with-contact intergation predicts no contact.
		// with force=true the status is switched only once
		if (withContact != hasContact and not force)
			return trapz_integrate_u(prevDotU, un_prev, u_prev, un_curr, nu, k, keps, eps, dt, hasContact, depth, /*force?*/ true);

		// The normal non-recursive case, finally.
		// After a successful integration update the variables and return total force
		prevDotU = keff * u * (un_eff - u); //set for next iteration
		un_prev  = un_curr;
		u_prev   = u;
		return k * (un_curr - u);
	}
}

// Compute shear force from exact resolution
void Law2_ScGeom_VirtualLubricationPhys::shearForce_firstOrder(LubricationPhys* phys, ScGeom* geom)
{
	Vector3r        Ft(Vector3r::Zero());
	Vector3r        Ft_ = geom->rotate(phys->shearForce);
	Real            a((geom->radius1 + geom->radius2) / 2.);
	const Vector3r& dus = geom->shearIncrement();
	Real            kt  = phys->ks;
	Real nut = (phys->eta > 0.) ? M_PI * phys->eta / 2. * (-2. * a + (2. * a + phys->u) * (math::log(2. * a + phys->u) - math::log(phys->u))) : 0.;

	phys->shearForce            = Vector3r::Zero();
	phys->shearLubricationForce = Vector3r::Zero();
	phys->shearContactForce     = Vector3r::Zero();
	phys->cs                    = nut;

	phys->slip = false;

	// Also work without fluid (nut == 0)
	if (phys->contact) {
		Ft                      = Ft_ + kt * dus; // Trial force
		phys->shearContactForce = Ft;             // If no slip: no lubrication!
#if 1
		if (Ft.norm() > phys->normalContactForce.norm() * math::max(0., phys->mum)) { // If slip
			//LOG_INFO("SLIP");
			Ft *= phys->normalContactForce.norm() * math::max(0., phys->mum) / Ft.norm();
			phys->shearContactForce     = Ft;
			Ft                          = (kt * (Ft * scene->dt + dus * nut) + Ft_ * nut) / (kt * scene->dt + nut);
			phys->slip                  = true;
			phys->shearLubricationForce = nut * dus / scene->dt;
		}
#endif
	} else {
		Ft                          = (Ft_ + dus * kt) * nut / (nut + kt * scene->dt);
		phys->shearLubricationForce = Ft;
	}

	phys->shearForce = Ft;
}

// Compute shearforce from adim-log resolution
void Law2_ScGeom_VirtualLubricationPhys::shearForce_firstOrder_log(LubricationPhys* phys, ScGeom* geom)
{
	Vector3r        Ft(Vector3r::Zero());
	Vector3r        Ft_ = geom->rotate(phys->shearForce);
	Real            a((geom->radius1 + geom->radius2) / 2.);
	const Vector3r& dus = geom->shearIncrement();
	Real            kt  = phys->ks;
	Real nut = (phys->eta > 0.) ? M_PI * phys->eta / 2. * a * (-2. + (2. + math::exp(phys->delta)) * (math::log(2. + math::exp(phys->delta)) - phys->delta))
	                            : 0.;

	phys->shearForce            = Vector3r::Zero();
	phys->shearLubricationForce = Vector3r::Zero();
	phys->shearContactForce     = Vector3r::Zero();
	phys->cs                    = nut;

	phys->slip = false;

	// Also work without fluid (nut == 0)
	if (phys->contact) {
		Ft                      = Ft_ + kt * dus; // Trial force
		phys->shearContactForce = Ft;             // If no slip: no lubrication!
#if 1
		if (Ft.norm() > phys->normalContactForce.norm() * math::max(0., phys->mum)) // If slip
		{
			//LOG_INFO("SLIP");
			Ft *= phys->normalContactForce.norm() * math::max(0., phys->mum) / Ft.norm();
			phys->shearContactForce     = Ft;
			Ft                          = (Ft * kt * scene->dt + Ft_ * nut + dus * kt * nut) / (kt * scene->dt + nut);
			phys->slip                  = true;
			phys->shearLubricationForce = nut * dus / scene->dt;
		}
#endif
	} else {
		Ft                          = (Ft_ + dus * kt) * nut / (nut + kt * scene->dt);
		phys->shearLubricationForce = Ft;
	}

	phys->shearForce = Ft;
}


bool Law2_ScGeom_ImplicitLubricationPhys::go(shared_ptr<IGeom>& iGeom, shared_ptr<IPhys>& iPhys, Interaction* interaction)
{
	// Physic
	LubricationPhys* phys = static_cast<LubricationPhys*>(iPhys.get());

	// Geometry
	ScGeom* geom = static_cast<ScGeom*>(iGeom.get());

	// Get bodies properties
	Body::id_t             id1 = interaction->getId1();
	Body::id_t             id2 = interaction->getId2();
	const shared_ptr<Body> b1  = Body::byId(id1, scene);
	const shared_ptr<Body> b2  = Body::byId(id2, scene);
	State*                 s1  = b1->state.get();
	State*                 s2  = b2->state.get();

	// geometric parameters
	Real a((geom->radius1 + geom->radius2) / 2.);
	bool isNew = false;

	// Speeds
	Vector3r shiftVel = scene->isPeriodic ? Vector3r(scene->cell->velGrad * scene->cell->hSize * interaction->cellDist.cast<Real>()) : Vector3r::Zero();
	Vector3r shift2   = scene->isPeriodic ? Vector3r(scene->cell->hSize * interaction->cellDist.cast<Real>()) : Vector3r::Zero();

	Vector3r relV = geom->getIncidentVel(s1, s2, scene->dt, shift2, shiftVel, false);
	//    Vector3r relVN = relV.dot(norm)*norm; // Normal velocity
	//    Vector3r relVT = relV - relVN; // Tangeancial velocity
	Real undot = relV.dot(geom->normal); // Normal velocity norm

	// the second condition below is to keep alive soft sticking contacts (large elastic forces between distant particles)
	if (-geom->penetrationDepth > MaxDist * a and (phys->u > (-0.99 * geom->penetrationDepth))) return false;

	// inititalization
	if (phys->u == -1.) {
		phys->u = -geom->penetrationDepth;
		isNew   = true;
	}

	// reset forces
	phys->normalForce            = Vector3r::Zero();
	phys->normalContactForce     = Vector3r::Zero();
	phys->normalLubricationForce = Vector3r::Zero();
	phys->normalPotentialForce   = Vector3r::Zero();

	if (phys->keps != phys->kn and resolution > 0) LOG_WARN("keps!=1 not implemented for resolution>0");
	switch (resolution) {
		case 0: normalForce_trapezoidal(phys, geom, undot, isNew); break;
		case 1: normalForce_AdimExp(phys, geom, undot, isNew, false); break;
		case 2: normalForce_AdimExp(phys, geom, undot, isNew, true); break;
		case 3: normalForce_trpz_adim(phys, geom, undot, isNew); break;
		default:
			LOG_WARN("Nonexistant resolution method. Using exact (0).");
			normalForce_trapezoidal(phys, geom, undot, isNew);
			resolution = 0;
			break;
	}
	if (phys->u == 0) LOG_WARN("NULL GAP ON " << id1 << " " << id2)

	Vector3r C1 = Vector3r::Zero();
	Vector3r C2 = Vector3r::Zero();

	if (resolution == 0 || resolution == 3) computeShearForceAndTorques(phys, geom, s1, s2, C1, C2);
	else
		computeShearForceAndTorques_log(phys, geom, s1, s2, C1, C2);

	// Apply!
	scene->forces.addForce(id1, phys->normalForce + phys->shearForce);
	scene->forces.addTorque(id1, C1);

	scene->forces.addForce(id2, -(phys->normalForce + phys->shearForce));
	scene->forces.addTorque(id2, C2);

	return true;
}

// Compute shear force and torques from linear
void Law2_ScGeom_VirtualLubricationPhys::computeShearForceAndTorques(LubricationPhys* phys, ScGeom* geom, State* s1, State* s2, Vector3r& C1, Vector3r& C2)
{
	Real a((geom->radius1 + geom->radius2) / 2.);
	if (phys->eta <= 0. || phys->u > 0.) {
		if (activateTangencialLubrication) shearForce_firstOrder(phys, geom);
		else {
			phys->shearForce            = Vector3r::Zero();
			phys->shearContactForce     = Vector3r::Zero();
			phys->shearLubricationForce = Vector3r::Zero();
		}

		if (phys->nun > 0.) phys->cn = 3. / 2. * phys->nun / phys->u;

		Vector3r Cr = Vector3r::Zero();
		Vector3r Ct = Vector3r::Zero();

		// Rolling and twist torques
		Vector3r relAngularVelocity = geom->getRelAngVel(s1, s2, scene->dt);
		Vector3r relTwistVelocity   = relAngularVelocity.dot(geom->normal) * geom->normal;
		Vector3r relRollVelocity    = relAngularVelocity - relTwistVelocity;

		if (a > phys->u) {
			if (activateRollLubrication && phys->eta > 0.)
				Cr = phys->nun * (3. / 2. * a + 63. / 500. * phys->u) * (math::log(a) - math::log(phys->u)) * relRollVelocity;
			if (activateTwistLubrication && phys->eta > 0.) Ct = phys->nun * phys->u * (math::log(a) - math::log(phys->u)) * relTwistVelocity;
		}
		// total torque
		C1 = -(geom->radius1 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) + Cr + Ct;
		C2 = -(geom->radius2 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) - Cr - Ct;
	} else {
		LOG_ERROR("Gap is negative or null with lubrication: inconsistant results: skip shear force and torques calculation" << phys->u);
	}
}

// Compute shear force and torques from adim-log
void Law2_ScGeom_VirtualLubricationPhys::computeShearForceAndTorques_log(LubricationPhys* phys, ScGeom* geom, State* s1, State* s2, Vector3r& C1, Vector3r& C2)
{
	Real a((geom->radius1 + geom->radius2) / 2.);
	LOG_TRACE("This method use log(u/a) for shear and torque component calculation. Make sure phys->delta is set before calling this method.");

	if (activateTangencialLubrication) shearForce_firstOrder_log(phys, geom);
	else {
		phys->shearForce            = Vector3r::Zero();
		phys->shearContactForce     = Vector3r::Zero();
		phys->shearLubricationForce = Vector3r::Zero();
	}

	if (phys->nun > 0.) phys->cn = 3. / 2. * phys->nun / phys->u;

	Vector3r Cr = Vector3r::Zero();
	Vector3r Ct = Vector3r::Zero();

	// Rolling and twist torques
	Vector3r relAngularVelocity = geom->getRelAngVel(s1, s2, scene->dt);
	Vector3r relTwistVelocity   = relAngularVelocity.dot(geom->normal) * geom->normal;
	Vector3r relRollVelocity    = relAngularVelocity - relTwistVelocity;

	if (phys->delta > 0.) {
		if (activateRollLubrication && phys->eta > 0.)
			Cr = -phys->nun * a * 3. / 2. * (21. / 250. * math::exp(phys->delta) + 1.) * phys->delta * relRollVelocity;
		if (activateTwistLubrication && phys->eta > 0.) Ct = -phys->nun * a * math::exp(phys->delta) * phys->delta * relTwistVelocity;
	}
	// total torque
	C1 = -(geom->radius1 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) + Cr + Ct;
	C2 = -(geom->radius2 - geom->penetrationDepth / 2.) * phys->shearForce.cross(geom->normal) - Cr - Ct;
}


void Law2_ScGeom_VirtualLubricationPhys::getStressForEachBody(
        vector<Matrix3r>& NCStresses, vector<Matrix3r>& SCStresses, vector<Matrix3r>& NLStresses, vector<Matrix3r>& SLStresses, vector<Matrix3r>& NPStresses)
{
	const shared_ptr<Scene>& scene = Omega::instance().getScene();
	NCStresses.resize(scene->bodies->size());
	SCStresses.resize(scene->bodies->size());
	NLStresses.resize(scene->bodies->size());
	SLStresses.resize(scene->bodies->size());
	NPStresses.resize(scene->bodies->size());

	for (size_t k = 0; k < scene->bodies->size(); k++) {
		NCStresses[k] = Matrix3r::Zero();
		SCStresses[k] = Matrix3r::Zero();
		NLStresses[k] = Matrix3r::Zero();
		SLStresses[k] = Matrix3r::Zero();
		NPStresses[k] = Matrix3r::Zero();
	}

	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
	{
		if (!I->isReal()) continue;
		GenericSpheresContact* geom = YADE_CAST<GenericSpheresContact*>(I->geom.get());
		LubricationPhys*       phys = YADE_CAST<LubricationPhys*>(I->phys.get());

		if (phys) {
			Vector3r lV1 = (3.0 / (4.0 * Mathr::PI * pow(geom->refR1, 3))) * ((geom->contactPoint - Body::byId(I->getId1(), scene)->state->pos));
			Vector3r lV2 = Vector3r::Zero();
			if (!scene->isPeriodic)
				lV2 = (3.0 / (4.0 * Mathr::PI * pow(geom->refR2, 3))) * ((geom->contactPoint - (Body::byId(I->getId2(), scene)->state->pos)));
			else
				lV2 = (3.0 / (4.0 * Mathr::PI * pow(geom->refR2, 3)))
				        * ((geom->contactPoint
				            - (Body::byId(I->getId2(), scene)->state->pos + (scene->cell->hSize * I->cellDist.cast<Real>()))));

			NCStresses[I->getId1()] += phys->normalContactForce * lV1.transpose();
			NCStresses[I->getId2()] -= phys->normalContactForce * lV2.transpose();
			SCStresses[I->getId1()] += phys->shearContactForce * lV1.transpose();
			SCStresses[I->getId2()] -= phys->shearContactForce * lV2.transpose();
			NLStresses[I->getId1()] += phys->normalLubricationForce * lV1.transpose();
			NLStresses[I->getId2()] -= phys->normalLubricationForce * lV2.transpose();
			SLStresses[I->getId1()] += phys->shearLubricationForce * lV1.transpose();
			SLStresses[I->getId2()] -= phys->shearLubricationForce * lV2.transpose();
			NPStresses[I->getId1()] += phys->normalPotentialForce * lV1.transpose();
			NPStresses[I->getId2()] -= phys->normalPotentialForce * lV2.transpose();
		}
	}
}

py::tuple Law2_ScGeom_VirtualLubricationPhys::PyGetStressForEachBody()
{
	py::list         nc, sc, nl, sl, np;
	vector<Matrix3r> NCs, SCs, NLs, SLs, NPs;
	getStressForEachBody(NCs, SCs, NLs, SLs, NPs);
	FOREACH(const Matrix3r& m, NCs) nc.append(m);
	FOREACH(const Matrix3r& m, SCs) sc.append(m);
	FOREACH(const Matrix3r& m, NLs) nl.append(m);
	FOREACH(const Matrix3r& m, SLs) sl.append(m);
	FOREACH(const Matrix3r& m, NPs) np.append(m);
	return py::make_tuple(nc, sc, nl, sl);
}

void Law2_ScGeom_VirtualLubricationPhys::getTotalStresses(
        Matrix3r& NCStresses, Matrix3r& SCStresses, Matrix3r& NLStresses, Matrix3r& SLStresses, Matrix3r& NPStresses)
{
	vector<Matrix3r> NCs, SCs, NLs, SLs, NPs;
	getStressForEachBody(NCs, SCs, NLs, SLs, NPs);

	const shared_ptr<Scene>& scene = Omega::instance().getScene();

	if (!scene->isPeriodic) {
		LOG_ERROR("This method can only be used in periodic simulations");
		return;
	}

	for (unsigned int i(0); i < NCs.size(); i++) {
		Sphere* s = YADE_CAST<Sphere*>(Body::byId(i, scene)->shape.get());

		if (s) {
			Real vol = 4. / 3. * M_PI * pow(s->radius, 3);

			NCStresses += NCs[i] * vol;
			SCStresses += SCs[i] * vol;
			NLStresses += NLs[i] * vol;
			SLStresses += SLs[i] * vol;
			NPStresses += NPs[i] * vol;
		}
	}

	NCStresses /= scene->cell->getVolume();
	SCStresses /= scene->cell->getVolume();
	NLStresses /= scene->cell->getVolume();
	SLStresses /= scene->cell->getVolume();
	NPStresses /= scene->cell->getVolume();
}

py::tuple Law2_ScGeom_VirtualLubricationPhys::PyGetTotalStresses()
{
	Matrix3r nc(Matrix3r::Zero()), sc(Matrix3r::Zero()), nl(Matrix3r::Zero()), sl(Matrix3r::Zero()), np(Matrix3r::Zero());

	getTotalStresses(nc, sc, nl, sl, np);
	return py::make_tuple(nc, sc, nl, sl, np);
}

void LubricationPDFEngine::action()
{
	vector<PDFEngine::PDF> pdfs;
	pdfs.resize(9);

	for (uint i(0); i < pdfs.size(); i++) {
		pdfs[i].resize(boost::extents[numDiscretizeAngleTheta][numDiscretizeAnglePhi]);
	}

	// Hint: If you want data on particular points, allocate only those pointers.
	for (uint t(0); t < numDiscretizeAngleTheta; t++)
		for (uint p(0); p < numDiscretizeAnglePhi; p++) {
			pdfs[0][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::normalContactForce, "NC"));
			pdfs[1][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::shearContactForce, "SC"));
			pdfs[2][t][p]
			        = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::normalLubricationForce, "NL"));
			pdfs[3][t][p]
			        = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::shearLubricationForce, "SL"));
			pdfs[4][t][p]
			        = shared_ptr<PDFCalculator>(new PDFSpheresStressCalculator<LubricationPhys>(&LubricationPhys::normalPotentialForce, "NP"));
			pdfs[5][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresDistanceCalculator("h"));
			pdfs[6][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresVelocityCalculator("v"));
			pdfs[7][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresIntrsCalculator("P"));
			pdfs[8][t][p] = shared_ptr<PDFCalculator>(new PDFSpheresIntrsCalculator("Pc", [](shared_ptr<Interaction> const& I) -> bool {
				ScGeom*          geom = dynamic_cast<ScGeom*>(I->geom.get());
				LubricationPhys* ph   = dynamic_cast<LubricationPhys*>(I->phys.get());

				if (geom && ph) { return ph->contact; }
				return false;
			}));
		}

	getSpectrums(pdfs); // Where the magic happen :)
	writeToFile(pdfs);
}

CREATE_LOGGER(LubricationPDFEngine);

} // namespace yade