1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
// 2019 © William Chèvremont <william.chevremont@univ-grenoble-alpes.fr>
#include "LubricationWithPotential.hpp"
#include <boost/python/call_method.hpp>
namespace yade {
YADE_PLUGIN((Law2_ScGeom_PotentialLubricationPhys)(GenericPotential)(CundallStrackPotential)(CundallStrackAdhesivePotential)(LinExponentialPotential))
bool Law2_ScGeom_PotentialLubricationPhys::go(shared_ptr<IGeom>& iGeom, shared_ptr<IPhys>& iPhys, Interaction* interaction)
{
// Physic & Geometry
LubricationPhys* phys = static_cast<LubricationPhys*>(iPhys.get());
ScGeom* geom = static_cast<ScGeom*>(iGeom.get());
if (!phys || !geom) {
LOG_ERROR("Wrong physics and/or geometry!");
return false;
}
// geometric parameters
Real a((geom->radius1 + geom->radius2) / 2.);
// End-of Interaction condition
if (-geom->penetrationDepth > MaxDist * a) { return false; }
// inititalization
if (phys->u == -1.) {
phys->u = -geom->penetrationDepth;
phys->delta = math::log(phys->u);
}
// Normal part
if (!solve_normalForce(-geom->penetrationDepth / a, scene->dt * a * phys->kn / (phys->nun * 3. / 2.), *phys)) {
LOG_ERROR("Unable to determine normal forces. MAYDAY MAYDAY MAYDAY!");
return false;
}
potential->applyPotential(phys->u, *phys, geom->normal); // Set contactForce, potentialForce, contact.
phys->normalLubricationForce = phys->kn * a * phys->prevDotU * geom->normal; // From implicit formulation. Prevent computing divisions.
phys->normalForce = phys->kn * (-geom->penetrationDepth - phys->u) * geom->normal; // From regularization expression.
// Get bodies properties
Body::id_t id1 = interaction->getId1();
Body::id_t id2 = interaction->getId2();
const shared_ptr<Body> b1 = Body::byId(id1, scene);
const shared_ptr<Body> b2 = Body::byId(id2, scene);
State* s1 = b1->state.get();
State* s2 = b2->state.get();
// Shear and torques
Vector3r C1 = Vector3r::Zero();
Vector3r C2 = Vector3r::Zero();
computeShearForceAndTorques_log(phys, geom, s1, s2, C1, C2);
// Apply!
scene->forces.addForce(id1, phys->normalForce + phys->shearForce);
scene->forces.addTorque(id1, C1);
scene->forces.addForce(id2, -(phys->normalForce + phys->shearForce));
scene->forces.addTorque(id2, C2);
return true;
}
CREATE_LOGGER(Law2_ScGeom_PotentialLubricationPhys);
bool Law2_ScGeom_PotentialLubricationPhys::solve_normalForce(Real const& un, Real const& dt, LubricationPhys& phys)
{
// Init
Real const& pDelta(phys.delta);
Real const& a(phys.a);
Real const ga(phys.kn * a);
Real d1(pDelta - 1.), d2(pDelta + 1.), d;
auto objf = [&, this](Real delta) -> Real {
return potential->potential(a * math::exp(delta), phys) / ga + (1. - math::exp(pDelta - delta)) / dt - un + math::exp(delta);
};
Real F1(objf(d1)), F2(objf(d2)), F;
// Seek to interval containing the zero
Real inc = (F1 < 0.) ? 1. : -1;
inc = (F1 < F2) ? inc : -inc;
while (F1 * F2 >= 0 && math::isfinite(F1) && math::isfinite(F2)) {
LOG_TRACE("d1=" << d1 << " d2=" << d2 << " F1=" << F1 << " F2=" << F2);
d1 += inc;
d2 += inc;
F1 = objf(d1);
F2 = objf(d2);
}
if (!math::isfinite(F1) || !math::isfinite(F2)) {
// Reset and search other way
LOG_DEBUG("Wrong direction");
d1 = pDelta - 1.;
d2 = pDelta + 1.;
F1 = objf(d1);
F2 = objf(d2);
inc = -inc;
while (F1 * F2 >= 0 && math::isfinite(F1) && math::isfinite(F2)) {
LOG_TRACE("d1=" << d1 << " d2=" << d2 << " F1=" << F1 << " F2=" << F2);
d1 += inc;
d2 += inc;
F1 = objf(d1);
F2 = objf(d2);
}
}
if (!math::isfinite(F1) || !math::isfinite(F2)) {
LOG_ERROR("Unable to find a start point. Abandon. d1=" << d1 << " d2=" << d2 << " F1=" << F1 << " F2=" << F2);
return false;
}
// Iterate to find a solution
uint i(MaxIter);
do {
if (F1 * F2 >= 0) {
LOG_ERROR("Boundaries have the same sign. Algorithm FAIL.");
return false;
}
d = (d1 + d2) / 2.;
F = objf(d);
if (!math::isfinite(F)) {
LOG_ERROR("Objective function return non-real value. Abandon. d=" << d << " F=" << F);
return false;
}
if (math::abs(F) < SolutionTol) break;
if (F * F1 < 0) {
d2 = d;
F2 = F;
} else {
d1 = d;
F1 = F;
}
} while (--i);
// Apply
Real up = math::exp(d);
phys.delta = d;
phys.u = a * math::exp(d);
phys.prevDotU = un - up - potential->potential(phys.u, phys) / ga; // dotu'/u'
return true;
}
Real GenericPotential::potential(Real const&, LubricationPhys const&) const { return 0; }
void GenericPotential::applyPotential(Real const&, LubricationPhys& phys, Vector3r const&)
{
phys.normalContactForce = Vector3r::Zero();
phys.normalPotentialForce = Vector3r::Zero();
phys.contact = false;
}
CREATE_LOGGER(GenericPotential);
Real CundallStrackPotential::potential(Real const& u, LubricationPhys const& phys) const { return math::min(0., -alpha * phys.kn * (phys.eps * phys.a - u)); }
void CundallStrackPotential::applyPotential(Real const& u, LubricationPhys& phys, Vector3r const& n)
{
phys.contact = u < phys.eps * phys.a;
phys.normalContactForce = (phys.contact) ? Vector3r(-alpha * phys.kn * (phys.eps * phys.a - u) * n) : Vector3r::Zero();
phys.normalPotentialForce = Vector3r::Zero();
}
CREATE_LOGGER(CundallStrackPotential);
Real CundallStrackAdhesivePotential::potential(Real const& u, LubricationPhys const& phys) const
{
Real ladh((phys.contact) ? fadh / phys.kn : 0.);
if (u < phys.eps * phys.a + ladh) return -alpha * phys.kn * (phys.eps * phys.a - u);
return 0;
}
void CundallStrackAdhesivePotential::applyPotential(Real const& u, LubricationPhys& phys, Vector3r const& n)
{
Real ladh((phys.contact) ? fadh / phys.kn : 0.);
phys.contact = u < phys.eps * phys.a + ladh;
phys.normalContactForce = (phys.contact) ? Vector3r(-alpha * phys.kn * (phys.eps * phys.a - u) * n) : Vector3r::Zero();
phys.normalPotentialForce = Vector3r::Zero();
}
CREATE_LOGGER(CundallStrackAdhesivePotential);
Real LinExponentialPotential::potential(Real const& u, LubricationPhys const& phys) const
{
return math::min(0., -alpha * phys.kn * (phys.eps * phys.a - u)) + LinExpPotential(u / phys.a);
}
void LinExponentialPotential::applyPotential(Real const& u, LubricationPhys& phys, Vector3r const& n)
{
phys.contact = u < phys.eps * phys.a;
phys.normalContactForce = (phys.contact) ? Vector3r(-alpha * phys.kn * (phys.eps * phys.a - u) * n) : Vector3r::Zero();
phys.normalPotentialForce = LinExpPotential(u / phys.a) * n;
}
void LinExponentialPotential::setParameters(Real const& x_0, Real const& x_e, Real const& k_)
{
if (x_0 >= x_e) throw std::runtime_error("x0 must be lower than xe!");
if (x_e == 0.) throw std::runtime_error("Extremum can't be at the origin.");
x0 = x_0;
xe = x_e;
k = k_;
F0 = LinExpPotential(0);
Fe = LinExpPotential(xe);
}
void LinExponentialPotential::computeParametersFromF0(Real const& F_0, Real const& x_e, Real const& k_)
{
Real rho = x_e * x_e * +4. * F_0 * x_e / k_;
if (rho <= 0) throw std::runtime_error("xe^2 + 4F0 xe/k must be positive!");
if (x_e == 0.) throw std::runtime_error("Extremum can't be at the origin.");
k = k_;
xe = x_e;
F0 = F_0;
x0 = (xe - math::sqrt(rho)) / 2.;
Fe = LinExpPotential(xe);
}
void LinExponentialPotential::computeParametersFromF0Fe(Real const& x_e, Real const& F_e, Real const& F_0)
{
using math::abs; // when used inside function it does not leak - it is safe.
if (x_e == 0.) throw std::runtime_error("Extremum can't be at the origin.");
if (F_e * F_0 < 0) {
if (x_e < 0) throw std::runtime_error("When xe < 0, F0 and Fe must be same sign!");
if (abs(F_e) <= 1.5 * abs(F_0)) throw std::runtime_error("When F0 and Fe are different sign, you must ensure |Fe| > 1.5|F0|");
} else {
if (abs(F_e) <= abs(F_0)) throw std::runtime_error("When F0 and F0 are same sign, you must ensure |Fe| > |F0|");
}
xe = x_e;
k = (F_e / (xe * math::exp(Real(-1))));
x0 = 0.;
F0 = F_0;
Fe = F_e;
for (int i(0); i < 100; i++) {
x0 = (xe - math::sqrt(xe * xe + 4. * F0 * xe / k)) / 2.;
k = Fe * xe / ((xe - x0) * (xe - x0) * exp(-xe / (xe - x0)));
// Iteration quit if relative difference is below 1%.
if (math::sqrt(
(LinExpPotential(0) - F0) * (LinExpPotential(0) - F0) / (F0 * F0)
+ (LinExpPotential(xe) - Fe) * (LinExpPotential(xe) - Fe) / (Fe * Fe))
< 0.01)
break;
}
}
Real LinExponentialPotential::LinExpPotential(Real const& u_) const { return k * ((xe - x0) / xe) * (u_ - x0) * math::exp(-u_ / (xe - x0)); }
CREATE_LOGGER(LinExponentialPotential);
} // namespace yade
|