1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
// 2009 © Václav Šmilauer <eudoxos@arcig.cz>
#include <lib/high-precision/Constants.hpp>
#include <lib/pyutil/gil.hpp>
#include <core/Scene.hpp>
#include <pkg/common/NormShearPhys.hpp>
#include <pkg/dem/DemXDofGeom.hpp>
#include <pkg/dem/PeriIsoCompressor.hpp>
#include <preprocessing/dem/Shop.hpp>
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
YADE_PLUGIN((PeriIsoCompressor)(PeriTriaxController)(Peri3dController))
CREATE_LOGGER(PeriIsoCompressor);
void PeriIsoCompressor::action()
{
if (!scene->isPeriodic) {
LOG_FATAL("Being used on non-periodic simulation!");
throw;
}
if (state >= stresses.size()) return;
// initialize values
if (charLen <= 0) {
Bound* bv = Body::byId(0, scene)->bound.get();
if (!bv) {
LOG_FATAL("No charLen defined and body #0 has no bound");
throw;
}
const Vector3r sz = bv->max - bv->min;
charLen = (sz[0] + sz[1] + sz[2]) / 3.;
LOG_INFO("No charLen defined, taking avg bbox size of body #0 = " << charLen);
}
if (maxSpan <= 0) {
for (const auto& b : *scene->bodies) {
if (!b || !b->bound) continue;
for (int i = 0; i < 3; i++)
maxSpan = max(maxSpan, b->bound->max[i] - b->bound->min[i]);
}
}
if (maxDisplPerStep < 0) maxDisplPerStep = 1e-2 * charLen; // this should be tuned somehow…
const long& step = scene->iter;
Vector3r cellSize = scene->cell->getSize(); //unused: Real cellVolume=cellSize[0]*cellSize[1]*cellSize[2];
Vector3r cellArea = Vector3r(cellSize[1] * cellSize[2], cellSize[0] * cellSize[2], cellSize[0] * cellSize[1]);
Real minSize = min(cellSize[0], min(cellSize[1], cellSize[2])), maxSize = max(cellSize[0], max(cellSize[1], cellSize[2]));
if (minSize < 2.1 * maxSpan) { throw runtime_error("Minimum cell size is smaller than 2.1*span_of_the_biggest_body! (periodic collider requirement)"); }
if (((step % globalUpdateInt) == 0) || avgStiffness < 0 || sigma[0] < 0 || sigma[1] < 0 || sigma[2] < 0) {
// declaration of ‘sumForces’ shadows a member of ‘yade::PeriIsoCompressor’ [-Werror=shadow]
Vector3r sumForces2 = Shop::totalForceInVolume(avgStiffness, scene);
sigma = -Vector3r(sumForces2[0] / cellArea[0], sumForces2[1] / cellArea[1], sumForces2[2] / cellArea[2]);
LOG_TRACE("Updated sigma=" << sigma << ", avgStiffness=" << avgStiffness);
}
Real sigmaGoal = stresses[state];
assert(sigmaGoal < 0);
// expansion of cell in this step (absolute length)
Vector3r cellGrow(Vector3r::Zero());
// is the stress condition satisfied in all directions?
bool allStressesOK = true;
if (keepProportions) { // the same algo as below, but operating on quantitites averaged over all dimensions
Real sigAvg = (sigma[0] + sigma[1] + sigma[2]) / 3., avgArea = (cellArea[0] + cellArea[1] + cellArea[2]) / 3.,
avgSize = (cellSize[0] + cellSize[1] + cellSize[2]) / 3.;
Real avgGrow = 1e-4 * (sigmaGoal - sigAvg) * avgArea / (avgStiffness > 0 ? avgStiffness : 1);
Real maxToAvg = maxSize / avgSize;
if (math::abs(maxToAvg * avgGrow) > maxDisplPerStep) avgGrow = math::sign(avgGrow) * maxDisplPerStep / maxToAvg;
Real okGrow = -(minSize - 2.1 * maxSpan) / maxToAvg;
if (avgGrow < okGrow)
throw runtime_error("Unable to shrink cell due to maximum body size (although required by stress condition). Increase particle "
"rigidity, increase total sample dimensions, or decrease goal stress.");
// avgGrow=max(avgGrow,-(minSize-2.1*maxSpan)/maxToAvg);
if (avgStiffness > 0) {
sigma += (avgGrow * avgStiffness) * Vector3r::Ones();
sigAvg += avgGrow * avgStiffness;
}
if (math::abs((sigAvg - sigmaGoal) / sigmaGoal) > 5e-3) allStressesOK = false;
cellGrow = (avgGrow / avgSize) * cellSize;
} else { // handle each dimension separately
for (int axis = 0; axis < 3; axis++) {
// Δσ=ΔεE=(Δl/l)×(l×K/A) ↔ Δl=Δσ×A/K
// FIXME: either NormShearPhys::{kn,ks} is computed wrong or we have dimensionality problem here
// FIXME: that is why the fixup 1e-4 is needed here
// FIXME: or perhaps maxDisplaPerStep=1e-2*charLen is too big??
cellGrow[axis] = 1e-4 * (sigmaGoal - sigma[axis]) * cellArea[axis]
/ (avgStiffness > 0 ? avgStiffness : 1); // FIXME: wrong dimensions? See PeriTriaxController
if (math::abs(cellGrow[axis]) > maxDisplPerStep) cellGrow[axis] = math::sign(cellGrow[axis]) * maxDisplPerStep;
cellGrow[axis] = max(cellGrow[axis], -(cellSize[axis] - 2.1 * maxSpan));
// crude way of predicting sigma, for steps when it is not computed from intrs
if (avgStiffness > 0) sigma[axis] += cellGrow[axis] * avgStiffness; // FIXME: dimensions
if (math::abs((sigma[axis] - sigmaGoal) / sigmaGoal) > 5e-3) allStressesOK = false;
}
}
TRVAR4(cellGrow, sigma, sigmaGoal, avgStiffness);
assert(scene->dt > 0);
for (int axis = 0; axis < 3; axis++) {
scene->cell->velGrad(axis, axis) = cellGrow[axis] / (scene->dt * scene->cell->getSize()[axis]);
}
// handle state transitions
if (allStressesOK) {
if ((step % globalUpdateInt) == 0) currUnbalanced = Shop::unbalancedForce(/*useMaxForce=*/false, scene);
if (currUnbalanced < maxUnbalanced) {
state += 1;
// sigmaGoal reached and packing stable
if (state == stresses.size()) { // no next stress to go for
LOG_INFO("Finished");
if (!doneHook.empty()) {
LOG_DEBUG("Running doneHook: " << doneHook);
pyRunString(doneHook);
}
} else {
LOG_INFO("Loaded to " << sigmaGoal << " done, going to " << stresses[state] << " now");
}
} else {
if ((step % globalUpdateInt) == 0) LOG_DEBUG("Stress=" << sigma << ", goal=" << sigmaGoal << ", unbalanced=" << currUnbalanced);
}
}
}
void PeriTriaxController::strainStressStiffUpdate()
{
//"Natural" strain, still correct for large deformations, used for comparison with goals
for (int i = 0; i < 3; i++)
strain[i] = log(scene->cell->trsf(i, i));
//Compute sum(fi*lj) and stiffness
stressTensor = Matrix3r::Zero();
Vector3r sumStiff(Vector3r::Zero());
int n = 0;
if (not dynCell) FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
NormShearPhys* nsi = YADE_CAST<NormShearPhys*>(I->phys.get());
GenericSpheresContact* gsc = YADE_CAST<GenericSpheresContact*>(I->geom.get());
for (int i = 0; i < 3; i++)
sumStiff[i] += math::abs(gsc->normal[i]) * nsi->kn + (1 - math::abs(gsc->normal[i])) * nsi->ks;
n++;
}
// Update stress
stressTensor = Shop::getStress();
for (int axis = 0; axis < 3; axis++)
stress[axis] = stressTensor(axis, axis);
LOG_DEBUG(
"stressTensor : " << endl
<< stressTensor(0, 0) << " " << stressTensor(0, 1) << " " << stressTensor(0, 2) << endl
<< stressTensor(1, 0) << " " << stressTensor(1, 1) << " " << stressTensor(1, 2) << endl
<< stressTensor(2, 0) << " " << stressTensor(2, 1) << " " << stressTensor(2, 2) << endl
<< "unbalanced = " << Shop::unbalancedForce(/*useMaxForce=*/false, scene));
if (n > 0) stiff = (1. / n) * sumStiff; // Not dynCell
else
stiff = Vector3r::Zero();
}
CREATE_LOGGER(PeriTriaxController);
void PeriTriaxController::action()
{
if (!scene->isPeriodic) { throw runtime_error("PeriTriaxController run on aperiodic simulation."); }
const Vector3r& cellSize = scene->cell->getSize();
//FIXME : this is wrong I think (almost sure, B.)
Vector3r cellArea = Vector3r(cellSize[1] * cellSize[2], cellSize[0] * cellSize[2], cellSize[0] * cellSize[1]);
// initial updates
if (maxBodySpan[0] <= 0) {
for (const auto& b : *scene->bodies) {
if (!b || !b->bound) continue;
for (int i = 0; i < 3; i++)
if ((b->bound->max[i] - b->bound->min[i]) < cellSize[i])
maxBodySpan[i] = max(maxBodySpan[i], b->bound->max[i] - b->bound->min[i]);
}
}
// check current size
if (2.1 * maxBodySpan[0] > cellSize[0] || 2.1 * maxBodySpan[1] > cellSize[1] || 2.1 * maxBodySpan[2] > cellSize[2]) {
LOG_DEBUG("cellSize=" << cellSize << ", maxBodySpan=" << maxBodySpan);
throw runtime_error("Minimum cell size is smaller than 2.1*maxBodySpan (periodic collider requirement)");
}
bool doUpdate((scene->iter % globUpdate) == 0);
if (doUpdate || min(stiff[0], min(stiff[1], stiff[2])) <= 0 || dynCell) { strainStressStiffUpdate(); }
// set mass to be sum of masses, if not set by the user
if (dynCell && math::isnan(mass)) {
mass = 0;
for (const auto& b : *scene->bodies) {
if (b && b->state) mass += b->state->mass;
}
LOG_INFO("Setting cell mass to " << mass << " automatically.");
}
bool allOk = true;
// apply condition along each axis separately (stress or strain)
assert(scene->dt > 0.);
for (int axis = 0; axis < 3; axis++) {
Real& strain_rate = scene->cell->velGrad(axis, axis); //strain rate on axis
if (stressMask & (1 << axis)) { // control stress
if (!dynCell) {
// stiffness K=EA; σ₁=goal stress; Δσ wanted stress difference to apply
// ΔεE=(Δl/l)(K/A) - Grow is Δε, obtained by imposing the strain rate Δε/dt
strain_rate = 1 / scene->dt * (goal[axis] - stress[axis]) * cellArea[axis] / (stiff[axis] > 0 ? stiff[axis] : 1.);
LOG_TRACE(axis << ": stress=" << stress[axis] << ", goal=" << goal[axis] << ", cellGrow=" << strain_rate * scene->dt);
} else { //accelerate the deformation using the density of the period, includes Cundall's damping
assert(mass > 0); //user set
Real dampFactor = 1 - growDamping * math::sign(strain_rate * (goal[axis] - stress[axis]));
strain_rate += dampFactor * scene->dt * (goal[axis] - stress[axis]) / mass;
LOG_TRACE(axis << ": stress=" << stress[axis] << ", goal=" << goal[axis] << ", velGrad=" << strain_rate);
}
} else { // control strain, see "true strain" definition here http://en.wikipedia.org/wiki/Finite_strain_theory
///NOTE : everything could be generalized to 9 independant components by comparing F[i,i] vs. Matrix3r goal[i,i], but it would be simpler in that case to let the user set the prescribed loading rates velGrad[i,i] when [i,i] is not stress-controlled. This "else" would disappear.
strain_rate = (exp(goal[axis] - strain[axis]) - 1) / scene->dt;
LOG_TRACE(axis << ": strain=" << strain[axis] << ", goal=" << goal[axis] << ", cellGrow=" << strain_rate * scene->dt);
}
// steady evolution with fluctuations; see TriaxialStressController
if (!dynCell) strain_rate = (1 - growDamping) * strain_rate + .8 * prevGrow[axis];
// limit maximum strain rate
if (math::abs(strain_rate) > maxStrainRate[axis]) strain_rate = math::sign(strain_rate) * maxStrainRate[axis];
// do not shrink below minimum cell size (periodic collider condition), although it is suboptimal WRT resulting stress
strain_rate = max(strain_rate, -(cellSize[axis] - 2.1 * maxBodySpan[axis]) / scene->dt);
// crude way of predicting stress, for steps when it is not computed from intrs
if (doUpdate) LOG_DEBUG(axis << ": cellGrow=" << strain_rate * scene->dt << ", new stress=" << stress[axis] << ", new strain=" << strain[axis]);
// used only for temporary goal comparisons. The exact value is assigned in strainStressStiffUpdate
strain[axis] += strain_rate * scene->dt;
// signal if condition not satisfied
if (stressMask & (1 << axis)) {
Real curr = stress[axis];
if ((goal[axis] != 0 && math::abs((curr - goal[axis]) / goal[axis]) > relStressTol) || math::abs(curr - goal[axis]) > absStressTol)
allOk = false;
} else {
Real curr = strain[axis];
// since strain is prescribed exactly, tolerances need just to accomodate rounding issues
if ((goal[axis] != 0 && math::abs((curr - goal[axis]) / goal[axis]) > 1e-6) || math::abs(curr - goal[axis]) > 1e-6) {
allOk = false;
if (doUpdate) LOG_DEBUG("Strain not OK; " << math::abs(curr - goal[axis]) << ">1e-6");
}
}
}
// update stress and strain
if (!dynCell)
for (int axis = 0; axis < 3; axis++) {
// take in account something like poisson's effect here…
//Real bogusPoisson=0.25; int ax1=(axis+1)%3,ax2=(axis+2)%3;
//don't modify stress if dynCell, testing only stiff[axis]>0 would not allow switching the control mode in simulations,
if (stiff[axis] > 0) stress[axis] += (scene->cell->velGrad(axis, axis) * scene->dt / cellSize[axis]) * (stiff[axis] / cellArea[axis]);
//-bogusPoisson*(cellGrow[ax1]/refSize[ax1])*(stiff[ax1]/cellArea[ax1])-bogusPoisson*(cellGrow[ax2]/refSize[ax2])*(stiff[ax2]/cellArea[ax2]);
}
for (int k = 0; k < 3; k++)
strainRate[k] = scene->cell->velGrad(k, k);
//Update energy input FIXME: replace trace by norm, so it works for any kind of deformation
Real dW = (0.5 * (scene->cell->prevVelGrad + scene->cell->velGrad) * stressTensor).trace() * scene->dt * (scene->cell->hSize.determinant());
externalWork += dW;
if (scene->trackEnergy) scene->energy->add(-dW, "velGradWork", velGradWorkIx, /*non-incremental*/ false);
prevGrow = strainRate;
if (allOk) {
if (doUpdate || currUnbalanced < 0) {
currUnbalanced = Shop::unbalancedForce(/*useMaxForce=*/false, scene);
LOG_DEBUG(
"Stress/strain=" << (stressMask & 1 ? stress[0] : strain[0]) << "," << (stressMask & 2 ? stress[1] : strain[1]) << ","
<< (stressMask & 4 ? stress[2] : strain[2]) << ", goal=" << goal << ", unbalanced=" << currUnbalanced);
}
if (currUnbalanced < maxUnbalanced) {
// LOG_INFO("Goal reached, packing stable.");
if (!doneHook.empty()) {
LOG_DEBUG("Running doneHook: " << doneHook);
pyRunString(doneHook);
}
// else { Omega::instance().pause(); }
}
}
}
CREATE_LOGGER(Peri3dController);
void Peri3dController::action()
{
if (!scene->isPeriodic) {
LOG_FATAL("Being used on non-periodic simulation!");
throw;
}
const Real& dt = scene->dt;
assert(dt > 0);
/* "Constructor" (if (step==0) )
ps is the vector of indices, where stress is prescribed
pe is the vector of indices, where strain is prescribed
example: goal = 0b000110 : ps=(1,2,0,0,0,0), pe=(0,3,4,5,0,0)
lenPs (lenPe) is the meaningful length of ps (pe) (the zeros at the end of ps and pe has no meaning),
i.e. the number of indices with prescribed stress (strain)
*/
bool stressBasedSimulation = false; // true when all stresses are prescribed or if all prescribed strains equal zero
if (progress == 0) {
lenPs = 0;
lenPe = 0;
ps = Vector6i::Zero();
pe = Vector6i::Zero();
stressGoal = Vector6r::Zero();
strainGoal = Vector6r::Zero();
for (int i = 0; i < 6; i++) {
if (stressMask & (1 << i)) { // if stress is prescribed at direction i, add this direction to ps and increase lenPs by one
ps(lenPs++) = i;
stressGoal(i) = goal(i);
} else { // if strain is prescribed at direction i, add this direction to pe and increase lenPe by one
pe(lenPe++) = i;
strainGoal(i) = goal(i);
}
}
// variables used in evaluation of ideal stress and ideal strain for each part defined by ##Path
//paths[0]=&xxPath; paths[1]=&yyPath; paths[2]=&zzPath; paths[3]=&yzPath; paths[4]=&zxPath; paths[5]=&xyPath; // pointers to the Paths
pathSizes[0] = xxPath.size();
pathSizes[1] = yyPath.size();
pathSizes[2] = zzPath.size();
pathSizes[3] = yzPath.size();
pathSizes[4] = zxPath.size();
pathSizes[5] = xyPath.size();
for (int i = 0; i < 6; i++) {
pathsCounter[i] = 0;
} // inidicator in which part of the path we are
// abcPath[j] is j-th Vector2r in path[0]
// PATH_OP_OP(0,j,k) = path[0]->operator[](j).operator(k) is k-th element of j-th Vector2r of xxPath
//#define PATH_OP_OP(pi,op1i,op2i) paths[pi]->operator[](op1i).operator()(op2i)
//#define PATH_OP_OP(pi,op1i,op2i) (pi==0?xxPath:pi==1?yyPath:pi==2?zzPath:pi==3?yzPath:pi==4?zxPath:pi==5?xyPath:NULL)->operator[](op1i).operator()(op2i)
#define PATH_OP_OP(pi, op1i, op2i) \
(pi == 0 ? xxPath : pi == 1 ? yyPath : pi == 2 ? zzPath : pi == 3 ? yzPath : pi == 4 ? zxPath : xyPath)[op1i].operator()(op2i)
for (int i = 0; i < 6; i++) {
for (int j = 1; j < pathSizes[i]; j++) {
// check if the user defined time axis is monothonically increasing
{
if (PATH_OP_OP(i, j - 1, 0) >= PATH_OP_OP(i, j, 0)) {
throw runtime_error("Peri3dCoontroller.##Path: Time in ##Path must be monothonically increasing");
}
}
}
for (int j = 0; j < pathSizes[i]; j++) {
// convert relative progress values of ##Path to absolute values
PATH_OP_OP(i, j, 0) *= 1. / PATH_OP_OP(i, pathSizes[i] - 1, 0);
// convert relative stress/strain values of ##Path to absolute stress strain values
if (math::abs(PATH_OP_OP(i, pathSizes[i] - 1, 1))
>= 1e-9) { // the final value is not 0 (otherwise always absolute values are considered)
PATH_OP_OP(i, j, 1) *= goal(i) / PATH_OP_OP(i, pathSizes[i] - 1, 1);
}
}
}
// set weather the simulation is "stress based" (all stress components prescribed or all prescribed strains equal zero)
if (lenPe == 0) {
stressBasedSimulation = true;
} else {
stressBasedSimulation = true;
for (int i = 0; i < lenPe; i++) {
stressBasedSimulation = stressBasedSimulation && PATH_OP_OP(pe(i), 1, 1) < 1e9;
}
}
}
// increase the pathCounter by one if we cross to the next part of path
for (int i = 0; i < 6; i++) {
if (progress >= PATH_OP_OP(i, pathsCounter[i], 0)) { pathsCounter[i]++; }
}
/* values of prescribed stress (strain) rate in respect to prescribed path.
The strain indices where stress is prescribed will be overwritten by predictor */
for (int i = 0; i < lenPe; i++) {
int j = pe(i);
if (pathSizes[j] == 1) { // path has only one part (only final values are prescribed)
strainRate(j) = strainGoal(j) / (nSteps * dt); // ideal strain rate in respect of dSteps and dValue
} else if (pathsCounter[j] == 0) { // path has more parts, but we are still at the first one
const Real& dProgress = PATH_OP_OP(j, 0, 0); // progress difference of respective part of the path
const Real& dValue = PATH_OP_OP(j, 0, 1); // strain difference at the respective part of the path
strainRate(j) = dValue / (dProgress * nSteps * dt); // ideal strain rate in respect of dSteps and dValue
} else if (progress < 1.) {
const Real dProgress = PATH_OP_OP(j, pathsCounter[j], 0)
- PATH_OP_OP(j, pathsCounter[j] - 1, 0); // progress difference of respective part of the path
const Real dValue = PATH_OP_OP(j, pathsCounter[j], 1)
- PATH_OP_OP(j, pathsCounter[j] - 1, 1); // strain difference at the respective part of the path
strainRate(j) = dValue / (dProgress * nSteps * dt); // ideal strain rate in respect of dSteps and dValue
} else {
strainRate(j) = 0;
}
}
for (int i = 0; i < lenPs; i++) {
int j = ps(i);
if (pathSizes[j] == 1) { // path has only one part (only final values are prescribed)
stressRate(j) = stressGoal(j) / (nSteps * dt); // ideal stress rate in respect of dSteps and dValue
} else if (pathsCounter[j] == 0) { // path has more parts, but we are still at the first one
const Real& dProgress = PATH_OP_OP(j, 0, 0); // progress difference of respective part of the path
const Real& dValue = PATH_OP_OP(j, 0, 1); // stress difference at the respective part of the path
stressRate(j) = dValue / (dProgress * nSteps * dt); // ideal stress rate in respect of dSteps and dValue
} else if (progress < 1.) {
const Real dProgress = PATH_OP_OP(j, pathsCounter[j], 0)
- PATH_OP_OP(j, pathsCounter[j] - 1, 0); // progress difference of respective part of the path
const Real dValue = PATH_OP_OP(j, pathsCounter[j], 1)
- PATH_OP_OP(j, pathsCounter[j] - 1, 1); // stress difference at the respective part of the path
stressRate(j) = dValue / (dProgress * nSteps * dt); // ideal stress rate in respect of dSteps and dValue
} else {
stressRate(j) = 0;
}
}
// Update - update values from previous step to current step
stressOld = stress; // stresssOld = stress at previous step
//sigma = Shop::stressTensorOfPeriodicCell(/*smallStrains=*/true); // current stress tensor
sigma = Shop::getStress(); // current stress tensor
stress = tensor_toVoigt(sigma); // current stress vector
stressIdeal += stressRate * dt; // stress that would be obtained if the predictor would be perfect
strain += strainRate * dt; // current strain vector
epsilon = voigt_toSymmTensor(strain, /*strain=*/true); // current strain tensor
/* StrainPredictor
extremely primitive predictor, but roboust enough and works fine :-) could be replaced by some more rigorous in future.
In the direction with prescribed strain rate this prescribed strain rate is applied.
In direction with prescribed stress: from values of stress and strain in previous two steps the value of strain rate
is predicted so as the stress in the next step would be as close as possible to the ideal stress value,
see the documentation for more info
*/
if (lenPs > 0) { // if at least 1 stress component is prescribed (otherwise prescribed strain is applied in all 6 directions
if (progress == 0
&& stressBasedSimulation) { // the very first step, use compliance estimation (compliance matrix for elastic isotropic material)
Real complianceEstimation[6][6]
= { { 1 / youngEstimation, -poissonEstimation / youngEstimation, -poissonEstimation / youngEstimation, 0, 0, 0 },
{ -poissonEstimation / youngEstimation, 1 / youngEstimation, -poissonEstimation / youngEstimation, 0, 0, 0 },
{ -poissonEstimation / youngEstimation, -poissonEstimation / youngEstimation, 1 / youngEstimation, 0, 0, 0 },
{ 0, 0, 0, (1 + poissonEstimation) / youngEstimation, 0, 0 },
{ 0, 0, 0, 0, (1 + poissonEstimation) / youngEstimation, 0 },
{ 0, 0, 0, 0, 0, (1 + poissonEstimation) / youngEstimation } };
for (int i = 0; i < lenPs; i++) {
strainRate(ps(i)) = 0;
for (int j = 0; j < lenPs; j++) {
strainRate(ps(i)) += complianceEstimation[ps(i)][ps(j)] * stressRate[ps(j)];
}
for (int j = 0; j < lenPe; j++) {
strainRate(ps(i)) += complianceEstimation[ps(i)][ps(j)] * stressRate[ps(j)];
}
}
//for (int i=0; i<lenPs; i++) { strainRate(ps(i)) -= maxStrainRate; }
} else { // actual predictor
Real sr = strainRate.cwiseAbs().maxCoeff();
for (int i = 0; i < lenPs; i++) {
int j = ps(i);
// linear extrapolation of stress error (difference between actual and ideal stress)
Real linPred = 2 * (stress(j) - stressIdeal(j)) - (stressOld(j) - (stressIdeal(j) - stressRate(j) * dt));
// correction of strain in respect to the extrapolated stress error
if (linPred > 0) {
strainRate(j) -= sr * mod;
} else {
strainRate(j) += sr * mod;
}
}
}
}
// correction coefficient ix strainRate.maxstd::abs() > maxStrainRate
Real srCorr = (strainRate.cwiseAbs().maxCoeff() > maxStrainRate) ? (maxStrainRate / strainRate.cwiseAbs().maxCoeff()) : 1.;
strainRate *= srCorr;
// Actual action (see the documentation for more info)
const Matrix3r& trsf = scene->cell->trsf;
// compute rotational and nonrotational (strain in local coordinates) part of trsf
Matrix_computeUnitaryPositive(trsf, &rot, &nonrot);
// prescribed velocity gradient (strain tensor rate) in global coordinates
epsilonRate = voigt_toSymmTensor(strainRate, /*strain=*/true);
/* transformation of prescribed strain rate (computed by predictor) into local cell coordinates,
multiplying by time to obtain strain increment and adding it to nonrot (current strain in local coordinates)*/
nonrot += rot.transpose() * (epsilonRate * dt) * rot;
Matrix3r& velGrad = scene->cell->velGrad;
// compute velGrad:
// trsf = rot*nonrot
// dTrsf = dt*velGrad
// trsfNew = trsf + dTrsf*trsf = (I+dTrsf)*trsf = (I+dt*velGrad)*trsf -> velGrad
velGrad = ((rot * nonrot) * trsf.inverse() - Matrix3r::Identity()) / dt;
progress += srCorr / nSteps;
if (progress >= 1. || strain.cwiseAbs().maxCoeff() > maxStrain) {
if (doneHook.empty()) {
LOG_INFO("No doneHook set, dying.");
dead = true;
Omega::instance().pause();
} else {
LOG_INFO("Running doneHook: " << doneHook);
pyRunString(doneHook);
}
}
}
} // namespace yade
|