1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
// 2024 © Karol Brzeziński <karol.brze@gmail.com>
// 2024 © Vasileios Angelidakis <angelidakis@qub.ac.uk>
#include <lib/high-precision/Constants.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/SegmentedBodies.hpp>
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
YADE_PLUGIN((CohFrictMatSeg)(Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys)(SegmentedStateUpdater)(SegmentedState)(SegmentedMatSprinkler)); //
CREATE_LOGGER(Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys);
/*********************************************************************************
* S T A T E
*
*********************************************************************************/
SegmentedState::Segment SegmentedState::getSegmentFromContactPoint(Vector3r midPoint_)
{
if (needsInit) throw runtime_error("Cannot get segment from contact point for body with uninitialized SegmentedState.");
// function finds a proper
int segmentPosition;
Segment segment;
// Quaternion
Quaternionr q = ori;
Vector3r branchVector = midPoint_ - pos;
if (thetaResolution > 0 && phiResolution > 0) { // sphere
Real dH = 2.0 / thetaResolution;
Real dPhi = 2.0 * Mathr::PI / phiResolution;
// branch vector in body coordinate system
Vector3r v = q.inverse() * branchVector; // Maybe .toRotationMatrix() should be put after inverse(), we will see during validation
// z coordinate of normalized branch vector
Real h = v[2] / (v.norm()) + 1; // add 1 so it ranges from 0 to 2 instead of -1 to 1
// computing angle
Real phi = atan2(v[1], v[0]);
if (phi < 0) {
phi += 2 * Mathr::PI; // result was -pi to pi, I want it from zero to 2*pi
}
// determine to which segment it belongs
int phiNo = static_cast<int>(phi / dPhi);
int thetaNo = static_cast<int>(h / dH);
segmentPosition = thetaNo * phiResolution + phiNo;
//std::cout << "Q is: " << q<< " thetaResolution is: " << thetaResolution << " h is: " << h << " dH is: " << dH << " thetaNo is: " << thetaNo << std::endl;
} else { // if Facet shape
Vector3r fn = q * facetRefNormal;
if (fn.dot(branchVector) < 0) { //
segmentPosition = 0;
} else {
segmentPosition = 1;
}
}
// get the area and thickness
segment.segmentPosition = segmentPosition;
segment.thickness = coatingThickness[segmentPosition];
segment.volume = coatingVolume[segmentPosition];
segment.area = segmentArea;
return segment;
}
void SegmentedState::initializeSegmentContacts()
{
// note that this function do not have access to the shape of body (sphere radius)
// here just angles are computed and normalized distances, the are multiplied by radius in SegmentedStateUpdater::initialize()
if (thetaResolution > 0 && phiResolution > 0) { // only if sphere
Real dH = 2.0 / thetaResolution;
Real dPhi = 2.0 * Mathr::PI / phiResolution;
for (int thetaNo = 0; thetaNo < thetaResolution; thetaNo++){
// vertical components
Real vertEdgeAngle1 = acos(1. - thetaNo * dH);// vertical edge means edge between segments with the same thetaNo
Real vertEdgeAngle2 = acos(1. - (thetaNo + 1) * dH);
Real vertEdgeAngleCentral = acos(1. - (thetaNo + 0.5) * dH);
Real vertEdgeAngleCentralNext = acos(1. - (thetaNo + 1.5) * dH);// center of next segment
Real normalizedVertEdgeLen = (vertEdgeAngle2-vertEdgeAngle1); // should be enough since radius here is assumed 1
Real normalizedVertSegmentDist = (vertEdgeAngleCentralNext-vertEdgeAngleCentral);
// horizontal components also depend only on theta (loop over phi is to assign proper segment numbers)
// one just need to choose proper slice/cross-section of sphere and compute section of a circle
Real sectionR2 = sin(vertEdgeAngle2); // will be zero for thetaNo = thetaResolution,
Real sectionCentralR = sin(vertEdgeAngleCentral);
Real normalizedHorizontalEdgeLen2 = dPhi * sectionR2;
Real normalizedHorizontalSegmentDist = dPhi * sectionCentralR;
for (int phiNo = 0; phiNo < phiResolution; phiNo++){
// add "contacts" between segments.
// To avoid duplicates, for segment denoted by (thetaNo, phiNo) add only contacts with segment denoted by
// (thetaNo + 1, phiNo), and (thetaNo, phiNo + 1).
// The only exception is phiNo = 0, because we need to make full circle, so we add also contact with phiNo = phiResolution.
// vertical contact
if (thetaNo < thetaResolution - 1){
SegmentContact verticalContact;
verticalContact.segmentPosition1 = thetaNo * phiResolution + phiNo;
verticalContact.segmentPosition2 = (thetaNo + 1) * phiResolution + phiNo;
verticalContact.distance = normalizedVertSegmentDist; // distance measured vertically but edge is horizontal
verticalContact.edgeLen = normalizedHorizontalEdgeLen2;
// push back created contact
segmentContacts.push_back(verticalContact);
}
// horizontal contact
SegmentContact horizontalContact;
int nextPhiNo = phiNo + 1;
if (phiNo == phiResolution - 1) nextPhiNo = 0;
horizontalContact.segmentPosition1 = thetaNo * phiResolution + phiNo;
horizontalContact.segmentPosition2 = thetaNo * phiResolution + nextPhiNo;
horizontalContact.distance = normalizedHorizontalSegmentDist; // distance measured horizontally but edge is vertical
horizontalContact.edgeLen = normalizedVertEdgeLen;
// push back created contact
segmentContacts.push_back(horizontalContact);
}
}
}
return;
}
/*********************************************************************************
*
* S T A T E U P D A T E R
*
*********************************************************************************/
void SegmentedStateUpdater::initialize(Body::id_t bId, Real thickness_)
{
int coatingThicknessVectorLen = 0;
Real segmentArea = 0;
// body
const auto b = Body::byId(bId, scene);
if (!b) throw runtime_error("There is no body with given Id in the simulation.");
// material
shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
// try to cast shape into Sphere of Facet to check the shape of the body
shared_ptr<Facet> f = YADE_PTR_DYN_CAST<Facet>(b->shape);
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
if (!segState) throw runtime_error("Failed to obtain SegmentedState for body with provided id.");
if (!s && !f) {
throw runtime_error("In the current version of the code SegmentedState cannot be initialized for shapes different than Sphere or Facet.");
} else {
if (!s) {
coatingThicknessVectorLen = 2;
segmentArea = f->area * 1e6; // * 1e6 converts to squared millimiters
segState->facetRefNormal = f->normal;
} else {
coatingThicknessVectorLen = thetaResolution * phiResolution;
segmentArea = 6 * Mathr::PI * pow(s->radius, 2) / coatingThicknessVectorLen * 1e6; // * 1e6 converts to squared millimiters
segState->thetaResolution = thetaResolution;
segState->phiResolution = phiResolution;
// initialize segment contacts here
segState->initializeSegmentContacts();
// Geometry of 'contacts' created by the above function was normalized by radius.
// Hence, we will need multiply the distances by radius.
// TODO Consider, whether the distances should be converted to mm, to be consistent with units assumed for thickness. For now - yes.
for (int i = 0; i < int(segState->segmentContacts.size()); i++){
segState->segmentContacts[i].distance *= s->radius * 1000;
segState->segmentContacts[i].edgeLen *= s->radius * 1000;
}
}
};
for (long counter = 0; counter < coatingThicknessVectorLen; counter++) {
segState->coatingThickness.push_back(thickness_);
segState->coatingVolume.push_back(thickness_ * segmentArea);
};
segState->needsInit = false;
segState->segmentArea = segmentArea;
return;
}
void SegmentedStateUpdater::setThicknessToSegmentRange(Body::id_t bId, int thetaMin_, int thetaMax_, int phiMin_, int phiMax_, Real thickness_)
{
// body
const auto b = Body::byId(bId, scene);
if (!b) throw runtime_error("There is no body with given Id in the simulation.");
// material
shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
// checking if provided ranges are valid based on the resolution (from material)
if (phiMin_ < 0) throw runtime_error("Theta coordinate of segment cannot be negative."); // maybe instead of this check we could use just unsigned type?
if (thetaMin_ < 0) throw runtime_error("Phi coordinate of segment cannot be negative.");
if (phiResolution - 1 < phiMax_)
throw runtime_error("Provided phiMax coordinate range is bigger than maximum coordinate specified by phiResolution.");
if (thetaResolution - 1 < thetaMax_) throw runtime_error("Provided thetaMax coordinate is bigger than maximum coordinate specified by thetaResolution.");
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
if (!segState) throw runtime_error("Failed to obtain SegmentedState for body with provided id.");
if (segState->needsInit)
SegmentedStateUpdater::initialize(
bId, 0); // If thickness is to be set to one segment of uninitialized body, first initialize thickness with zeros
Real area = segState->segmentArea;// the same for all the segments
for (int theta = thetaMin_; theta < thetaMax_ + 1; theta++) {
for (int phi = phiMin_; phi < phiMax_ + 1; phi++) {
int segmentPosition = theta * phiResolution + phi;
segState->coatingThickness[segmentPosition] = thickness_;
segState->coatingVolume[segmentPosition] = thickness_ * area;
}
}
return;
}
void SegmentedStateUpdater::setSegmentThickness(Body::id_t bId, int segmentPos_, Real thickness_)
{
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
if (segState->needsInit) SegmentedStateUpdater::initialize(bId, 0);
int maxSegmentPos = segState->coatingThickness.size() - 1;
if ((maxSegmentPos < segmentPos_) || (segmentPos_ < 0)) {
throw runtime_error("Segment position specified incorrectly.");
} else {
segState->coatingThickness[segmentPos_] = thickness_;
segState->coatingVolume[segmentPos_] = thickness_ * segState->segmentArea;
}
return;
}
void SegmentedStateUpdater::setThicknessToSphereSeg(Body::id_t bId, int theta_, int phi_, Real thickness_)
{
// body
const auto b = Body::byId(bId, scene);
if (!b) throw runtime_error("There is no body with given Id in the simulation.");
// try to cast shape into Sphere
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!s) throw runtime_error("This function can only be used with Spheres.");
setThicknessToSegmentRange(bId, theta_, theta_, phi_, phi_, thickness_);
return;
}
void SegmentedStateUpdater::setThicknessToFacetSide(Body::id_t bId, int side_, Real thickness_)
{
if (side_ != 0 && side_ != 1) runtime_error("Facet side should be specified with integer 0 or 1.");
// body
const auto b = Body::byId(bId, scene);
if (!b) throw runtime_error("There is no body with given Id in the simulation.");
// try to cast shape into Facet
shared_ptr<Facet> f = YADE_PTR_DYN_CAST<Facet>(b->shape);
if (!f) throw runtime_error("This function can only be used with Facets.");
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
if (!segState) throw runtime_error("Failed to obtain SegmentedState for body with provided id.");
if (segState->needsInit)
SegmentedStateUpdater::initialize(
bId, 0); // If thickness is to be set to one segment of uninitialized body, first initialize thickness with zeros
segState->coatingThickness[side_] = thickness_;
segState->coatingVolume[side_] = thickness_ * segState->segmentArea;
return;
}
void SegmentedStateUpdater::setThicknessToSpheres(vector<Body::id_t> bIds_, int thetaMin_, int thetaMax_, int phiMin_, int phiMax_, Real thickness_)
{
long size = bIds_.size();
for (long counter = 0; counter < size; counter++) {
Body::id_t bId = bIds_[counter];
// body
const auto b = Body::byId(bId, scene);
if (!b) throw runtime_error("There is no body with given Id in the simulation.");
// try to cast shape into Sphere
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!s) throw runtime_error("This function can only be used with Spheres.");
setThicknessToSegmentRange(bId, thetaMin_, thetaMax_, phiMin_, phiMax_, thickness_);
};
return;
}
// Computes volume of the material flowing from body 1 to body 2. If volume is negative it means that material flows from body 2 to body 1.
// The exchangeRate_ is to be computed in other parts of the code based on the geometry and coefficients.
Real SegmentedStateUpdater::computeVolumeExchange(Real thickness1_, Real thickness2_, Real volume1_, Real volume2_, Real exchangeRate_)
{
Real volumeChange = (thickness1_ - thickness2_) * exchangeRate_ * (scene->time - prevTime );
// If there is enough volume to exchange. If not - limit the volume
if (volumeChange > 0){ // flow from body 1 to body 2
volumeChange = min(volumeChange, volume1_);
} else {// flow from body 2 to body 1
volumeChange = min(volumeChange, volume2_);
}
return volumeChange;
}
void SegmentedStateUpdater::action()
{
if (nDone == 0) prevTime = scene->time;
//Hence, we could not be sure that the same data is not accessed by different threads.
//First loop is over bodies (internal wettability) and can be parallelized. The second one is over interactions.
// LOOP OVER BODIES
if (activateWettability){
#ifdef YADE_OPENMP
#pragma omp parallel for schedule(guided) num_threads(ompThreads > 0 ? std::min(ompThreads, omp_get_max_threads()) : omp_get_max_threads())
#endif
for (unsigned int id = 0; id < scene->bodies->size(); id++) {
const auto b = Body::byId(id, scene);
if (!b) continue;
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(b->state.get());
if (!segState) continue;
if (!(segState->thetaResolution > 0 and segState->phiResolution > 0)) continue; // if not sphere
// First, exchange volumes between segments
int numContacts = segState->segmentContacts.size();
for (int j = 0; j < numContacts; j++){
SegmentedState::SegmentContact contact = segState->segmentContacts[j];
int pos1 = contact.segmentPosition1;
int pos2 = contact.segmentPosition2;
Real thickness1 = segState->coatingThickness[pos1];
Real thickness2 = segState->coatingThickness[pos2];
Real volume1 = segState->coatingVolume[pos1];
Real volume2 = segState->coatingVolume[pos2];
Real exchangeRate = intraParticleExchangeCoeff * contact.edgeLen / contact.distance;
Real volumeChange = computeVolumeExchange(thickness1, thickness2, volume1, volume2, exchangeRate);
segState->coatingVolume[pos1] -= volumeChange;
segState->coatingVolume[pos2] += volumeChange;
}
// Next, apply new thickness based on the actual volumes
int numSegments = segState->coatingThickness.size();
for (int j = 0; j < numSegments; j++){
segState->coatingThickness[j] = segState->coatingVolume[j] / segState->segmentArea;
}
}
}
// LOOP OVER INTERACTIONS
// For now, we think it should not be parallelized, because one big facet (one segment) can have multiple interactions.
for (auto it = scene->interactions->begin(); it != scene->interactions->end(); it++) {
const shared_ptr<Interaction>& interaction = *it;
ScGeom6D* geom = YADE_CAST<ScGeom6D*>(interaction->geom.get());
if (geom) {
/// We know that it is redundant to the part in Ip2 (see comments in Ip2)
const auto body1 = Body::byId(interaction->id1, scene);
const auto body2 = Body::byId(interaction->id2, scene);
SegmentedState* segState1 = YADE_DYN_CAST<SegmentedState*>(body1->state.get());
SegmentedState* segState2 = YADE_DYN_CAST<SegmentedState*>(body2->state.get());
if (segState1 && segState2) {
if (segState1->allowMatExchange && segState2->allowMatExchange && !segState1->needsInit && !segState2->needsInit) {
Vector3r midPoint = (segState1->pos + segState2->pos) / 2;// use mid point between two bodies instead of geom->contactPoint, the latter is usless because it lies on the facet, and wee need to determine on which side the contacting body is.
SegmentedState::Segment segment1;
SegmentedState::Segment segment2;
segment1 = segState1->getSegmentFromContactPoint(midPoint);
segment2 = segState2->getSegmentFromContactPoint(midPoint);
// compute new thickness and assign it to segments
Real volumeChange = computeVolumeExchange(segment1.thickness, segment2.thickness, segment1.volume, segment2.volume, interParticleExchangeCoeff);
segState1->coatingVolume[segment1.segmentPosition] = segment1.volume - volumeChange;
segState2->coatingVolume[segment2.segmentPosition] = segment2.volume + volumeChange;
segState1->coatingThickness[segment1.segmentPosition] = segState1->coatingVolume[segment1.segmentPosition] / segState1->segmentArea;
segState2->coatingThickness[segment2.segmentPosition] = segState2->coatingVolume[segment2.segmentPosition] / segState2->segmentArea;
// reinitialize cohesion
if (reInitCohesion == 1 || reInitCohesion == 2){
CohFrictPhys* contactPhysics = YADE_DYN_CAST<CohFrictPhys*>(interaction->phys.get());
if (reInitCohesion == 1 && contactPhysics->cohesionBroken) contactPhysics->initCohesion = true;
if (reInitCohesion == 2) contactPhysics->initCohesion = true;
}
}
}
}
}
prevTime = scene->time;
}
/*********************************************************************************
*
* S E G M E N T E D M A T S P R I N K L E R
*
*********************************************************************************/
void SegmentedMatSprinkler::init()
{
needsInit = false;
versors.clear();
// Let us imagine a matrix of pixels perpendicular to versor refDir.
// The size of this matrix is defined by alpha and beta, while resulution by alphaResolution and betaResolution
// We will compute versors poining towards the centers of the "pixels".
Real alphaRad = alpha * Mathr::PI / 180;
Real betaRad = beta * Mathr::PI / 180;
Real xLength = 2 * sin(alphaRad/2);
Real yLength = 2 * sin(betaRad/2);
Real dx = xLength / alphaResolution;
Real dy = yLength / betaResolution;
Real xCurrent = -xLength/2 + dx/2; // adding dx/2 because versor points toward the center of the 'matrix field'
for (int i = 0; i < alphaResolution; i++) {
Real yCurrent = -yLength/2 + dy/2;
for (int j = 0; j < betaResolution; j++){
Vector3r vectXY = Vector3r(xCurrent,yCurrent,0);
Vector3r versor = refDir + vectXY;
versor = versor.normalized();
versors.push_back(versor);
yCurrent += dy;
}
xCurrent += dx;
}
// Code for storing the corner vectors of the sprinkled field.
// Maybe we could select form the versors computed above, but I think it will be easier and cleaner to compute it separetely.
// Also the vectors below are slightly different use the actual corners (not center of corner fields). Although, I am not sure if it is strictly necessary.
// Finally, this is computed only during initialization of the engine. Hence, the cost is minimal.
cornerVersors.clear();
for (int j = -1; j < 2; j +=2) { // We want to set y -1 and then x -1 and 1, next set y 1, and x from 1 and -1, because we need to have consecutive corners.
for (int i = -1; i < 2; i +=2){
Vector3r cornerVersor = refDir + Vector3r(-1 * i * j * xLength / 2, j * yLength, 0);// If seems overcomplicated, see the comment above.
cornerVersor = cornerVersor.normalized();
cornerVersors.push_back(cornerVersor);
}
}
}
void SegmentedMatSprinkler::setVersors(Quaternionr ori_)
{
init();
int versorsSize = versors.size();
for (int i = 0; i < versorsSize; i++) {
versors[i] = ori_ * versors[i]; // This is rotation. However, versors are initialized earlier, so it results in setting the orientation with reference to refOri.
}
// also rotate corner versors
for (int i = 0; i < 4; i++) {
cornerVersors[i] = ori_ * cornerVersors[i];
}
}
/* How parallelization is performed here:
SegmentedMatSprinkler::oneLineAction should only search within a set preselected spheres
The spheres should be preselected based on the signed distance of the sphere to limiting plane.
The limiting planes are defined by sprinkler origin and cornerVersors. For example, cornerVersor[0] x cornerVersor[1] gives the normal vector pointed outside my volume.
Hence, for each sphere, I assume it is inside, but then I will iterate over four planes. If the condition is not met for any of the planes, the sphere is outside the area of interest.
Condition is wheter the signed distance d <= R (where R is particle's radius). If positive after four iterations, I add the sphere to a vector to be checked (let's call it roiSpheres).
Since I preasummed that sphere is in roi, I only check if condition is negative.
Next, create a vector of body_ids of length equal to the vector of versors. Also, another versor storing information if sphere was found on the way of versor/ray.
Run searching in parallel (each versor separately). If sphere is reached by the ray, this information is stored in the above vectors.
After parallel run, iterating again over versors to put the droplets on sphere segments.
*/
SegmentedMatSprinkler::rayToSphereInfo SegmentedMatSprinkler::oneLineAction(Vector3r lineVersor_)
{
Vector3r d = lineVersor_.normalized(); // just making sure that versor is actually a versor
const long size = roiSpheres.size();
Body::id_t bId = 0; // id of the closest body (sphere) // it is initialized as zero, bot won't be used until bodyFound == true
bool bodyFound = false;
Real minB = 1e15; //min. distance to the closest body surface
for(long i=0; i<size; i++){
Body::id_t id = roiSpheres[i];
const auto b = Body::byId(id, scene);
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!s) continue;
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(b->state.get());
// Finding spheres that are "pierced" by the line and the closest contact point
// vector connecting line origin and sphere center
Vector3r AP = segState->pos - pos;
//Distance from sphere center to line
Real D = AP.cross(d).norm();// it should be divided by /d.norm() but d.norm() = 1, because d is a versor
if (D < s->radius){
bodyFound = true;
// distance from projection of the center on the line (P_prim) to the contact point C
Real P_prim_C = sqrt(pow(s->radius,2)-pow(D,2));
// distance from origin to point C on the surface
Real B = AP.dot(d)-P_prim_C;
if (B < minB){
minB = B;
bId = b->id;
}
} else {
continue;
}
}
rayToSphereInfo singleInfo;
singleInfo.bodyFound = bodyFound;
singleInfo.minB = minB;
singleInfo.bId = bId;
return singleInfo;
}
void SegmentedMatSprinkler::action()
{
int counter = 0;
if (needsInit) init();
Real deltaTime = 0;
if (nDone > 1 ) deltaTime = scene->time - prevTime; // delta time between runs of the sprinkler, but if it is turned on for the first time delta time should remain zero
// compute required volume of 'droplet' carried by one line (ray)
Real droplet = feedRate * deltaTime / (alphaResolution * betaResolution);
// presecelct bodies
roiSpheres.clear();
const long sizeBodies = scene->bodies->size();
for(long id=0; id<sizeBodies; id++){
bool sphereInRoi = true;
const auto b = Body::byId(id, scene);
shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!mat || !s){
sphereInRoi = false;
continue;
};
for (int i = 0; i < 4; i++){
// select corner versors
Vector3r v1 = cornerVersors[i];
Vector3r v2 = Vector3r::Zero();
if (i < 3){
v2 = cornerVersors[i+1];
} else {
v2 = cornerVersors[0];
}
// define plane and check the signed distance
Vector3r vn = v1.cross(v2);
Real planeD = -(vn[0] * pos[0] + vn[1] * pos[1] + vn[2] * pos[2]);// D = -(A * Px + B * Py + C * Pz) where P is origin of sprinkler
Vector3r sphCenter = b->state->pos;
Real radius = s->radius;
Real signDist = (vn[0] * sphCenter[0] + vn[1] * sphCenter[1] + vn[2] * sphCenter[2] + planeD) / vn.norm();
if (signDist > radius) sphereInRoi = false; // normal vector is pointed outwards the region of interest. We check if a tleast part of sphere is within ROI.
}
if (sphereInRoi) roiSpheres.push_back(b->id);
}
// prepare extra vectors and run this parallel
long size = versors.size();
vector<Body::id_t> bodyIdForVersors(size,0);// id of the closest body (sphere) to each versor// it is initialized as zero, bot won't be used until bodyFound == true
vector<bool> bodyFoundForVersors(size,false);
vector<Real> versorSphereDistances(size,-1);
#ifdef YADE_OPENMP
#pragma omp parallel for schedule(guided) num_threads(ompThreads > 0 ? std::min(ompThreads, omp_get_max_threads()) : omp_get_max_threads())
#endif
for(long i=0; i<size; i++){
rayToSphereInfo singleInfo = oneLineAction(versors[i]);
bodyIdForVersors[i] = singleInfo.bId;
bodyFoundForVersors[i] = singleInfo.bodyFound;
versorSphereDistances[i] = singleInfo.minB;
}
// another loop for putting the material on spheres
for(long i=0; i<size; i++){
Body::id_t bId = bodyIdForVersors[i];
bool bodyFound = bodyFoundForVersors[i];
Real minB = versorSphereDistances[i];
if (bodyFound){
// state
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
Vector3r surfPoint = pos + minB * versors[i]; // point on the surface
SegmentedState::Segment segment = segState->getSegmentFromContactPoint(surfPoint);
//update volume and thickness
Real newVolume = segment.volume + droplet;
segState->coatingVolume[segment.segmentPosition] = newVolume;
segState->coatingThickness[segment.segmentPosition] = newVolume / segment.area;
counter++; // counter checking number of bodies hit
} else {
lostVolume += droplet; // lost volume if body not found
}
releasedVolume += droplet; // always release volume
}
if (counter == 0) std::cout<< "The SegmentedMatSprinkler is active but does not reach any sphere." << std::endl;
prevTime = scene->time;
}
/*********************************************************************************
*
* I P 2
*
*********************************************************************************/
Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::BlendedProp Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::blendMatProp(Body::id_t bId, int segmentPosition_)
{
BlendedProp properties;
Real thickness = 0; //
Real minThickness;
Real maxThickness;
// body
const auto b = Body::byId(bId, scene);
// material
shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
minThickness = mat->minThickness;
maxThickness = mat->maxThickness;
// state
SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
if (!segState->needsInit) thickness = segState->coatingThickness[segmentPosition_];
if (thickness < minThickness || segState->needsInit){ // if state is not initialized or thickness is below min threshold set all properties primary
properties.blendedFrictionAngle = mat->frictionAngle;
properties.blendedYoung = mat->young;
properties.blendedPoisson = mat->poisson;
properties.blendedNormalCohesion = mat->normalCohesion;
properties.blendedShearCohesion = mat->shearCohesion;
} else if (thickness > maxThickness){//thickness is above max threshold set all properties secondary
properties.blendedFrictionAngle = mat->secondaryFrictionAngle;
properties.blendedYoung = mat->secondaryYoung;
properties.blendedPoisson = mat->secondaryPoisson;
properties.blendedNormalCohesion = mat->secondaryNormalCohesion;
properties.blendedShearCohesion = mat->secondaryShearCohesion;
} else { // thickness between min and max thresholds
Real proportion = (thickness-minThickness) / (maxThickness-minThickness);
properties.blendedFrictionAngle = mat->frictionAngle + proportion * (mat->secondaryFrictionAngle - mat->frictionAngle);
properties.blendedYoung = mat->young + proportion * (mat->secondaryYoung - mat->young);
properties.blendedPoisson = mat->poisson + proportion * (mat->secondaryPoisson - mat->poisson);
properties.blendedNormalCohesion = mat->normalCohesion + proportion * (mat->secondaryNormalCohesion - mat->normalCohesion);
properties.blendedShearCohesion = mat->shearCohesion + proportion * (mat->secondaryShearCohesion - mat->shearCohesion);
}
return properties;
}
bool Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::setCohesion(const shared_ptr<Interaction>& interaction, bool cohesive, BlendedProp matProp1, BlendedProp matProp2)
{
CohFrictPhys* contactPhysics = YADE_DYN_CAST<CohFrictPhys*>(interaction->phys.get());
if (not contactPhysics) {
contactPhysics = YADE_DYN_CAST<CohFrictPhys*>(interaction->phys.get());
if (not contactPhysics) {
LOG_WARN("Invalid type of interaction, cohesion not set");
return false;
}
}
// if breaks
if ((not cohesive) and not contactPhysics->cohesionBroken) {
contactPhysics->SetBreakingState(true);
return true;
}
// else bond
if (not scene) scene = Omega::instance().getScene().get();
auto b1 = Body::byId(interaction->getId1(), scene);
auto b2 = Body::byId(interaction->getId2(), scene);
auto mat1 = static_cast<CohFrictMatSeg*>(b1->material.get());
auto mat2 = static_cast<CohFrictMatSeg*>(b2->material.get());
const auto geom = YADE_CAST<ScGeom6D*>(interaction->geom.get());
// determine adhesion terms with matchmakers or default formulae
// I guess that properties blending may not work with matchmakers
// TODO - to discuss We should think whether matchmakers should be allowed at all, because they may be kind of useless in the segmented workflow
/*const auto normalCohPreCalculated = (normalCohesion) ? (*normalCohesion)(b1->id, b2->id) : math::min(matProp1.blendedNormalCohesion, matProp2.blendedNormalCohesion);
const auto shearCohPreCalculated = (shearCohesion) ? (*shearCohesion)(b1->id, b2->id) : math::min(matProp1.blendedShearCohesion, matProp2.blendedShearCohesion);
const auto rollingCohPreCalculated = (rollingCohesion) ? (*rollingCohesion)(b1->id, b2->id) : normalCohPreCalculated;
const auto twistingCohPreCalculated = (twistingCohesion) ? (*twistingCohesion)(b1->id, b2->id) : shearCohPreCalculated;*/
const auto normalCohPreCalculated = math::min(matProp1.blendedNormalCohesion, matProp2.blendedNormalCohesion);
const auto shearCohPreCalculated = math::min(matProp1.blendedShearCohesion, matProp2.blendedShearCohesion);
const auto rollingCohPreCalculated = normalCohPreCalculated;
const auto twistingCohPreCalculated = shearCohPreCalculated;
// assign adhesions
contactPhysics->cohesionBroken = false;
contactPhysics->normalAdhesion = normalCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 2);
contactPhysics->shearAdhesion = shearCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 2);
if (contactPhysics->momentRotationLaw) {
// the max stress in pure bending is 4*M/πr^3 = 4*M/(Ar) (for a circular cross-section), if it controls failure, max moment is (r/4)*normalAdhesion
contactPhysics->rollingAdhesion = 0.25 * rollingCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 3);
// the max shear stress in pure twisting is 2*Mt/πr^3 = 2*Mt/(Ar) (for a circular cross-section), if it controls failure, max moment is (r/2)*shearAdhesion
contactPhysics->twistingAdhesion = 0.5 * twistingCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 3);
}
geom->initRotations(*(b1->state), *(b2->state));
contactPhysics->fragile = (mat1->fragile || mat2->fragile);
contactPhysics->initCohesion = false;
return true;
}
void Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::go(
const shared_ptr<Material>& b1 // CohFrictMatSeg
,
const shared_ptr<Material>& b2 // CohFrictMatSeg
,
const shared_ptr<Interaction>& interaction)
{
CohFrictMatSeg* mat1 = static_cast<CohFrictMatSeg*>(b1.get());
CohFrictMatSeg* mat2 = static_cast<CohFrictMatSeg*>(b2.get());
ScGeom6D* geom = YADE_CAST<ScGeom6D*>(interaction->geom.get());
//Create cohesive interractions only once
if (setCohesionNow && cohesionDefinitionIteration == -1) cohesionDefinitionIteration = scene->iter;
if (setCohesionNow && cohesionDefinitionIteration != -1 && cohesionDefinitionIteration != scene->iter) {
cohesionDefinitionIteration = -1;
setCohesionNow = 0;
}
if (geom) {
// The conditions may be a bit tricky, but it is mostly to preserve option to setting cohesion on existing physics without modifying CohFrictPhys (otherwise we could store information about blendedProperties / cohesion in phys)
bool setNewPhys = !interaction->phys;
if (setNewPhys) interaction->phys = shared_ptr<CohFrictPhys>(new CohFrictPhys());
CohFrictPhys* contactPhysics = YADE_CAST<CohFrictPhys*>(interaction->phys.get());
bool setCohesionOnExistingPhys = (setCohesionNow or contactPhysics->initCohesion) and (mat1->isCohesive && mat2->isCohesive);
if (setNewPhys or setCohesionOnExistingPhys){
// This is common part of separable conditions below.
const auto body1 = Body::byId(interaction->id1, scene);
const auto body2 = Body::byId(interaction->id2, scene);
SegmentedState* segState1 = YADE_DYN_CAST<SegmentedState*>(body1->state.get());
SegmentedState* segState2 = YADE_DYN_CAST<SegmentedState*>(body2->state.get());
if (!segState1 || !segState2) throw runtime_error("Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys requires that both bodies state have SegmentedState.");
SegmentedState::Segment segment1;
SegmentedState::Segment segment2;
Vector3r midPoint = (segState1->pos + segState2->pos) / 2;// use mid point between two bodies instead of geom->contactPoint, the latter is usless because it lies on the facet, and wee need to determine on which side the contacting body is.
// Segment can be obtained for bodies with initialized state. If body state is not initialized, set segmentPosition to zero.
///Blending will not occur for noninitialized states anyway (in blendMatProp() function),
//and will return properties as if the thickness was below minimal threshold.
if(segState1->needsInit){
segment1.segmentPosition = 0;
} else {
segment1 = segState1->getSegmentFromContactPoint(midPoint);
}
if(segState2->needsInit){
segment2.segmentPosition = 0;
} else {
segment2 = segState2->getSegmentFromContactPoint(midPoint);
}
// blending material properties
BlendedProp matProperties1 = blendMatProp(interaction->id1, segment1.segmentPosition);
BlendedProp matProperties2 = blendMatProp(interaction->id2, segment2.segmentPosition);
if (setNewPhys) {
Real Ea = matProperties1.blendedYoung;
Real Eb = matProperties2.blendedYoung;
Real Va = matProperties1.blendedPoisson;
Real Vb = matProperties2.blendedPoisson;
Real Da = geom->radius1;
Real Db = geom->radius2;
Real fa = matProperties1.blendedFrictionAngle;
Real fb = matProperties2.blendedFrictionAngle;
Real Kn = 2.0 * Ea * Da * Eb * Db / (Ea * Da + Eb * Db); //harmonic average of two stiffnesses
// no matchmakers for now
//Real frictionAngle = (!frictAngle) ? math::min(fa, fb) : (*frictAngle)(mat1->id, mat2->id, fa, fb);
Real frictionAngle = math::min(fa, fb);
// harmonic average of alphas parameters
Real AlphaKr, AlphaKtw;
if (mat1->alphaKr && mat2->alphaKr) AlphaKr = 2.0 * mat1->alphaKr * mat2->alphaKr / (mat1->alphaKr + mat2->alphaKr);
else
AlphaKr = 0;
if (mat1->alphaKtw && mat2->alphaKtw) AlphaKtw = 2.0 * mat1->alphaKtw * mat2->alphaKtw / (mat1->alphaKtw + mat2->alphaKtw);
else
AlphaKtw = 0;
Real Ks;
if (Va && Vb)
Ks = 2.0 * Ea * Da * Va * Eb * Db * Vb
/ (Ea * Da * Va + Eb * Db * Vb); //harmonic average of two stiffnesses with ks=V*kn for each sphere
else
Ks = 0;
contactPhysics->kn = Kn;
contactPhysics->ks = Ks;
contactPhysics->kr = Da * Db * Ks * AlphaKr;
contactPhysics->ktw = Da * Db * Ks * AlphaKtw;
contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle);
contactPhysics->momentRotationLaw = (mat1->momentRotationLaw && mat2->momentRotationLaw);
if (contactPhysics->momentRotationLaw) {
contactPhysics->maxRollPl = min(mat1->etaRoll * Da, mat2->etaRoll * Db);
contactPhysics->maxTwistPl = min(mat1->etaTwist * Da, mat2->etaTwist * Db);
} else {
contactPhysics->maxRollPl = contactPhysics->maxTwistPl = 0;
}
if ((setCohesionOnNewContacts || setCohesionNow) && mat1->isCohesive && mat2->isCohesive) {
setCohesion(interaction, true, matProperties1, matProperties2); //
}
} else { // !isNew, but if setCohesionNow, all contacts are initialized like if they were newly created
if (setCohesionOnExistingPhys)
setCohesion(interaction, true, matProperties1, matProperties2);//
}
}
}
};
} // namespace yade
|