File: SegmentedBodies.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (797 lines) | stat: -rw-r--r-- 41,623 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
// 2024 © Karol Brzeziński <karol.brze@gmail.com>
// 2024 © Vasileios Angelidakis <angelidakis@qub.ac.uk>
#include <lib/high-precision/Constants.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/SegmentedBodies.hpp>

namespace yade { // Cannot have #include directive inside.

using math::max;
using math::min; // using inside .cpp file is ok.

YADE_PLUGIN((CohFrictMatSeg)(Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys)(SegmentedStateUpdater)(SegmentedState)(SegmentedMatSprinkler)); //
CREATE_LOGGER(Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys);

/*********************************************************************************
* S T A T E 
*
*********************************************************************************/

SegmentedState::Segment SegmentedState::getSegmentFromContactPoint(Vector3r midPoint_)
{
        if (needsInit) throw runtime_error("Cannot get segment from contact point for body with uninitialized SegmentedState.");
	// function finds a proper
	int     segmentPosition;
	Segment segment;
	// Quaternion
	Quaternionr q            = ori;
	Vector3r    branchVector = midPoint_ - pos;
	if (thetaResolution > 0 && phiResolution > 0) { // sphere
		Real dH     = 2.0 / thetaResolution;
		Real dPhi = 2.0 * Mathr::PI / phiResolution;
		// branch vector in body coordinate system
		Vector3r v = q.inverse() * branchVector; // Maybe .toRotationMatrix() should be put after inverse(), we will see during validation
		// z coordinate of normalized branch vector
		Real h = v[2] / (v.norm()) + 1; // add 1 so it ranges from 0 to 2 instead of -1 to 1
		// computing angle
		Real phi = atan2(v[1], v[0]);
		if (phi < 0) {
			phi += 2 * Mathr::PI; // result was -pi to pi, I want it from zero to 2*pi
		}
		// determine to which segment it belongs
		int phiNo     = static_cast<int>(phi / dPhi);
		int thetaNo       = static_cast<int>(h / dH);
		segmentPosition = thetaNo * phiResolution + phiNo;
		//std::cout << "Q is: " << q<< " thetaResolution is: " << thetaResolution  << " h is: " << h << " dH is: " << dH << " thetaNo is: " << thetaNo   << std::endl;
	} else { // if Facet shape
		Vector3r fn = q * facetRefNormal;
		if (fn.dot(branchVector) < 0) { //
			segmentPosition = 0;
		} else {
			segmentPosition = 1;
		}
	}
	// get the area and thickness
	segment.segmentPosition = segmentPosition;
	segment.thickness       = coatingThickness[segmentPosition];
	segment.volume          = coatingVolume[segmentPosition];
	segment.area            = segmentArea;

	return segment;
}

void SegmentedState::initializeSegmentContacts()
{
        // note that this function do not have access to the shape of body (sphere radius)
        // here just angles are computed and normalized distances, the are multiplied by radius in SegmentedStateUpdater::initialize()
	if (thetaResolution > 0 && phiResolution > 0) { // only if sphere
		Real dH     = 2.0 / thetaResolution;
		Real dPhi = 2.0 * Mathr::PI / phiResolution;
		for (int thetaNo = 0; thetaNo < thetaResolution; thetaNo++){
		        // vertical components
		        Real vertEdgeAngle1 =  acos(1. - thetaNo * dH);// vertical edge means edge between segments with the same thetaNo
		        Real vertEdgeAngle2 =  acos(1. - (thetaNo + 1) * dH);
		        Real vertEdgeAngleCentral =  acos(1. - (thetaNo + 0.5) * dH);
		        Real vertEdgeAngleCentralNext =  acos(1. - (thetaNo + 1.5) * dH);// center of next segment
		        Real normalizedVertEdgeLen = (vertEdgeAngle2-vertEdgeAngle1); // should be enough since radius here is assumed 1
		        Real normalizedVertSegmentDist = (vertEdgeAngleCentralNext-vertEdgeAngleCentral);
		        // horizontal components also depend only on theta (loop over phi is to assign proper segment numbers)
		        // one just need to choose proper slice/cross-section of sphere and compute section of a circle
		        Real sectionR2 = sin(vertEdgeAngle2); // will be zero for thetaNo = thetaResolution,
		        Real sectionCentralR = sin(vertEdgeAngleCentral);
		        Real normalizedHorizontalEdgeLen2 = dPhi * sectionR2;
		        Real normalizedHorizontalSegmentDist = dPhi * sectionCentralR;
		        for (int phiNo = 0; phiNo < phiResolution; phiNo++){
		                // add "contacts" between segments. 
		                // To avoid duplicates, for segment denoted by (thetaNo, phiNo) add only contacts with segment denoted by
		                // (thetaNo + 1, phiNo), and (thetaNo, phiNo + 1).
		                // The only exception is phiNo = 0, because we need to make full circle, so we add also contact with phiNo = phiResolution.
                                // vertical contact
                                if (thetaNo < thetaResolution - 1){
                                        SegmentContact verticalContact;
                                        verticalContact.segmentPosition1 = thetaNo * phiResolution + phiNo;
                                        verticalContact.segmentPosition2 = (thetaNo + 1) * phiResolution + phiNo;
                                        verticalContact.distance = normalizedVertSegmentDist; // distance measured vertically but edge is horizontal
                                        verticalContact.edgeLen = normalizedHorizontalEdgeLen2;  
                                        // push back created contact
                                        segmentContacts.push_back(verticalContact);                                
                                }
                                // horizontal contact 
                                SegmentContact horizontalContact;
                                int nextPhiNo = phiNo + 1;
                                if (phiNo == phiResolution - 1) nextPhiNo = 0;
                                horizontalContact.segmentPosition1 = thetaNo * phiResolution + phiNo;
                                horizontalContact.segmentPosition2 = thetaNo * phiResolution + nextPhiNo;                                
                                horizontalContact.distance = normalizedHorizontalSegmentDist; // distance measured horizontally but edge is vertical
                                horizontalContact.edgeLen = normalizedVertEdgeLen; 
                                // push back created contact
                                segmentContacts.push_back(horizontalContact);                             
		        }		
		}
	}
        return;
}

/*********************************************************************************
*
* S T A T E   U P D A T E R 
*
*********************************************************************************/

void SegmentedStateUpdater::initialize(Body::id_t bId, Real thickness_)
{
	int  coatingThicknessVectorLen = 0;
	Real segmentArea               = 0;
	// body
	const auto b = Body::byId(bId, scene);
	if (!b) throw runtime_error("There is no body with given Id in the simulation.");
	// material
	shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
	// try to cast shape into Sphere of Facet to check the shape of the body
	shared_ptr<Facet>  f = YADE_PTR_DYN_CAST<Facet>(b->shape);
	shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);

	SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
	if (!segState) throw runtime_error("Failed to obtain SegmentedState for body with provided id.");

	if (!s && !f) {
		throw runtime_error("In the current version of the code SegmentedState cannot be initialized for shapes different than Sphere or Facet.");
	} else {
		if (!s) {
			coatingThicknessVectorLen = 2;
			segmentArea               = f->area * 1e6; // * 1e6 converts to squared millimiters
			segState->facetRefNormal  = f->normal;
		} else {
			coatingThicknessVectorLen = thetaResolution * phiResolution;
			segmentArea               = 6 * Mathr::PI * pow(s->radius, 2) / coatingThicknessVectorLen * 1e6; // * 1e6 converts to squared millimiters
			segState->thetaResolution   = thetaResolution;
			segState->phiResolution = phiResolution;
			// initialize segment contacts here
			segState->initializeSegmentContacts();		    
			// Geometry of 'contacts' created by the above function was normalized by radius.
			// Hence, we will need multiply the distances by radius.
			// TODO Consider, whether the distances should be converted to mm, to be consistent with units assumed for thickness. For now - yes.
			for (int i = 0; i < int(segState->segmentContacts.size()); i++){
			        segState->segmentContacts[i].distance *= s->radius * 1000;
                                segState->segmentContacts[i].edgeLen *= s->radius * 1000;
			}

		}
	};


	for (long counter = 0; counter < coatingThicknessVectorLen; counter++) {
		segState->coatingThickness.push_back(thickness_); 
		segState->coatingVolume.push_back(thickness_ * segmentArea); 
	};

	segState->needsInit   = false;
	segState->segmentArea = segmentArea;

	return;
}


void SegmentedStateUpdater::setThicknessToSegmentRange(Body::id_t bId, int thetaMin_, int thetaMax_, int phiMin_, int phiMax_, Real thickness_)
{
	// body
	const auto b = Body::byId(bId, scene);
	if (!b) throw runtime_error("There is no body with given Id in the simulation.");
	// material
	shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
	// checking if provided ranges are valid based on the resolution (from material)
	if (phiMin_ < 0) throw runtime_error("Theta coordinate of segment cannot be negative."); // maybe instead of this check we could use just unsigned type?
	if (thetaMin_ < 0) throw runtime_error("Phi coordinate of segment cannot be negative.");
	if (phiResolution - 1 < phiMax_)
		throw runtime_error("Provided phiMax coordinate range is bigger than maximum coordinate specified by phiResolution.");
	if (thetaResolution - 1 < thetaMax_) throw runtime_error("Provided thetaMax coordinate is bigger than maximum coordinate specified by thetaResolution.");

	SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
	if (!segState) throw runtime_error("Failed to obtain SegmentedState for body with provided id.");

	if (segState->needsInit)
		SegmentedStateUpdater::initialize(
		        bId, 0); // If thickness is to be set to one segment of uninitialized body, first initialize thickness with zeros
        Real area = segState->segmentArea;// the same for all the segments
	for (int theta = thetaMin_; theta < thetaMax_ + 1; theta++) {
		for (int phi = phiMin_; phi < phiMax_ + 1; phi++) {
			int segmentPosition                         = theta * phiResolution + phi;
			segState->coatingThickness[segmentPosition] = thickness_;
			segState->coatingVolume[segmentPosition] = thickness_ * area;
		}
	}

	return;
}

void SegmentedStateUpdater::setSegmentThickness(Body::id_t bId, int segmentPos_, Real thickness_)
{
	SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
	if (segState->needsInit) SegmentedStateUpdater::initialize(bId, 0);
	int maxSegmentPos = segState->coatingThickness.size() - 1;
	if ((maxSegmentPos < segmentPos_) || (segmentPos_ < 0)) {
		throw runtime_error("Segment position specified incorrectly.");
	} else {
		segState->coatingThickness[segmentPos_] = thickness_;
		segState->coatingVolume[segmentPos_] = thickness_ * segState->segmentArea;
	}

	return;
}


void SegmentedStateUpdater::setThicknessToSphereSeg(Body::id_t bId, int theta_, int phi_, Real thickness_)
{
	// body
	const auto b = Body::byId(bId, scene);
	if (!b) throw runtime_error("There is no body with given Id in the simulation.");
	// try to cast shape into Sphere
	shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
	if (!s) throw runtime_error("This function can only be used with Spheres.");

	setThicknessToSegmentRange(bId, theta_, theta_, phi_, phi_, thickness_);

	return;
}

void SegmentedStateUpdater::setThicknessToFacetSide(Body::id_t bId, int side_, Real thickness_)
{
	if (side_ != 0 && side_ != 1) runtime_error("Facet side should be specified with integer 0 or 1.");
	// body
	const auto b = Body::byId(bId, scene);
	if (!b) throw runtime_error("There is no body with given Id in the simulation.");
	// try to cast shape into Facet
	shared_ptr<Facet> f = YADE_PTR_DYN_CAST<Facet>(b->shape);
	if (!f) throw runtime_error("This function can only be used with Facets.");

	SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get());
	if (!segState) throw runtime_error("Failed to obtain SegmentedState for body with provided id.");
	if (segState->needsInit)
		SegmentedStateUpdater::initialize(
		        bId, 0); // If thickness is to be set to one segment of uninitialized body, first initialize thickness with zeros

	segState->coatingThickness[side_] = thickness_;
	segState->coatingVolume[side_] = thickness_ * segState->segmentArea;

	return;
}

void SegmentedStateUpdater::setThicknessToSpheres(vector<Body::id_t> bIds_, int thetaMin_, int thetaMax_, int phiMin_, int phiMax_, Real thickness_)
{
	long size = bIds_.size();
	for (long counter = 0; counter < size; counter++) {
		Body::id_t bId = bIds_[counter];
		// body
		const auto b = Body::byId(bId, scene);
		if (!b) throw runtime_error("There is no body with given Id in the simulation.");
		// try to cast shape into Sphere
		shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
		if (!s) throw runtime_error("This function can only be used with Spheres.");

		setThicknessToSegmentRange(bId, thetaMin_, thetaMax_, phiMin_, phiMax_, thickness_);
	};

	return;
}

// Computes volume of the material flowing from body 1 to body 2. If volume is negative it means that material flows from body 2 to body 1.
// The exchangeRate_ is to be computed in other parts of the code based on the geometry and coefficients.
Real SegmentedStateUpdater::computeVolumeExchange(Real thickness1_, Real thickness2_, Real volume1_, Real volume2_, Real exchangeRate_)
{
        Real volumeChange = (thickness1_ - thickness2_) * exchangeRate_ * (scene->time - prevTime );
        // If there is enough volume to exchange. If not - limit the volume
        if (volumeChange > 0){ // flow from body 1 to body 2
                volumeChange = min(volumeChange, volume1_);
        } else {// flow from body 2 to body 1
                volumeChange = min(volumeChange, volume2_);        
        }
        return volumeChange;
}

void SegmentedStateUpdater::action()
{
        if (nDone == 0) prevTime = scene->time; 
	//Hence, we could not be sure that the same data is not accessed by different threads.
	//First loop is over bodies (internal wettability) and can be parallelized. The second one is over interactions.
	// LOOP OVER BODIES
	if (activateWettability){
#ifdef YADE_OPENMP
#pragma omp parallel for schedule(guided) num_threads(ompThreads > 0 ? std::min(ompThreads, omp_get_max_threads()) : omp_get_max_threads())
#endif                    
                for (unsigned int id = 0; id < scene->bodies->size(); id++) {
                        const auto b = Body::byId(id, scene);
                        if (!b) continue;
                        SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(b->state.get());
                        if (!segState) continue;
                        if (!(segState->thetaResolution > 0 and segState->phiResolution > 0)) continue; // if not sphere
                        // First, exchange volumes between segments
                        int numContacts = segState->segmentContacts.size();
	                for (int j = 0; j < numContacts; j++){
                                SegmentedState::SegmentContact contact = segState->segmentContacts[j];
                                int pos1 = contact.segmentPosition1;
                                int pos2 = contact.segmentPosition2;
                                Real thickness1 = segState->coatingThickness[pos1];
                                Real thickness2 = segState->coatingThickness[pos2];
                                Real volume1 = segState->coatingVolume[pos1];
                                Real volume2 = segState->coatingVolume[pos2];

                                Real exchangeRate = intraParticleExchangeCoeff * contact.edgeLen / contact.distance;
                                Real volumeChange = computeVolumeExchange(thickness1, thickness2, volume1, volume2, exchangeRate);
                                
                                segState->coatingVolume[pos1] -= volumeChange;
                                segState->coatingVolume[pos2] += volumeChange;                
                        }    
                        // Next, apply new thickness based on the actual volumes
                        int numSegments = segState->coatingThickness.size();
                        for (int j = 0; j < numSegments; j++){
                            segState->coatingThickness[j] = segState->coatingVolume[j] / segState->segmentArea;
                        }   
	        }
	}
	// LOOP OVER INTERACTIONS
	// For now, we think it should not be parallelized, because one big facet (one segment) can have multiple interactions.
	for (auto it = scene->interactions->begin(); it != scene->interactions->end(); it++) {
		const shared_ptr<Interaction>& interaction = *it;
		ScGeom6D*                      geom        = YADE_CAST<ScGeom6D*>(interaction->geom.get());
		if (geom) {
			/// We know that it is redundant to the part in Ip2 (see comments in Ip2)
			const auto body1 = Body::byId(interaction->id1, scene);
			const auto body2 = Body::byId(interaction->id2, scene);

			SegmentedState* segState1 = YADE_DYN_CAST<SegmentedState*>(body1->state.get());
			SegmentedState* segState2 = YADE_DYN_CAST<SegmentedState*>(body2->state.get());
			if (segState1 && segState2) {
			        if (segState1->allowMatExchange && segState2->allowMatExchange && !segState1->needsInit && !segState2->needsInit) {
				        Vector3r midPoint = (segState1->pos + segState2->pos) / 2;// use mid point between two bodies instead of geom->contactPoint, the latter is usless because it lies on the facet, and wee need to determine on which side the contacting body is.

				        SegmentedState::Segment segment1;
				        SegmentedState::Segment segment2;

				        segment1 = segState1->getSegmentFromContactPoint(midPoint);
				        segment2 = segState2->getSegmentFromContactPoint(midPoint);

				        // compute new thickness and assign it to segments
				        Real volumeChange = computeVolumeExchange(segment1.thickness, segment2.thickness, segment1.volume, segment2.volume, interParticleExchangeCoeff);

				        segState1->coatingVolume[segment1.segmentPosition] = segment1.volume - volumeChange;
				        segState2->coatingVolume[segment2.segmentPosition] = segment2.volume + volumeChange;
				        
				        segState1->coatingThickness[segment1.segmentPosition] = segState1->coatingVolume[segment1.segmentPosition] / segState1->segmentArea;
				        segState2->coatingThickness[segment2.segmentPosition] = segState2->coatingVolume[segment2.segmentPosition] / segState2->segmentArea;
				        
				        // reinitialize cohesion
				        if (reInitCohesion == 1 || reInitCohesion == 2){
				                CohFrictPhys* contactPhysics = YADE_DYN_CAST<CohFrictPhys*>(interaction->phys.get());
				                if (reInitCohesion == 1 && contactPhysics->cohesionBroken) contactPhysics->initCohesion = true;
				                if (reInitCohesion == 2) contactPhysics->initCohesion = true;
				        }
        
				}
			}
		}
	}
	prevTime = scene->time;
}


/*********************************************************************************
*
* S E G M E N T E D   M A T   S P R I N K L E R 
*
*********************************************************************************/

void SegmentedMatSprinkler::init()
{
	needsInit = false;
	versors.clear();	
    // Let us imagine a matrix of pixels perpendicular to versor refDir.
    // The size of this matrix is defined by alpha and beta, while resulution by alphaResolution and betaResolution
    // We will compute versors poining towards the centers of the "pixels".
    Real alphaRad = alpha * Mathr::PI / 180;
    Real betaRad = beta * Mathr::PI / 180;
    Real xLength = 2 * sin(alphaRad/2);
    Real yLength = 2 * sin(betaRad/2);
    Real dx = xLength / alphaResolution;
    Real dy = yLength / betaResolution;
    Real xCurrent = -xLength/2 + dx/2; // adding dx/2 because versor points toward the center of the 'matrix field'
        
	for (int i = 0; i < alphaResolution; i++) {
	        Real yCurrent = -yLength/2 + dy/2;
                for (int j = 0; j < betaResolution; j++){

                        Vector3r vectXY = Vector3r(xCurrent,yCurrent,0);
                        Vector3r versor = refDir + vectXY;
                        versor = versor.normalized();
                        versors.push_back(versor);
                        yCurrent += dy;
                }
                xCurrent += dx;
	}
	
	// Code for storing the corner vectors of the sprinkled field.
	// Maybe we could select form the versors computed above, but I think it will be easier and cleaner to compute it separetely.
	// Also the vectors below are slightly different use the actual corners (not center of corner fields). Although, I am not sure if it is strictly necessary.
	// Finally, this is computed only during initialization of the engine. Hence, the cost is minimal.
	
	cornerVersors.clear();
	for (int j = -1; j < 2; j +=2) { // We want to set y -1 and then x -1 and 1, next set y 1, and x from 1 and -1, because we need to have consecutive corners.
	    for (int i = -1; i < 2; i +=2){
	        Vector3r cornerVersor = refDir + Vector3r(-1 * i * j * xLength / 2, j * yLength, 0);// If seems overcomplicated, see the comment above.
	        cornerVersor = cornerVersor.normalized();
	        cornerVersors.push_back(cornerVersor);
	    }	
	}
	
	
}

void SegmentedMatSprinkler::setVersors(Quaternionr ori_)
{
    init();
	int versorsSize = versors.size();
	for (int i = 0; i < versorsSize; i++) {
                versors[i] = ori_ * versors[i]; // This is rotation. However, versors are initialized earlier, so it results in setting the orientation with reference to refOri.
	}
	// also rotate corner versors
	for (int i = 0; i < 4; i++) {
                cornerVersors[i] = ori_ * cornerVersors[i];
	}
}



/* How parallelization is performed here:

SegmentedMatSprinkler::oneLineAction should only search within a set preselected spheres 

The spheres should be preselected based on the signed distance of the sphere to limiting plane.
The limiting planes are defined by sprinkler origin and cornerVersors. For example, cornerVersor[0] x cornerVersor[1] gives the normal vector pointed outside my volume.
Hence, for each sphere, I assume it is inside, but then I will iterate over four planes. If the condition is not met for any of the planes, the sphere is outside the area of interest.
Condition is wheter the signed distance d <= R (where R is particle's radius). If positive after four iterations, I add the sphere to a vector to be checked (let's call it roiSpheres).
Since I preasummed that sphere is in roi, I only check if condition is negative.

Next, create a vector of body_ids of length equal to the vector of versors. Also, another versor storing information if sphere was found on the way of versor/ray.

Run searching in parallel (each versor separately). If sphere is reached by the ray, this information is stored in the above vectors.

After parallel run, iterating again over versors to put the droplets on sphere segments.

*/





SegmentedMatSprinkler::rayToSphereInfo SegmentedMatSprinkler::oneLineAction(Vector3r lineVersor_)
{
        Vector3r d = lineVersor_.normalized(); // just making sure that versor is actually a versor
        const long size = roiSpheres.size();
        Body::id_t bId = 0; // id of the closest body (sphere) // it is initialized as zero, bot won't be used until bodyFound == true
        bool bodyFound = false;
        Real minB = 1e15; //min. distance to the closest body surface
     
        for(long i=0; i<size; i++){
            Body::id_t id = roiSpheres[i];
            const auto b = Body::byId(id, scene);
            shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
            if (!s) continue;
            SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(b->state.get()); 
            // Finding spheres that are "pierced" by the line and the closest contact point
            // vector connecting line origin and sphere center
            Vector3r AP = segState->pos - pos;
            //Distance from sphere center to line
            Real D = AP.cross(d).norm();// it should be divided by /d.norm() but d.norm() = 1, because d is a versor
            if (D < s->radius){
                    bodyFound = true;
                    // distance from projection of the center on the line (P_prim) to the contact point C
                    Real P_prim_C = sqrt(pow(s->radius,2)-pow(D,2));
                    // distance from origin to point C on the surface
                    Real B = AP.dot(d)-P_prim_C;
                    if (B < minB){
                            minB = B;
                            bId = b->id;
                    }
            } else {
                    continue;
            }
                  
        }  
        
        rayToSphereInfo singleInfo;
        singleInfo.bodyFound = bodyFound;
        singleInfo.minB = minB;
        singleInfo.bId = bId;
        return singleInfo;
}

void SegmentedMatSprinkler::action()
{       
    int counter = 0;
	if (needsInit) init();
	Real deltaTime = 0;
	if (nDone > 1 ) deltaTime = scene->time - prevTime; // delta time between runs of the sprinkler, but if it is turned on for the first time delta time should remain zero
    // compute required volume of 'droplet' carried by one line (ray)
    Real droplet = feedRate * deltaTime / (alphaResolution * betaResolution);
    
    // presecelct bodies 
    roiSpheres.clear();
    const long sizeBodies = scene->bodies->size();
 
    for(long id=0; id<sizeBodies; id++){
        bool sphereInRoi = true;
        const auto b = Body::byId(id, scene);
        shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
        shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
        if (!mat || !s){
            sphereInRoi = false;
            continue;
        };
        for (int i = 0; i < 4; i++){
            // select corner versors
            Vector3r v1 = cornerVersors[i];
            Vector3r v2 = Vector3r::Zero();
            if (i < 3){
                v2 = cornerVersors[i+1];
            } else {
                v2 = cornerVersors[0];
            }
            // define plane and check the signed distance
            Vector3r vn = v1.cross(v2);
            Real planeD = -(vn[0] * pos[0] + vn[1] * pos[1] + vn[2] * pos[2]);// D = -(A * Px + B * Py + C * Pz)  where P is origin of sprinkler
            Vector3r sphCenter = b->state->pos;
            Real radius = s->radius;
            Real signDist = (vn[0] * sphCenter[0] + vn[1] * sphCenter[1] + vn[2] * sphCenter[2] + planeD) / vn.norm(); 
            if (signDist > radius) sphereInRoi = false; // normal vector is pointed outwards the region of interest. We check if a tleast part of sphere is within ROI.
            
        }
        if (sphereInRoi) roiSpheres.push_back(b->id);
    }
    // prepare extra vectors and run this parallel
    long size = versors.size();
    vector<Body::id_t> bodyIdForVersors(size,0);// id of the closest body (sphere) to each versor// it is initialized as zero, bot won't be used until bodyFound == true
    vector<bool> bodyFoundForVersors(size,false);
    vector<Real> versorSphereDistances(size,-1);

#ifdef YADE_OPENMP
#pragma omp parallel for schedule(guided) num_threads(ompThreads > 0 ? std::min(ompThreads, omp_get_max_threads()) : omp_get_max_threads())
#endif    
    for(long i=0; i<size; i++){  
            rayToSphereInfo singleInfo = oneLineAction(versors[i]);
            bodyIdForVersors[i] = singleInfo.bId;
            bodyFoundForVersors[i] = singleInfo.bodyFound;
            versorSphereDistances[i] = singleInfo.minB;

    }

    
    // another loop for putting the material on spheres
    for(long i=0; i<size; i++){  
        Body::id_t bId = bodyIdForVersors[i];
        bool bodyFound = bodyFoundForVersors[i];
        Real minB = versorSphereDistances[i];      
        if (bodyFound){
	        // state
	        SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get()); 
	        Vector3r surfPoint = pos + minB * versors[i]; // point on the surface
	        SegmentedState::Segment segment = segState->getSegmentFromContactPoint(surfPoint);
	        //update volume and thickness
	        Real newVolume = segment.volume + droplet;
	        segState->coatingVolume[segment.segmentPosition] = newVolume;
	        segState->coatingThickness[segment.segmentPosition] = newVolume / segment.area; 
	        counter++; // counter checking number of bodies hit 
	    } else {
	        lostVolume += droplet; // lost volume if body not found
	    }
	    releasedVolume += droplet; // always release volume     
    }    
    if (counter == 0) std::cout<< "The SegmentedMatSprinkler is active but does not reach any sphere." << std::endl;
    prevTime = scene->time;

}

/*********************************************************************************
*
* I P 2
*
*********************************************************************************/
Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::BlendedProp Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::blendMatProp(Body::id_t bId, int segmentPosition_)
{
        BlendedProp properties;
        Real thickness = 0; //
        Real minThickness;
        Real maxThickness;
	// body
	const auto b = Body::byId(bId, scene);
	// material
	shared_ptr<CohFrictMatSeg> mat = YADE_PTR_DYN_CAST<CohFrictMatSeg>(b->material);
	minThickness = mat->minThickness;
	maxThickness = mat->maxThickness;
	// state
	SegmentedState* segState = YADE_DYN_CAST<SegmentedState*>(Body::byId(bId, scene)->state.get()); 
	if (!segState->needsInit) thickness = segState->coatingThickness[segmentPosition_];
	if (thickness < minThickness || segState->needsInit){ // if state is not initialized or thickness is below min threshold set all properties primary
                properties.blendedFrictionAngle = mat->frictionAngle; 
                properties.blendedYoung = mat->young;
                properties.blendedPoisson = mat->poisson;
                properties.blendedNormalCohesion = mat->normalCohesion;
                properties.blendedShearCohesion = mat->shearCohesion;
	} else if (thickness > maxThickness){//thickness is above max threshold set all properties secondary
                properties.blendedFrictionAngle = mat->secondaryFrictionAngle; 
                properties.blendedYoung = mat->secondaryYoung;
                properties.blendedPoisson = mat->secondaryPoisson;
                properties.blendedNormalCohesion = mat->secondaryNormalCohesion;
                properties.blendedShearCohesion = mat->secondaryShearCohesion;	        
	} else { // thickness between min and max thresholds
	        Real proportion = (thickness-minThickness) / (maxThickness-minThickness);
	        
                properties.blendedFrictionAngle = mat->frictionAngle + proportion * (mat->secondaryFrictionAngle - mat->frictionAngle); 
                properties.blendedYoung = mat->young + proportion * (mat->secondaryYoung - mat->young);
                properties.blendedPoisson = mat->poisson + proportion * (mat->secondaryPoisson - mat->poisson);
                properties.blendedNormalCohesion = mat->normalCohesion + proportion * (mat->secondaryNormalCohesion - mat->normalCohesion);
                properties.blendedShearCohesion = mat->shearCohesion + proportion * (mat->secondaryShearCohesion - mat->shearCohesion);	   	
	}	
	return properties;
}



bool Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::setCohesion(const shared_ptr<Interaction>& interaction, bool cohesive, BlendedProp matProp1, BlendedProp matProp2)
{
        CohFrictPhys* contactPhysics = YADE_DYN_CAST<CohFrictPhys*>(interaction->phys.get());
	if (not contactPhysics) {
		contactPhysics = YADE_DYN_CAST<CohFrictPhys*>(interaction->phys.get());
		if (not contactPhysics) {
			LOG_WARN("Invalid type of interaction, cohesion not set");
			return false;
		}
	}
	// if breaks
	if ((not cohesive) and not contactPhysics->cohesionBroken) {
		contactPhysics->SetBreakingState(true);
		return true;
	}
	// else bond
	if (not scene) scene = Omega::instance().getScene().get();
	auto       b1   = Body::byId(interaction->getId1(), scene);
	auto       b2   = Body::byId(interaction->getId2(), scene);
	auto       mat1 = static_cast<CohFrictMatSeg*>(b1->material.get());
	auto       mat2 = static_cast<CohFrictMatSeg*>(b2->material.get());
	const auto geom = YADE_CAST<ScGeom6D*>(interaction->geom.get());
	// determine adhesion terms with matchmakers or default formulae
	// I guess that properties blending may not work with matchmakers
	// TODO  - to discuss We should think whether matchmakers should be allowed at all, because they may be kind of useless in the segmented workflow
	/*const auto normalCohPreCalculated   = (normalCohesion) ? (*normalCohesion)(b1->id, b2->id) : math::min(matProp1.blendedNormalCohesion, matProp2.blendedNormalCohesion);
	const auto shearCohPreCalculated    = (shearCohesion) ? (*shearCohesion)(b1->id, b2->id) : math::min(matProp1.blendedShearCohesion, matProp2.blendedShearCohesion);
	const auto rollingCohPreCalculated  = (rollingCohesion) ? (*rollingCohesion)(b1->id, b2->id) : normalCohPreCalculated;
	const auto twistingCohPreCalculated = (twistingCohesion) ? (*twistingCohesion)(b1->id, b2->id) : shearCohPreCalculated;*/
        const auto normalCohPreCalculated   =  math::min(matProp1.blendedNormalCohesion, matProp2.blendedNormalCohesion);
	const auto shearCohPreCalculated    =  math::min(matProp1.blendedShearCohesion, matProp2.blendedShearCohesion);
	const auto rollingCohPreCalculated  =  normalCohPreCalculated;
	const auto twistingCohPreCalculated =  shearCohPreCalculated;
	// assign adhesions
	contactPhysics->cohesionBroken = false;
	contactPhysics->normalAdhesion = normalCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 2);
	contactPhysics->shearAdhesion  = shearCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 2);
	if (contactPhysics->momentRotationLaw) {
		// the max stress in pure bending is 4*M/πr^3 = 4*M/(Ar) (for a circular cross-section), if it controls failure, max moment is (r/4)*normalAdhesion
		contactPhysics->rollingAdhesion = 0.25 * rollingCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 3);
		// the max shear stress in pure twisting is 2*Mt/πr^3 = 2*Mt/(Ar) (for a circular cross-section), if it controls failure, max moment is (r/2)*shearAdhesion
		contactPhysics->twistingAdhesion = 0.5 * twistingCohPreCalculated * pow(math::min(geom->radius2, geom->radius1), 3);
	}
	geom->initRotations(*(b1->state), *(b2->state));
	contactPhysics->fragile      = (mat1->fragile || mat2->fragile);
	contactPhysics->initCohesion = false;
	return true;
}

void Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys::go(
        const shared_ptr<Material>& b1 // CohFrictMatSeg
        ,
        const shared_ptr<Material>& b2 // CohFrictMatSeg
        ,
        const shared_ptr<Interaction>& interaction)
{
	CohFrictMatSeg* mat1 = static_cast<CohFrictMatSeg*>(b1.get());
	CohFrictMatSeg* mat2 = static_cast<CohFrictMatSeg*>(b2.get());
	ScGeom6D*       geom = YADE_CAST<ScGeom6D*>(interaction->geom.get());

	//Create cohesive interractions only once
	if (setCohesionNow && cohesionDefinitionIteration == -1) cohesionDefinitionIteration = scene->iter;
	if (setCohesionNow && cohesionDefinitionIteration != -1 && cohesionDefinitionIteration != scene->iter) {
		cohesionDefinitionIteration = -1;
		setCohesionNow              = 0;
	}

	if (geom) {
	        // The conditions may be a bit tricky, but it is mostly to preserve option to setting cohesion on existing physics without modifying CohFrictPhys (otherwise we could store information about blendedProperties / cohesion in phys)
	        bool setNewPhys = !interaction->phys;
	        if (setNewPhys)    interaction->phys            = shared_ptr<CohFrictPhys>(new CohFrictPhys());
	        CohFrictPhys* contactPhysics = YADE_CAST<CohFrictPhys*>(interaction->phys.get());
	        bool setCohesionOnExistingPhys = (setCohesionNow or contactPhysics->initCohesion) and (mat1->isCohesive && mat2->isCohesive);
	        
	        if (setNewPhys or setCohesionOnExistingPhys){
	                // This is common part of separable conditions below. 
		        
			const auto body1 = Body::byId(interaction->id1, scene);
			const auto body2 = Body::byId(interaction->id2, scene);

			SegmentedState* segState1 = YADE_DYN_CAST<SegmentedState*>(body1->state.get());
			SegmentedState* segState2 = YADE_DYN_CAST<SegmentedState*>(body2->state.get());
			if (!segState1 || !segState2) throw runtime_error("Ip2_CohFrictMatSeg_CohFrictMatSeg_CohFrictPhys requires that both bodies state have SegmentedState.");

	                SegmentedState::Segment segment1;
	                SegmentedState::Segment segment2;
			Vector3r midPoint = (segState1->pos + segState2->pos) / 2;// use mid point between two bodies instead of geom->contactPoint, the latter is usless because it lies on the facet, and wee need to determine on which side the contacting body is.
		        // Segment can be obtained for bodies with initialized state. If body state is not initialized, set segmentPosition to zero. 
		        ///Blending will not occur for noninitialized states anyway (in blendMatProp() function), 
		        //and will return properties as if the thickness was below minimal threshold.
		        if(segState1->needsInit){
		                segment1.segmentPosition = 0;
		        } else {
		                segment1 = segState1->getSegmentFromContactPoint(midPoint);
		        }
		        if(segState2->needsInit){
		                segment2.segmentPosition = 0;
		        } else {
		                segment2 = segState2->getSegmentFromContactPoint(midPoint);
		        }                       
                        
			// blending material properties
                        BlendedProp matProperties1 = blendMatProp(interaction->id1, segment1.segmentPosition);
                        BlendedProp matProperties2 = blendMatProp(interaction->id2, segment2.segmentPosition);
                        
		        if (setNewPhys) {

			        Real          Ea             = matProperties1.blendedYoung;
			        Real          Eb             = matProperties2.blendedYoung;
			        Real          Va             = matProperties1.blendedPoisson;
			        Real          Vb             = matProperties2.blendedPoisson;
			        Real          Da             = geom->radius1;
			        Real          Db             = geom->radius2;
			        Real          fa             = matProperties1.blendedFrictionAngle;
			        Real          fb             = matProperties2.blendedFrictionAngle;
			        Real          Kn             = 2.0 * Ea * Da * Eb * Db / (Ea * Da + Eb * Db); //harmonic average of two stiffnesses
			        // no matchmakers for now
			        //Real          frictionAngle  = (!frictAngle) ? math::min(fa, fb) : (*frictAngle)(mat1->id, mat2->id, fa, fb);
			        Real          frictionAngle  = math::min(fa, fb);
			        // harmonic average of alphas parameters
			        Real AlphaKr, AlphaKtw;
			        if (mat1->alphaKr && mat2->alphaKr) AlphaKr = 2.0 * mat1->alphaKr * mat2->alphaKr / (mat1->alphaKr + mat2->alphaKr);
			        else
				        AlphaKr = 0;
			        if (mat1->alphaKtw && mat2->alphaKtw) AlphaKtw = 2.0 * mat1->alphaKtw * mat2->alphaKtw / (mat1->alphaKtw + mat2->alphaKtw);
			        else
				        AlphaKtw = 0;

			        Real Ks;
			        if (Va && Vb)
				        Ks = 2.0 * Ea * Da * Va * Eb * Db * Vb
				                / (Ea * Da * Va + Eb * Db * Vb); //harmonic average of two stiffnesses with ks=V*kn for each sphere
			        else
				        Ks = 0;

			        contactPhysics->kn                     = Kn;
			        contactPhysics->ks                     = Ks;
			        contactPhysics->kr                     = Da * Db * Ks * AlphaKr;
			        contactPhysics->ktw                    = Da * Db * Ks * AlphaKtw;
			        contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle);
			        contactPhysics->momentRotationLaw      = (mat1->momentRotationLaw && mat2->momentRotationLaw);
			        if (contactPhysics->momentRotationLaw) {
				        contactPhysics->maxRollPl  = min(mat1->etaRoll * Da, mat2->etaRoll * Db);
				        contactPhysics->maxTwistPl = min(mat1->etaTwist * Da, mat2->etaTwist * Db);
			        } else {
				        contactPhysics->maxRollPl = contactPhysics->maxTwistPl = 0;
			        }
			        if ((setCohesionOnNewContacts || setCohesionNow) && mat1->isCohesive && mat2->isCohesive) {
				        setCohesion(interaction, true, matProperties1, matProperties2); // 
			        }
		        } else { // !isNew, but if setCohesionNow, all contacts are initialized like if they were newly created
			        if (setCohesionOnExistingPhys)
				        setCohesion(interaction, true, matProperties1, matProperties2);// 
		        }
		}
	}
};


} // namespace yade