1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
|
// © 2007 Václav Šmilauer <eudoxos@arcig.cz>
// © 2013 Jan Stránský <jan.stransky@fsv.cvut.cz>
#include "Tetra.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Interaction.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <core/State.hpp>
#include <pkg/common/ElastMat.hpp>
#include <core/Aabb.hpp>
#ifdef YADE_CGAL
#include <CGAL/intersections.h>
#endif
#ifdef YADE_OPENGL
#include <lib/opengl/OpenGLWrapper.hpp>
#endif
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN(/* self-contained in hpp: */ (Tetra)(TTetraGeom)(TTetraSimpleGeom)(Bo1_Tetra_Aabb)
/* some code in cpp (this file): */ (TetraVolumetricLaw)(Ig2_Tetra_Tetra_TTetraGeom)
#ifdef YADE_CGAL
(Ig2_Tetra_Tetra_TTetraSimpleGeom)(Law2_TTetraSimpleGeom_NormPhys_Simple)
#endif
#ifdef YADE_OPENGL
(Gl1_Tetra)
#endif
);
Tetra::~Tetra() { }
TTetraGeom::~TTetraGeom() { }
TTetraSimpleGeom::~TTetraSimpleGeom() { }
void Bo1_Tetra_Aabb::go(const shared_ptr<Shape>& ig, shared_ptr<Bound>& bv, const Se3r& se3, const Body*)
{
Tetra* t = static_cast<Tetra*>(ig.get());
if (!bv) { bv = shared_ptr<Bound>(new Aabb); }
Aabb* aabb = static_cast<Aabb*>(bv.get());
//Quaternionr invRot=se3.orientation.conjugate(); //The variable set but not used
Vector3r v_g[4];
for (int i = 0; i < 4; i++)
v_g[i] = se3.orientation * t->v[i]; // vertices in global coordinates
#define __VOP(op, ix) op(v_g[0][ix], op(v_g[1][ix], op(v_g[2][ix], v_g[3][ix])))
aabb->min = se3.position + Vector3r(__VOP(math::min, 0), __VOP(math::min, 1), __VOP(math::min, 2));
aabb->max = se3.position + Vector3r(__VOP(math::max, 0), __VOP(math::max, 1), __VOP(math::max, 2));
#undef __VOP
}
#ifdef YADE_CGAL
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::psMap[4][3] = { // segments of point
{ 0, 2, 3 },
{ 0, 1, 4 },
{ 1, 2, 5 },
{ 3, 4, 5 }
};
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::ptMap[4][3] = { // triangles of point
{ 0, 1, 3 },
{ 0, 1, 2 },
{ 1, 2, 3 },
{ 0, 2, 3 }
};
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::stMap[6][2] = { // triangles of segments
{ 0, 1 }, { 1, 2 }, { 1, 3 }, { 0, 3 }, { 0, 2 }, { 2, 3 }
};
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::ppsMap[4][4] = { // point-point pair to segment
{ -1, 0, 2, 3 },
{ 0, -1, 1, 4 },
{ 2, 1, -1, 5 },
{ 3, 4, 5, -1 }
};
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::tsMap[4][3] = { // segmnts of triangle
{ 0, 3, 4 },
{ 0, 1, 2 },
{ 1, 4, 5 },
{ 2, 3, 5 }
};
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::sstMap[6][6] = { // segment-segment pair to triangle
{ -1, 1, 1, 0, 0, -1 }, { 1, -1, 1, -1, 2, 2 }, { 1, 1, -1, 3, -1, 3 }, { 0, -1, 3, -1, 0, 3 }, { 0, 2, -1, 0, -1, 2 }, { -1, 2, 3, 3, 2, -1 }
};
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkVertexToTriangleCase(
const Triangle tA[4], const Point pB[4], const Segment sB[6], Vector3r& normal, Vector3r& contactPoint, Real& penetrationVolume)
{
for (int i = 0; i < 4; i++) { // loop over triangles 1
const Triangle& t = tA[i]; // choose triangle 1
for (int j = 0; j < 4; j++) { // loop over vertices 2
const Point& p = pB[j]; // choose vertex 2
// choose edges posessing p
const Segment& sa = sB[psMap[j][0]];
const Segment& sb = sB[psMap[j][1]];
const Segment& sc = sB[psMap[j][2]];
if (!(do_intersect(t, sa) && do_intersect(t, sb) && do_intersect(t, sc))) {
continue;
} // if all edges intersect with t
// evaluate the points
CGAL::Object oa = intersection(t, sa);
const Point* pa = CGAL::object_cast<Point>(&oa);
CGAL::Object ob = intersection(t, sb);
const Point* pb = CGAL::object_cast<Point>(&ob);
CGAL::Object oc = intersection(t, sc);
const Point* pc = CGAL::object_cast<Point>(&oc);
if (!(pa && pb && pc)) { continue; } // check that the intrsection really exists
Vector_3 n = CGAL::normal(t[0], t[1], t[2]); // normal of triangle
for (int k = 0; k < 3; k++) {
normal[k] = n[k]; // sets normal of contact = nornal of triangle
// contact point is center of mass of overlaping tetrahedron
contactPoint[k] = .25 * (p[k] + pa->operator[](k) + pb->operator[](k) + pc->operator[](k));
}
normal.normalize();
const Point* v[4] = { &p, pa, pb, pc };
penetrationVolume = TetrahedronVolume(v);
Real vol = TetrahedronVolume(pB);
if (penetrationVolume > .5 * vol) { penetrationVolume = vol - penetrationVolume; }
return true;
}
}
return false;
}
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkEdgeToEdgeCase(
const Segment sA[6], const Segment sB[6], const Triangle tA[4], const Triangle tB[4], Vector3r& normal, Vector3r& contactPoint, Real& penetrationVolume)
{
for (int i = 0; i < 6; i++) {
const Segment& sa = sA[i];
const Triangle& ta0 = tA[stMap[i][0]];
const Triangle& ta1 = tA[stMap[i][1]];
for (int j = 0; j < 6; j++) {
const Segment sb = sB[j];
if (!(do_intersect(sb, ta0) && do_intersect(sb, ta1))) { continue; }
const Triangle tb0 = tB[stMap[j][0]];
const Triangle tb1 = tB[stMap[j][1]];
if (!(do_intersect(sa, tb0) && do_intersect(sa, tb1))) { continue; }
CGAL::Object osb1 = intersection(sb, ta0);
CGAL::Object osb2 = intersection(sb, ta1);
CGAL::Object osa1 = intersection(sa, tb0);
CGAL::Object osa2 = intersection(sa, tb1);
const Point* psb1 = CGAL::object_cast<Point>(&osb1);
const Point* psb2 = CGAL::object_cast<Point>(&osb2);
const Point* psa1 = CGAL::object_cast<Point>(&osa1);
const Point* psa2 = CGAL::object_cast<Point>(&osa2);
if (!(psb1 && psb2 && psa1 && psa2)) { continue; }
Vector_3 n = CGAL::cross_product(sa.to_vector(), sb.to_vector());
Vector3r nApprox;
for (int k = 0; k < 3; k++) {
normal[k] = n[k];
#define OP(p) p->operator[](k)
nApprox[k] = .5 * (OP(psa1) + OP(psa2)) - .5 * (OP(psb1) + OP(psb2));
contactPoint[k] = .25 * (OP(psa1) + OP(psa2) + OP(psb1) + OP(psb2));
#undef OP
}
if (nApprox.dot(normal) < 0) { normal *= (Real)-1.; }
normal.normalize();
const Point* p[4] = { psb1, psb2, psa1, psa2 };
penetrationVolume = TetrahedronVolume(p);
return true;
}
}
return false;
}
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkEdgeToTriangleCase1( // edge smaller than triangle
const Triangle tA[4],
const Segment sB[6],
const Point pB[6],
Vector3r& normal,
Vector3r& contactPoint,
Real& penetrationVolume)
{
for (int i = 0; i < 4; i++) {
const Triangle& ta = tA[i];
int ni = 0;
for (int j = 0; j < 6; j++) {
const Segment& s = sB[j];
if (do_intersect(ta, s)) { ni++; }
}
if (ni != 4) { continue; }
Vector_3 n = CGAL::normal(ta[0], ta[1], ta[2]);
for (int j = 0; j < 3; j++) {
const Point& p1 = pB[j];
if (Vector_3(ta[0], p1) * n > 0.) { continue; }
const Segment& s10 = sB[psMap[j][0]];
const Segment& s11 = sB[psMap[j][1]];
const Segment& s12 = sB[psMap[j][2]];
bool b10 = do_intersect(ta, s10);
bool b11 = do_intersect(ta, s11);
bool b12 = do_intersect(ta, s12);
if (!((b10 && b11) || (b11 && b12) || (b12 && b10))) { continue; }
for (int k = j + 1; k < 4; k++) {
const Point& p2 = pB[k];
if (Vector_3(ta[0], p2) * n > 0.) { continue; }
const Segment& s20 = sB[psMap[k][0]];
const Segment& s21 = sB[psMap[k][1]];
const Segment& s22 = sB[psMap[k][2]];
bool b20 = do_intersect(ta, s20);
bool b21 = do_intersect(ta, s21);
bool b22 = do_intersect(ta, s22);
if (!((b20 && b21) || (b21 && b22) || (b22 && b20))) { continue; }
int l, m;
for (l = 0; l < 3; l++) {
if (l != j && l != k) { break; }
}
for (m = l + 1; m < 4; m++) {
if (m != j && m != k) { break; }
}
const Segment& s13 = sB[ppsMap[j][l]];
const Segment& s14 = sB[ppsMap[j][m]];
const Segment& s23 = sB[ppsMap[k][l]];
const Segment& s24 = sB[ppsMap[k][m]];
CGAL::Object o13 = intersection(ta, s13);
CGAL::Object o14 = intersection(ta, s14);
CGAL::Object o23 = intersection(ta, s23);
CGAL::Object o24 = intersection(ta, s24);
const Point* ps13 = CGAL::object_cast<Point>(&o13);
const Point* ps14 = CGAL::object_cast<Point>(&o14);
const Point* ps23 = CGAL::object_cast<Point>(&o23);
const Point* ps24 = CGAL::object_cast<Point>(&o24);
if (!(ps13 && ps14 && ps23 && ps24)) { continue; }
const Point* pp1[4] = { &p1, &p2, ps13, ps14 };
const Point* pp2[4] = { &p2, ps23, ps24, ps14 };
const Point* pp3[4] = { &p2, ps23, ps13, ps14 };
Real v1 = TetrahedronVolume(pp1);
Real v2 = TetrahedronVolume(pp2);
Real v3 = TetrahedronVolume(pp3);
Vector3r cg1, cg2, cg3;
for (l = 0; l < 3; l++) {
normal[l] = n[l];
#define OP(p) p->operator[](l)
cg1[l] = .25 * (p1[l] + p2[l] + OP(ps13) + OP(ps14));
cg2[l] = .25 * (p2[l] + OP(ps23) + OP(ps24) + OP(ps14));
cg3[l] = .25 * (p2[l] + OP(ps23) + OP(ps13) + OP(ps14));
#undef OP
}
penetrationVolume = v1 + v2 + v3;
contactPoint = (v1 * cg1 + v2 * cg2 + v3 * cg3) / penetrationVolume;
normal.normalize();
return true;
}
}
}
return false;
}
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkEdgeToTriangleCase2( // edge larger than triangle
const Triangle tA[4],
const Triangle tB[4],
const Segment sA[6],
const Segment sB[6],
Vector3r& normal,
Vector3r& contactPoint,
Real& penetrationVolume)
{
for (int i = 0; i < 6; i++) {
const Segment& sb = sB[i];
int ni = 0;
for (int j = 0; j < 4; j++) {
const Triangle& t = tA[j];
if (do_intersect(t, sb)) { ni++; }
}
if (ni != 2) { continue; }
for (int j = 0; j < 3; j++) {
const Triangle& ta1 = tA[j];
if (!(do_intersect(ta1, sb))) { continue; }
for (int k = j + 1; k < 4; k++) {
const Triangle& ta2 = tA[k];
if (!(do_intersect(ta2, sb))) { continue; }
const Triangle& tb1 = tB[stMap[i][0]];
const Triangle& tb2 = tB[stMap[i][1]];
const Segment& sa1a = sA[tsMap[j][0]];
const Segment& sa1b = sA[tsMap[j][1]];
const Segment& sa1c = sA[tsMap[j][2]];
bool b1a = do_intersect(sa1a, tb1) && do_intersect(sa1a, tb2);
bool b1b = do_intersect(sa1b, tb1) && do_intersect(sa1b, tb2);
bool b1c = do_intersect(sa1c, tb1) && do_intersect(sa1c, tb2);
if (!(b1a || b1b || b1c)) { continue; }
const Segment& sa2a = sA[tsMap[k][0]];
const Segment& sa2b = sA[tsMap[k][1]];
const Segment& sa2c = sA[tsMap[k][2]];
bool b2a = do_intersect(sa2a, tb1) && do_intersect(sa2a, tb2);
bool b2b = do_intersect(sa2b, tb1) && do_intersect(sa2b, tb2);
bool b2c = do_intersect(sa2c, tb1) && do_intersect(sa2c, tb2);
if (!(b2a || b2b || b2c)) { continue; }
int l = b1a ? tsMap[j][0] : b1b ? tsMap[j][1] : tsMap[j][2];
int m = b2a ? tsMap[k][0] : b2b ? tsMap[k][1] : tsMap[k][2];
if (sstMap[l][m] == -1) { continue; }
const Segment& sa1 = sA[l];
const Segment& sa2 = sA[m];
const Triangle& taN = tA[sstMap[l][m]];
CGAL::Object o1 = intersection(sb, ta1);
CGAL::Object o2 = intersection(sb, ta2);
CGAL::Object o11 = intersection(sa1, tb1);
CGAL::Object o12 = intersection(sa1, tb2);
CGAL::Object o21 = intersection(sa2, tb1);
CGAL::Object o22 = intersection(sa2, tb2);
const Point* p1 = CGAL::object_cast<Point>(&o1);
const Point* p2 = CGAL::object_cast<Point>(&o2);
const Point* p11 = CGAL::object_cast<Point>(&o11);
const Point* p12 = CGAL::object_cast<Point>(&o12);
const Point* p21 = CGAL::object_cast<Point>(&o21);
const Point* p22 = CGAL::object_cast<Point>(&o22);
if (!(p1 && p2 && p11 && p12 && p21 && p22)) { continue; }
const Point* pp1[4] = { p1, p2, p11, p12 };
const Point* pp2[4] = { p2, p21, p22, p12 };
const Point* pp3[4] = { p2, p21, p11, p12 };
Real v1 = TetrahedronVolume(pp1);
Real v2 = TetrahedronVolume(pp2);
Real v3 = TetrahedronVolume(pp3);
Vector3r cg1, cg2, cg3;
Vector_3 n = CGAL::normal(taN[0], taN[1], taN[2]);
for (int r = 0; r < 3; r++) {
normal[r] = n[r];
#define OP(p) p->operator[](r)
cg1[r] = .25 * (OP(p1) + OP(p2) + OP(p11) + OP(p12));
cg2[r] = .25 * (OP(p2) + OP(p21) + OP(p22) + OP(p12));
cg3[r] = .25 * (OP(p2) + OP(p21) + OP(p11) + OP(p12));
#undef OP
}
penetrationVolume = v1 + v2 + v3;
contactPoint = (v1 * cg1 + v2 * cg2 + v3 * cg3) / penetrationVolume;
normal.normalize();
return true;
}
}
}
return false;
}
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkVertexToEdgeCase(
const Point pA[4],
const Segment sA[6],
const Triangle tA[4],
const Segment sB[6],
const Triangle tB[4],
Vector3r& normal,
Vector3r& contactPoint,
Real& penetrationVolume)
{
for (int i = 0; i < 4; i++) {
const Point& pa = pA[i];
if (Vector_3(tB[0][0], pa) * CGAL::normal(tB[0][0], tB[0][1], tB[0][2]) > 0.) { continue; }
if (Vector_3(tB[1][0], pa) * CGAL::normal(tB[1][0], tB[1][1], tB[1][2]) > 0.) { continue; }
if (Vector_3(tB[2][0], pa) * CGAL::normal(tB[2][0], tB[2][1], tB[2][2]) > 0.) { continue; }
if (Vector_3(tB[3][0], pa) * CGAL::normal(tB[3][0], tB[3][1], tB[3][2]) > 0.) { continue; }
const Segment& sa1 = sA[psMap[i][0]];
const Segment& sa2 = sA[psMap[i][1]];
const Segment& sa3 = sA[psMap[i][2]];
for (int j = 0; j < 6; j++) {
const Segment& sb = sB[j];
const Triangle& tb1 = tB[stMap[j][0]];
const Triangle& tb2 = tB[stMap[j][1]];
const Triangle& ta1 = tA[ptMap[i][0]];
const Triangle& ta2 = tA[ptMap[i][1]];
const Triangle& ta3 = tA[ptMap[i][2]];
bool bsa1tb1 = do_intersect(sa1, tb1);
bool bsa1tb2 = do_intersect(sa1, tb2);
bool bsa2tb1 = do_intersect(sa2, tb1);
bool bsa2tb2 = do_intersect(sa2, tb2);
bool bsa3tb1 = do_intersect(sa3, tb1);
bool bsa3tb2 = do_intersect(sa3, tb2);
bool bsbta1 = do_intersect(sb, ta1);
bool bsbta2 = do_intersect(sb, ta2);
bool bsbta3 = do_intersect(sb, ta3);
if (!((bsa1tb1 || bsa1tb2) && (bsa2tb1 || bsa2tb2) && (bsa3tb1 || bsa3tb2)
&& ((bsbta1 && bsbta2) || (bsbta2 && bsbta3) || (bsbta3 && bsbta1)))) {
continue;
}
CGAL::Object oa1 = intersection(sa1, bsa1tb1 ? tb1 : tb2);
CGAL::Object oa2 = intersection(sa2, bsa2tb1 ? tb1 : tb2);
CGAL::Object oa3 = intersection(sa3, bsa3tb1 ? tb1 : tb2);
CGAL::Object ob1 = intersection(sb, (bsbta1 && bsbta2) ? ta1 : (bsbta2 && bsbta3) ? ta2 : ta3);
CGAL::Object ob2 = intersection(sb, (bsbta1 && bsbta2) ? ta2 : (bsbta2 && bsbta3) ? ta3 : ta1);
const Point* pa1 = CGAL::object_cast<Point>(&oa1);
const Point* pa2 = CGAL::object_cast<Point>(&oa2);
const Point* pa3 = CGAL::object_cast<Point>(&oa3);
const Point* pb1 = CGAL::object_cast<Point>(&ob1);
const Point* pb2 = CGAL::object_cast<Point>(&ob2);
if (!(pa1 && pa2 && pa3 && pb1 && pb2)) { continue; }
Segment sa(*pa1, *pa2);
Real d1 = sqrt(CGAL::squared_distance(sa, *pb1));
Real d2 = sqrt(CGAL::squared_distance(sa, *pb2));
const Point* ppb1 = d1 < d2 ? pb1 : pb2;
const Point* ppb2 = d1 < d2 ? pb2 : pb1;
const Point* pp1[4] = { &pa, pa1, pa2, pa3 };
const Point* pp2[4] = { pa1, pa2, pa3, ppb2 };
const Point* pp3[4] = { pa1, pa2, ppb1, ppb2 };
Real v1 = TetrahedronVolume(pp1);
Real v2 = TetrahedronVolume(pp2);
Real v3 = TetrahedronVolume(pp3);
Vector3r cg1, cg2, cg3;
Vector_3 n(pa, sb.supporting_line().projection(pa));
for (int l = 0; l < 3; l++) {
normal[l] = n[l];
#define OP(p) p->operator[](l)
cg1[l] = .25 * (pa[l] + OP(pa1) + OP(pa2) + OP(pa3));
cg2[l] = .25 * (OP(pa1) + OP(pa2) + OP(pa3) + OP(ppb2));
cg3[l] = .25 * (OP(pa1) + OP(pa2) + OP(ppb1) + OP(ppb2));
#undef OP
}
penetrationVolume = v1 + v2 + v3;
contactPoint = (v1 * cg1 + v2 * cg2 + v3 * cg3) / penetrationVolume;
normal.normalize();
return true;
}
}
return false;
}
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkVertexToVertexCase(
const Point pA[4],
const Point pB[4],
const Segment sA[6],
const Triangle tA[4],
const Triangle tB[4],
Vector3r& normal,
Vector3r& contactPoint,
Real& penetrationVolume)
{
for (int i = 0; i < 4; i++) {
const Point& pa = pA[i];
if (Vector_3(tB[0][0], pa) * CGAL::normal(tB[0][0], tB[0][1], tB[0][2]) > 0.) { continue; }
if (Vector_3(tB[1][0], pa) * CGAL::normal(tB[1][0], tB[1][1], tB[1][2]) > 0.) { continue; }
if (Vector_3(tB[2][0], pa) * CGAL::normal(tB[2][0], tB[2][1], tB[2][2]) > 0.) { continue; }
if (Vector_3(tB[3][0], pa) * CGAL::normal(tB[3][0], tB[3][1], tB[3][2]) > 0.) { continue; }
const Segment& sa1 = sA[psMap[i][0]];
const Segment& sa2 = sA[psMap[i][1]];
const Segment& sa3 = sA[psMap[i][2]];
for (int j = 0; j < 4; j++) {
const Point& pb = pB[j];
if (Vector_3(tA[0][0], pb) * CGAL::normal(tA[0][0], tA[0][1], tA[0][2]) > 0.) { continue; }
if (Vector_3(tA[1][0], pb) * CGAL::normal(tA[1][0], tA[1][1], tA[1][2]) > 0.) { continue; }
if (Vector_3(tA[2][0], pb) * CGAL::normal(tA[2][0], tA[2][1], tA[2][2]) > 0.) { continue; }
if (Vector_3(tA[3][0], pb) * CGAL::normal(tA[3][0], tB[3][1], tB[3][2]) > 0.) { continue; }
const Triangle& tb1 = tB[ptMap[j][0]];
const Triangle& tb2 = tB[ptMap[j][1]];
const Triangle& tb3 = tB[ptMap[j][2]];
bool b11 = do_intersect(sa1, tb1);
bool b12 = do_intersect(sa1, tb2);
bool b13 = do_intersect(sa1, tb3);
bool b21 = do_intersect(sa2, tb1);
bool b22 = do_intersect(sa2, tb2);
bool b23 = do_intersect(sa2, tb3);
bool b31 = do_intersect(sa3, tb1);
bool b32 = do_intersect(sa3, tb2);
bool b33 = do_intersect(sa3, tb3);
if (!(b11 || b12 || b13) && (b21 || b22 || b23) && (b31 || b32 || b33)) { continue; }
CGAL::Object o1 = intersection(sa1, b11 ? tb1 : b12 ? tb2 : tb3);
CGAL::Object o2 = intersection(sa2, b21 ? tb1 : b22 ? tb2 : tb3);
CGAL::Object o3 = intersection(sa3, b31 ? tb1 : b32 ? tb2 : tb3);
const Point* p1 = CGAL::object_cast<Point>(&o1);
const Point* p2 = CGAL::object_cast<Point>(&o2);
const Point* p3 = CGAL::object_cast<Point>(&o3);
if (!(p1 && p2 && p3)) { continue; }
const Point* pp1[4] = { &pa, p1, p2, p3 };
const Point* pp2[4] = { &pb, p2, p3, p3 };
Real v1 = TetrahedronVolume(pp1);
Real v2 = TetrahedronVolume(pp2);
Vector3r cg1, cg2;
Vector_3 n(pa, pb);
for (int l = 0; l < 3; l++) {
normal[l] = n[l];
#define OP(p) p->operator[](l)
cg1[l] = .25 * (pa[l] + OP(p1) + OP(p2) + OP(p3));
cg2[l] = .25 * (pb[l] + OP(p1) + OP(p2) + OP(p3));
#undef OP
}
penetrationVolume = v1 + v2;
contactPoint = (v1 * cg1 + v2 * cg2) / penetrationVolume;
normal.normalize();
return true;
}
}
return false;
}
bool Ig2_Tetra_Tetra_TTetraSimpleGeom::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& /*force*/,
const shared_ptr<Interaction>& interaction)
{
const Se3r& se31 = state1.se3;
const Se3r& se32 = state2.se3;
Tetra* shape1 = static_cast<Tetra*>(cm1.get());
Tetra* shape2 = static_cast<Tetra*>(cm2.get());
Point p1[4], p2[4];
Vector3r vTemp;
// vertices in global coordinates
for (int i = 0; i < 4; i++) {
vTemp = se31.position + se31.orientation * shape1->v[i];
p1[i] = Point(vTemp[0], vTemp[1], vTemp[2]);
vTemp = se32.position + se32.orientation * shape2->v[i] + shift2;
p2[i] = Point(vTemp[0], vTemp[1], vTemp[2]);
}
// Faces (CGAL triangles) of each tetra
#define T(p, i, j, k) Triangle(p[i], p[j], p[k])
const Triangle t1[4] = { T(p1, 0, 1, 3), T(p1, 0, 2, 1), T(p1, 1, 2, 3), T(p1, 0, 3, 2) };
const Triangle t2[4] = { T(p2, 0, 1, 3), T(p2, 0, 2, 1), T(p2, 1, 2, 3), T(p2, 0, 3, 2) };
#undef T
// Edges (CGAL segments) of each tetra
#define S(p, i, j) Segment(p[i], p[j])
const Segment s1[6] = { S(p1, 0, 1), S(p1, 1, 2), S(p1, 0, 2), S(p1, 0, 3), S(p1, 1, 3), S(p1, 2, 3) };
const Segment s2[6] = { S(p2, 0, 1), S(p2, 1, 2), S(p2, 0, 2), S(p2, 0, 3), S(p2, 1, 3), S(p2, 2, 3) };
#undef S
Vector3r n;
Vector3r cp;
Real V;
int flag;
#define SET_GEOM_AND_RETURN_TRUE \
shared_ptr<TTetraSimpleGeom> geom; \
if (!interaction->geom) geom = shared_ptr<TTetraSimpleGeom>(new TTetraSimpleGeom()); \
else \
geom = YADE_PTR_CAST<TTetraSimpleGeom>(interaction->geom); \
interaction->geom = geom; \
geom->normal = n; \
geom->contactPoint = cp; \
geom->penetrationVolume = V; \
geom->flag = flag; \
return true;
if (checkVertexToTriangleCase(t1, p2, s2, n, cp, V)) {
flag = 1;
SET_GEOM_AND_RETURN_TRUE
}
if (checkVertexToTriangleCase(t2, p1, s1, n, cp, V)) {
n *= -1.;
flag = 2;
SET_GEOM_AND_RETURN_TRUE
}
if (checkEdgeToEdgeCase(s1, s2, t1, t2, n, cp, V)) {
flag = 3;
SET_GEOM_AND_RETURN_TRUE
}
if (checkEdgeToTriangleCase1(t1, s2, p2, n, cp, V)) {
flag = 4;
SET_GEOM_AND_RETURN_TRUE
}
if (checkEdgeToTriangleCase1(t2, s1, p1, n, cp, V)) {
n *= -1.;
flag = 5;
SET_GEOM_AND_RETURN_TRUE
}
if (checkEdgeToTriangleCase2(t1, t2, s1, s2, n, cp, V)) {
flag = 6;
SET_GEOM_AND_RETURN_TRUE
}
if (checkEdgeToTriangleCase2(t2, t1, s2, s1, n, cp, V)) {
n *= -1.;
flag = 7;
SET_GEOM_AND_RETURN_TRUE
}
if (checkVertexToEdgeCase(p1, s1, t1, s2, t2, n, cp, V)) {
n *= -1.;
flag = 8;
SET_GEOM_AND_RETURN_TRUE
}
if (checkVertexToEdgeCase(p2, s2, t2, s1, t1, n, cp, V)) {
flag = 9;
SET_GEOM_AND_RETURN_TRUE
}
#undef SET_GEOM_AND_RETURN_TRUE
if (interaction->geom) {
TTetraSimpleGeom* geom = static_cast<TTetraSimpleGeom*>(interaction->geom.get());
geom->penetrationVolume = (Real)-1.;
geom->flag = 0;
return true;
}
return false;
}
#endif
CREATE_LOGGER(Ig2_Tetra_Tetra_TTetraGeom);
/*! Calculate configuration of Tetra - Tetra intersection.
*
* Wildmagick's functions are used here: intersection is returned as a set of tetrahedra (may be empty, inwhich case there is no real intersection).
* Then we calcualte volumetric proeprties of this intersection volume: inertia, centroid, volume.
*
* Contact normal (the direction in which repulsive force will act) coincides with the direction of least inertia,
* since that is the gradient that maximizes the drop of elastic deformation energy and will reach minimum fastest.
*
* Equivalent cross section of the penetrating volume (as if it were a cuboid with the same inertia) and equivalent penetration depth are calculated;
* Equivalent solid size in the dimension of normal serves as reference for strain calculation and is different for solids A and B.
*
* Strain will be then approximated by equivalentPenetrationDepth/.5*(maxPenetrationDepthA+maxPenetrationDepthB) (the average of A and B)
*
* All the relevant results are fed into TTetraGeom which is passed to TetraVolumetricLaw later that makes actual use of all this.
*
* @todo thoroughly test this for numerical correctness.
*
*/
bool Ig2_Tetra_Tetra_TTetraGeom::go(
const shared_ptr<Shape>& cm1,
const shared_ptr<Shape>& cm2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& interaction)
{
const Se3r& se31 = state1.se3;
const Se3r& se32 = state2.se3;
Tetra* A = static_cast<Tetra*>(cm1.get());
Tetra* B = static_cast<Tetra*>(cm2.get());
//return false;
shared_ptr<TTetraGeom> bang;
// depending whether it's a new interaction: create new one, or use the existing one.
if (!interaction->geom) bang = shared_ptr<TTetraGeom>(new TTetraGeom());
else
bang = YADE_PTR_CAST<TTetraGeom>(interaction->geom);
interaction->geom = bang;
// use wildmagick's intersection routine?
#if 0
// transform to global coordinates, build Tetrahedron3r objects to make wm3 happy
Tetrahedron3r tA(se31.orientation*A->v[0]+se31.position,se31.orientation*A->v[1]+se31.position,se31.orientation*A->v[2]+se31.position,se31.orientation*A->v[3]+se31.position);
Tetrahedron3r tB(se32.orientation*B->v[0]+se32.position,se32.orientation*B->v[1]+se32.position,se32.orientation*B->v[2]+se32.position,se32.orientation*B->v[3]+se32.position);
IntrTetrahedron3Tetrahedron3r iAB(tA,tB);
bool found=iAB.Find(); //calculates the intersection volume as a composition of 0 or more tetrahedra
if(!found) return false; // no intersecting volume
Real V(0); // volume of intersection (cummulative)
Vector3r Sg(0,0,0); // static moment of intersection
vector<vector<Vector3r> > tAB;
Wm3::TArray<Wm3::Tetrahedron3d> iABinfo(iAB.GetIntersection()); // retrieve the array of 4hedra
for(int i=0; i<iABinfo.GetQuantity(); i++){
iABinfo[i]; // has i-th tehtrahedron as Tetrahedron3r&
#define v0 iABinfo[i].V[0]
#define v1 iABinfo[i].V[1]
#define v2 iABinfo[i].V[2]
#define v3 iABinfo[i].V[3]
Real dV=math::abs(Vector3r(v1-v0).Dot((v2-v0).Cross(v3-v0)))/6.;
V+=dV;
Sg+=dV*(v0+v1+v2+v3)*.25;
vector<Vector3r> t; t.push_back(v0); t.push_back(v1); t.push_back(v2); t.push_back(v3);
tAB.push_back(t);
#undef v0
#undef v1
#undef v2
#undef v3
}
#endif
// transform to global coordinates, build Tetra objects
Tetra tA(
se31.orientation * A->v[0] + se31.position,
se31.orientation * A->v[1] + se31.position,
se31.orientation * A->v[2] + se31.position,
se31.orientation * A->v[3] + se31.position);
Tetra tB(
se32.orientation * B->v[0] + se32.position + shift2,
se32.orientation * B->v[1] + se32.position + shift2,
se32.orientation * B->v[2] + se32.position + shift2,
se32.orientation * B->v[3] + se32.position + shift2);
// calculate intersection
#if 0
tB=Tetra(Vector3r(0,0,0),Vector3r(1.5,1,1),Vector3r(0.5,1,1),Vector3r(1,1,.5));
tA=Tetra(Vector3r(0,0,0),Vector3r(1,0,0),Vector3r(0,1,0),Vector3r(0,0,1));
#endif
std::list<Tetra> tAB = Tetra2TetraIntersection(tA, tB);
if (!interaction->isReal() && !force) {
if (tAB.size() == 0) { /* LOG_DEBUG("No intersection."); */
return false;
} //no intersecting volume
}
Real V(0); // volume of intersection (cummulative)
Vector3r Sg(0, 0, 0); // static moment of intersection
Vector3r tt[4];
for (int i = 0; i < 4; i++)
tt[i] = tA.v[i];
for (std::list<Tetra>::iterator II = tAB.begin(); II != tAB.end(); II++) {
Real dV = TetrahedronVolume(II->v);
V += dV;
Sg += dV * (II->v[0] + II->v[1] + II->v[2] + II->v[3]) * .25;
}
Vector3r centroid = Sg / V;
Matrix3r I(Matrix3r::Zero()); // inertia tensor for the composition; zero matrix initially
// I is purely geometrical (as if with unit density)
// get total
Vector3r dist;
for (std::list<Tetra>::iterator II = tAB.begin(); II != tAB.end(); II++) {
II->v[0] -= centroid;
II->v[1] -= centroid;
II->v[2] -= centroid;
II->v[3] -= centroid;
dist = (II->v[0] + II->v[1] + II->v[2] + II->v[3]) * .25 - centroid;
/* use parallel axis theorem */
Matrix3r distSq(Matrix3r::Zero());
distSq(0, 0) = dist[0] * dist[0];
distSq(1, 1) = dist[1] * dist[1];
distSq(2, 2) = dist[2] * dist[2]; // could be done more intelligently with eigen
I += TetrahedronInertiaTensor(II->v) + TetrahedronVolume(II->v) * distSq;
}
/* Now, we have the collision volumetrically described by intersection volume (V), its inertia tensor (I) and centroid (centroid; contact point).
* The inertia tensor is in global coordinates; by eigendecomposition, we find principal axes, which will give us
* 1. normal, the direction of the lest inertia; this is the gradient of penetration energy
* it may have either direction mathematically, but since 4hedra are convex,
* normal will be always the direction pointing more towards the centroid of the other 4hedron
* 2. tangent?! hopefully not needed at all. */
Matrix3r Ip, R; // principal moments of inertia, rotation matrix
/* should check convergence*/ matrixEigenDecomposition(I, R, Ip);
// according to the documentation in Wm3 header, diagonal entries are in ascending order: d0<=d1<=d2;
// but keep it algorithmic for now and just assert that.
int ix = (Ip(0, 0) < Ip(1, 1) && Ip(0, 0) < Ip(2, 2))
? 0
: ((Ip(1, 1) < Ip(0, 0) && Ip(1, 1) < Ip(2, 2)) ? 1 : 2); // index of the minimum moment of inertia
// the other two indices, modulated by 3, since they are ∈ {0,1,2}
int ixx = (ix + 1) % 3, ixxx = (ix + 2) % 3;
// assert what the documentation says (d0<=d1<=d2)
assert(ix == 0);
Vector3r minAxis(0, 0, 0);
minAxis[ix] = 1; // the axis of minimum inertia
Vector3r normal = R * minAxis;
normal.normalize(); // normal is minAxis in global coordinates (normalization shouldn't be needed since R is rotation matrix, but to make sure...)
// centroid of B
Vector3r Bcent = se31.orientation * ((B->v[0] + B->v[1] + B->v[2] + B->v[3]) * .25) + se31.position;
// reverse direction if projection of the (contact_point-centroid_of_B) vector onto the normal is negative (i.e. the normal points more towards A)
if ((Bcent - centroid).dot(normal) < 0) normal *= -1;
/* now estimate the area of the solid that is perpendicular to the normal. This will be needed to estimate elastic force based on Young's modulus.
* Suppose we have cuboid, with edges of lengths x,y,z in the direction of respective axes.
* It's inertia are Ix=(V/12)*(y^2+z^2), Iy=(V/12)*(x^2+z^2), Iz=(V/12)*(x^2+y^2) and suppose Iz is maximal; Ix, Iy and Iz are known (from decomposition above).
* Then the area perpendicular to z (normal direction) is given by x*y=V/z, where V is known.
* Ix+Iy-Iz=(V/12)*(y^2+z^2+x^2+z^2-x^2-y^2)=(V*z^2)/6, z=√(6*(Ix+Iy-Iz)/V)
* Az=V/z=√(V^3/(6*(Ix+Iy-Iz))).
*
* In our case, the greatest inertia is along ixxx, the other coordinates are ixx and ix. equivalentPenetrationDepth means what was z.
*/
Real equivalentPenetrationDepth = sqrt(6. * (Ip(ix, ix) + Ip(ixx, ixx) - Ip(ixxx, ixxx)) / V);
Real equivalentCrossSection = V / equivalentPenetrationDepth;
TRVAR3(V, equivalentPenetrationDepth, equivalentCrossSection);
/* Now rotate the whole inertia tensors of A and B and estimate maxPenetrationDepth -- the length of the body in the direction of the contact normal.
* This will be used to calculate relative deformation, which is needed for elastic response. */
const State* physA = Body::byId(interaction->getId1())->state.get();
const State* physB = Body::byId(interaction->getId2())->state.get();
// WARNING: Matrix3r(Vector3r(...)) is compiled, but gives zero matrix??!! Use explicitly constructor from diagonal entries
//Matrix3r IA(physA->inertia[0],physA->inertia[1],physA->inertia[2]); Matrix3r IB(physB->inertia[0],physB->inertia[1],physB->inertia[2]);
Matrix3r IA = Matrix3r::Zero(), IB = Matrix3r::Zero();
for (int i = 0; i < 3; i++) {
IA(i, i) = physA->inertia[i];
IB(i, i) = physB->inertia[i];
}
// see Clump::inertiaTensorRotate for references
IA = R.transpose() * IA * R;
IB = R.transpose() * IB * R;
Real maxPenetrationDepthA = sqrt(6 * (IA(ix, ix) + IA(ixx, ixx) - IA(ixxx, ixxx)) / V);
Real maxPenetrationDepthB = sqrt(6 * (IB(ix, ix) + IB(ixx, ixx) - IB(ixxx, ixxx)) / V);
TRVAR2(maxPenetrationDepthA, maxPenetrationDepthB);
//normal = se32.position - se31.position; normal.normalize();
/* store calculated stuff in bang; some is redundant */
bang->normal = normal;
bang->equivalentCrossSection = equivalentCrossSection;
bang->contactPoint = centroid;
bang->penetrationVolume = V;
bang->equivalentPenetrationDepth = equivalentPenetrationDepth;
bang->maxPenetrationDepthA = maxPenetrationDepthA;
bang->maxPenetrationDepthB = maxPenetrationDepthB;
return true;
}
/*! Calculate intersection o Tetrahedron A and B as union of set (std::list) of 4hedra.
*
* intersecting tetrahedra A and B
* S=intersection set (4hedra)
* S={A}
* for face in B_faces:
* for t in S: [ S is mutable, but if list, iterators remain valid? ]
* tmp = clip t by face // may return multiple 4hedra or none
* replace t by tmp (possibly none) in S
* return S
*
*/
std::list<Tetra> Ig2_Tetra_Tetra_TTetraGeom::Tetra2TetraIntersection(const Tetra& A, const Tetra& B)
{
// list of 4hedra to split; initially A
std::list<Tetra> ret;
ret.push_back(A);
/* I is vertex index at B;
* clipping face is [i i1 i2], normal points away from i3 */
int i, i1, i2, i3;
Vector3r normal;
/* LOG_TRACE("===========================================================================================")
LOG_TRACE("===========================================================================================")
LOG_TRACE(ret.size());
LOG_TRACE("DUMP A and B:"); A.dump(); B.dump(); */
for (i = 0; i < 4; i++) {
i1 = (i + 1) % 4;
i2 = (i + 2) % 4;
i3 = (i + 3) % 4;
const Vector3r& P(B.v[i]); // reference point on the plane
normal = (B.v[i1] - P).cross(B.v[i2] - P);
normal.normalize(); // normal
if ((B.v[i3] - P).dot(normal) > 0) normal *= -1; // outer normal
for (std::list<Tetra>::iterator I = ret.begin(); I != ret.end(); /* I++ */) {
std::list<Tetra> splitDecomposition = TetraClipByPlane(*I, P, normal);
// replace current list element by the result of decomposition;
// I points after the erased one, so decomposed 4hedra will not be touched in this iteration, just as we want.
// Since it will be incremented by I++ at the end of the cycle, compensate for that by I--;
I = ret.erase(I);
ret.insert(I, splitDecomposition.begin(), splitDecomposition.end()); /* I--; */
/* LOG_TRACE("DUMP current tetrahedron list:"); for(list<Tetra>::iterator I=ret.begin(); I!=ret.end(); I++) (*I).dump();*/
}
}
//exit(0);
return ret;
}
/*! Clip Tetra T by plane give by point P and outer normal n.
*
* Algorithm:
*
* clip t by face
* sort points of t into positive, negative, zero (face normal n points outside)
* -: inside; +: outside; 0: on face
* homogeneous cases (no split):
* ++++, +++0, ++00, +000 :
* 0Δ full clip (everything outside), nothing left; return ∅
* ----, ---0, --00, -000 :
* 1Δ all inside, return identity
* split (at least one - and one +)
* -+++
* 1Δ [A AB AC AD]
* -++0
* 1Δ [A AB AC D]
* -+00:
* 1Δ [A AB C D]
* --++:
* 3Δ [A AC AD B BC BD] ⇒ (e.g.) [A AC AD B] [B BC BD AD] [B AD AC BC]
* --+0:
* 2Δ [A B AC BC D] ⇒ (e.g.) [A AC BC D] [B BC A D]
* ---+:
* 3Δ tetrahedrize [A B C AD BD CD]
*
* http://members.tripod.com/~Paul_Kirby/vector/Vplanelineint.html
*/
std::list<Tetra> Ig2_Tetra_Tetra_TTetraGeom::TetraClipByPlane(const Tetra& T, const Vector3r& P, const Vector3r& normal)
{
std::list<Tetra> ret;
// scaling factor for Mathr::EPSILON: average edge length
Real scaledEPSILON = Mathr::EPSILON * (1 / 6.)
* ((T.v[1] - T.v[0]) + (T.v[2] - T.v[0]) + (T.v[3] - T.v[0]) + (T.v[2] - T.v[1]) + (T.v[3] - T.v[1]) + (T.v[3] - T.v[2])).norm();
vector<size_t> pos, neg, zer;
Real dist[4];
for (size_t i = 0; i < 4; i++) {
dist[i] = (T.v[i] - P).dot(normal);
if (dist[i] > scaledEPSILON) pos.push_back(i);
else if (dist[i] < -scaledEPSILON)
neg.push_back(i);
else
zer.push_back(i);
}
/* LOG_TRACE("dist[i]=["<<dist[0]<<","<<dist[1]<<","<<dist[2]<<","<<dist[3]<<"]"); */
#define NEG neg.size()
#define POS pos.size()
#define ZER zer.size()
#define PTPT(i, j) PtPtPlaneIntr(v[i], v[j], P, normal)
assert(NEG + POS + ZER == 4);
// HOMOGENEOUS CASES
// ++++, +++0, ++00, +000, 0000 (degenerate (planar) tetrahedron)
if (POS == 4 || (POS == 3 && ZER == 1) || (POS == 2 && ZER == 2) || (POS == 1 && ZER == 3) || ZER == 4)
return ret; // ∅
// ----, ---0, --00, -000 :
if (NEG == 4 || (NEG == 3 && ZER == 1) || (NEG == 2 && ZER == 2) || (NEG == 1 && ZER == 3)) {
ret.push_back(T);
return ret;
}
// HETEROGENEOUS CASES
// points are ordered -+0
Vector3r v[4];
for (size_t i = 0; i < NEG; i++)
v[i + 0 + 0] = T.v[neg[i]];
for (size_t i = 0; i < POS; i++)
v[i + 0 + NEG] = T.v[pos[i]];
for (size_t i = 0; i < ZER; i++)
v[i + POS + NEG] = T.v[zer[i]];
#define _A v[0]
#define _B v[1]
#define _C v[2]
#define _D v[3]
#define _AB PTPT(0, 1)
#define _AC PTPT(0, 2)
#define _AD PTPT(0, 3)
#define _BC PTPT(1, 2)
#define _BD PTPT(1, 3)
#define _CD PTPT(2, 3)
// -+++ → 1Δ [A AB AC AD]
if (NEG == 1 && POS == 3) {
ret.push_back(Tetra(_A, _AB, _AC, _AD));
return ret;
}
// -++0 → 1Δ [A AB AC D]
if (NEG == 1 && POS == 2 && ZER == 1) {
ret.push_back(Tetra(_A, _AB, _AC, _D));
return ret;
}
// -+00 → 1Δ [A AB C D]
if (NEG == 1 && POS == 1 && ZER == 2) {
ret.push_back(Tetra(_A, _AB, _C, _D));
return ret;
}
// --++ → 3Δ [A AC AD B BC BD] ⇒ (e.g.) [A AC AD B] [B BC BD AD] [B AD AC BC]
if (NEG == 2 && POS == 2) {
// [A AC AD B]
ret.push_back(Tetra(_A, _AC, _AD, _B));
// [B BC BD AD]
ret.push_back(Tetra(_B, _BC, _BD, _AD));
// [B AD AC BC]
ret.push_back(Tetra(_B, _AD, _AC, _BC));
return ret;
}
// --+0 → 2Δ [A B AC BC D] ⇒ (e.g.) [A AC BC D] [B BC A D]
if (NEG == 2 && POS == 1 && ZER == 1) {
// [A AC BC D]
ret.push_back(Tetra(_A, _AC, _BC, _D));
// [B BC A D]
ret.push_back(Tetra(_B, _BC, _A, _D));
return ret;
}
// ---+ → 3Δ [A B C AD BD CD] ⇒ (e.g.) [A B C AD] [AD BD CD B] [AD C B BD]
if (NEG == 3 && POS == 1) {
//[A B C AD]
ret.push_back(Tetra(_A, _B, _C, _AD));
//[AD BD CD B]
ret.push_back(Tetra(_AD, _BD, _CD, _B));
//[AD C B BD]
ret.push_back(Tetra(_AD, _C, _B, _BD));
return ret;
}
#undef _A
#undef _B
#undef _C
#undef _D
#undef _AB
#undef _AC
#undef _AD
#undef _BC
#undef _BD
#undef _CD
#undef PTPT
#undef NEG
#undef POS
#undef ZER
// unreachable
assert(false);
return (ret); // prevent warning
}
CREATE_LOGGER(TetraVolumetricLaw);
/*! Apply forces on tetrahedra in collision based on geometric configuration provided by Ig2_Tetra_Tetra_TTetraGeom.
*
* DO NOT USE, probably doesn't work.
* Comments on functionality limitations are in the code. It has not been tested at all!!! */
void TetraVolumetricLaw::action()
{
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
// normally, we would test isReal(), but TetraVolumetricLaw doesn't use phys at all
if (!I->geom) continue; // Ig2_Tetra_Tetra_TTetraGeom::go returned false for this interaction, skip it
const shared_ptr<TTetraGeom>& contactGeom(YADE_PTR_DYN_CAST<TTetraGeom>(I->geom));
if (!contactGeom) continue;
const Body::id_t idA = I->getId1(), idB = I->getId2();
const shared_ptr<Body>&A = Body::byId(idA), B = Body::byId(idB);
const shared_ptr<ElastMat>& physA(YADE_PTR_DYN_CAST<ElastMat>(A->material));
const shared_ptr<ElastMat>& physB(YADE_PTR_DYN_CAST<ElastMat>(B->material));
/* Cross-section is volumetrically equivalent to the penetration configuration */
Real averageStrain = contactGeom->equivalentPenetrationDepth / (.5 * (contactGeom->maxPenetrationDepthA + contactGeom->maxPenetrationDepthB));
/* Do not use NormPhys::kn (as calculated by ElasticBodySimpleRelationship).
* NormPhys::kn is not Young's modulus, it is calculated by MacroMicroElasticRelationships. So perhaps
* a new IPhysFunctor will be needed that will just pass the average Young's modulus here?
* For now, just go back to Young's moduli directly here. */
Real young = .5 * (physA->young + physB->young);
TRVAR3(young, averageStrain, contactGeom->equivalentCrossSection);
// F=σA=εEA
// this is unused; should it?: contactPhys->kn
Vector3r F = contactGeom->normal * averageStrain * young * contactGeom->equivalentCrossSection;
scene->forces.addForce(idA, -F);
scene->forces.addForce(idB, F);
scene->forces.addTorque(idA, -(A->state->pos - contactGeom->contactPoint).cross(F));
scene->forces.addTorque(idB, (B->state->pos - contactGeom->contactPoint).cross(F));
}
}
#ifdef YADE_OPENGL
bool Gl1_Tetra::wire;
void Gl1_Tetra::go(const shared_ptr<Shape>& cm, const shared_ptr<State>&, bool wire2, const GLViewInfo&)
{
glMaterialv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, Vector3r(cm->color[0], cm->color[1], cm->color[2]));
glColor3v(cm->color);
Tetra* t = static_cast<Tetra*>(cm.get());
if (wire && wire2) { // wireframe, as for Tetrahedron
glDisable(GL_LIGHTING);
glBegin(GL_LINES)
;
glOneWire(t, 0, 1);
glOneWire(t, 0, 2);
glOneWire(t, 0, 3);
glOneWire(t, 1, 2);
glOneWire(t, 1, 3);
glOneWire(t, 2, 3);
glEnd();
} else {
glDisable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glBegin(GL_TRIANGLES)
;
glOneFace(t, 0, 2, 1);
glOneFace(t, 0, 1, 3);
glOneFace(t, 1, 2, 3);
glOneFace(t, 0, 3, 2);
glEnd();
}
}
#endif
/*! Calculates tetrahedron inertia relative to the origin (0,0,0), with unit density (scales linearly).
See article F. Tonon, "Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of its Vertex Coordinates", http://www.scipub.org/fulltext/jms2/jms2118-11.pdf
Numerical example to check:
vertices:
(8.33220, 11.86875, 0.93355)
(0.75523 ,5.00000, 16.37072)
(52.61236, 5.00000, 5.38580)
(2.00000, 5.00000, 3.00000)
centroid:
(15.92492, 0.78281, 3.72962)
intertia/density WRT centroid:
a/μ = 43520.33257 m⁵
b/μ = 194711.28938 m⁵
c/μ = 191168.76173 m⁵
a’/μ= 4417.66150 m⁵
b’/μ=-46343.16662 m⁵
c’/μ= 11996.20119 m⁵
The numerical testcase (in TetraTestGen::generate) is exact as in the article for inertia (as well as centroid):
43520.3
194711
191169
4417.66
-46343.2
11996.2
*/
//Matrix3r TetrahedronInertiaTensor(const Vector3r v[4]){
Matrix3r TetrahedronInertiaTensor(const vector<Vector3r>& v)
{
#define x1 v[0][0]
#define y1 v[0][1]
#define z1 v[0][2]
#define x2 v[1][0]
#define y2 v[1][1]
#define z2 v[1][2]
#define x3 v[2][0]
#define y3 v[2][1]
#define z3 v[2][2]
#define x4 v[3][0]
#define y4 v[3][1]
#define z4 v[3][2]
assert(v.size() == 4);
// Jacobian of transformation to the reference 4hedron
Real detJ = (x2 - x1) * (y3 - y1) * (z4 - z1) + (x3 - x1) * (y4 - y1) * (z2 - z1) + (x4 - x1) * (y2 - y1) * (z3 - z1)
- (x2 - x1) * (y4 - y1) * (z3 - z1) - (x3 - x1) * (y2 - y1) * (z4 - z1) - (x4 - x1) * (y3 - y1) * (z2 - z1);
detJ = math::abs(detJ);
Real a = detJ
* (y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3 + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4 + z1 * z1 + z1 * z2 + z2 * z2 + z1 * z3
+ z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
/ 60.;
Real b = detJ
* (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + z1 * z1 + z1 * z2 + z2 * z2 + z1 * z3
+ z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
/ 60.;
Real c = detJ
* (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3
+ y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4)
/ 60.;
// a' in the article etc.
Real a__ = detJ
* (2 * y1 * z1 + y2 * z1 + y3 * z1 + y4 * z1 + y1 * z2 + 2 * y2 * z2 + y3 * z2 + y4 * z2 + y1 * z3 + y2 * z3 + 2 * y3 * z3 + y4 * z3 + y1 * z4
+ y2 * z4 + y3 * z4 + 2 * y4 * z4)
/ 120.;
Real b__ = detJ
* (2 * x1 * z1 + x2 * z1 + x3 * z1 + x4 * z1 + x1 * z2 + 2 * x2 * z2 + x3 * z2 + x4 * z2 + x1 * z3 + x2 * z3 + 2 * x3 * z3 + x4 * z3 + x1 * z4
+ x2 * z4 + x3 * z4 + 2 * x4 * z4)
/ 120.;
Real c__ = detJ
* (2 * x1 * y1 + x2 * y1 + x3 * y1 + x4 * y1 + x1 * y2 + 2 * x2 * y2 + x3 * y2 + x4 * y2 + x1 * y3 + x2 * y3 + 2 * x3 * y3 + x4 * y3 + x1 * y4
+ x2 * y4 + x3 * y4 + 2 * x4 * y4)
/ 120.;
Matrix3r ret;
ret << a, -c__, -b__, -c__, b, -a__, -b__, -a__, c;
return ret;
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef x4
#undef y4
#undef z4
}
/*! Caluclate tetrahedron's central inertia tensor */
//Matrix3r TetrahedronCentralInertiaTensor(const Vector3r v[4]){
Matrix3r TetrahedronCentralInertiaTensor(const vector<Vector3r>& v)
{
assert(v.size() == 4);
vector<Vector3r> vv;
// Vector3r vv[4];
Vector3r cg = (v[0] + v[1] + v[2] + v[3]) * .25;
// vv[0]=v[0]-cg;
// vv[1]=v[1]-cg;
// vv[2]=v[2]-cg;
// vv[3]=v[3]-cg;
vv.push_back(v[0] - cg);
vv.push_back(v[1] - cg);
vv.push_back(v[2] - cg);
vv.push_back(v[3] - cg);
return TetrahedronInertiaTensor(vv);
}
/*! Rotate and translate terahedron body so that its local axes are principal, keeping global position by updating vertex positions as well.
* Updates all body parameters as need.
*
* @returns rotation that was done as Wm3::Quaternionr.
* @todo check for geometrical correctness...
* */
Quaternionr TetrahedronWithLocalAxesPrincipal(shared_ptr<Body>& tetraBody)
{
//const shared_ptr<RigidBodyParameters>& rbp(YADE_PTR_CAST<RigidBodyParameters>(tetraBody->physicalParameters));
State* rbp = tetraBody->state.get();
const shared_ptr<Tetra>& tMold(YADE_PTR_DYN_CAST<Tetra>(tetraBody->shape));
#define v0 tMold->v[0]
#define v1 tMold->v[1]
#define v2 tMold->v[2]
#define v3 tMold->v[3]
// adjust position (origin to centroid)
Vector3r cg = (v0 + v1 + v2 + v3) * .25;
v0 -= cg;
v1 -= cg;
v2 -= cg;
v3 -= cg;
//tMold->v[0]=v0; tMold->v[1]=v1; tMold->v[2]=v2; tMold->v[3]=v3;
rbp->se3.position += cg;
// adjust orientation (local axes to principal axes)
Matrix3r I_old = TetrahedronInertiaTensor(tMold->v); //≡TetrahedronCentralInertiaTensor
Matrix3r I_rot(Matrix3r::Zero()), I_new(Matrix3r::Zero());
matrixEigenDecomposition(I_old, I_rot, I_new);
Quaternionr I_Qrot(I_rot);
//! @fixme from right to left: rotate by I_rot, then add original rotation (?!!)
rbp->se3.orientation = rbp->se3.orientation * I_Qrot;
for (size_t i = 0; i < 4; i++) {
tMold->v[i] = I_Qrot.conjugate() * tMold->v[i];
}
// set inertia
rbp->inertia = Vector3r(I_new(0, 0), I_new(1, 1), I_new(2, 2));
return I_Qrot;
#undef v0
#undef v1
#undef v2
#undef v3
}
Real TetrahedronSignedVolume(const Vector3r v[4])
{
return (Vector3r(v[3]) - Vector3r(v[0])).dot((Vector3r(v[3]) - Vector3r(v[1])).cross(Vector3r(v[3]) - Vector3r(v[2]))) / 6.;
}
Real TetrahedronVolume(const Vector3r v[4]) { return math::abs(TetrahedronSignedVolume(v)); }
Real TetrahedronSignedVolume(const vector<Vector3r>& v) { return Vector3r(v[1] - v[0]).dot(Vector3r(v[2] - v[0]).cross(v[3] - v[0])) / 6.; }
Real TetrahedronVolume(const vector<Vector3r>& v) { return math::abs(TetrahedronSignedVolume(v)); }
#ifdef YADE_CGAL
Real TetrahedronVolume(const CGAL::Point_3<CGAL::Cartesian<Real>>* v[4])
{
Vector3r vv[4];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 3; j++) {
vv[i][j] = v[i]->operator[](j);
}
}
return TetrahedronVolume(vv);
}
Real TetrahedronVolume(const CGAL::Point_3<CGAL::Cartesian<Real>> v[4])
{
Vector3r vv[4];
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 3; j++) {
vv[i][j] = v[i][j];
}
}
return TetrahedronVolume(vv);
}
#endif
#ifdef YADE_CGAL
bool Law2_TTetraSimpleGeom_NormPhys_Simple::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
int id1 = contact->getId1(), id2 = contact->getId2();
TTetraSimpleGeom* geom = static_cast<TTetraSimpleGeom*>(ig.get());
NormPhys* phys = static_cast<NormPhys*>(ip.get());
if (geom->flag == 0 || geom->penetrationVolume <= 0.) { return false; }
Real& un = geom->penetrationVolume;
phys->normalForce = phys->kn * math::max(un, (Real)0) * geom->normal;
State* de1 = Body::byId(id1, scene)->state.get();
State* de2 = Body::byId(id2, scene)->state.get();
applyForceAtContactPoint(-phys->normalForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
// TODO periodic
return true;
}
#endif
} // namespace yade
|