File: Tetra.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (1282 lines) | stat: -rw-r--r-- 49,761 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
// © 2007 Václav Šmilauer <eudoxos@arcig.cz>
// © 2013 Jan Stránský <jan.stransky@fsv.cvut.cz>

#include "Tetra.hpp"

#include <lib/high-precision/Constants.hpp>
#include <core/Interaction.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <core/State.hpp>
#include <pkg/common/ElastMat.hpp>

#include <core/Aabb.hpp>

#ifdef YADE_CGAL
#include <CGAL/intersections.h>
#endif
#ifdef YADE_OPENGL
#include <lib/opengl/OpenGLWrapper.hpp>
#endif

namespace yade { // Cannot have #include directive inside.

YADE_PLUGIN(/* self-contained in hpp: */ (Tetra)(TTetraGeom)(TTetraSimpleGeom)(Bo1_Tetra_Aabb)
            /* some code in cpp (this file): */ (TetraVolumetricLaw)(Ig2_Tetra_Tetra_TTetraGeom)
#ifdef YADE_CGAL
                    (Ig2_Tetra_Tetra_TTetraSimpleGeom)(Law2_TTetraSimpleGeom_NormPhys_Simple)
#endif
#ifdef YADE_OPENGL
                            (Gl1_Tetra)
#endif
);

Tetra::~Tetra() { }
TTetraGeom::~TTetraGeom() { }
TTetraSimpleGeom::~TTetraSimpleGeom() { }


void Bo1_Tetra_Aabb::go(const shared_ptr<Shape>& ig, shared_ptr<Bound>& bv, const Se3r& se3, const Body*)
{
	Tetra* t = static_cast<Tetra*>(ig.get());
	if (!bv) { bv = shared_ptr<Bound>(new Aabb); }
	Aabb* aabb = static_cast<Aabb*>(bv.get());
	//Quaternionr invRot=se3.orientation.conjugate();   //The variable set but not used
	Vector3r v_g[4];
	for (int i = 0; i < 4; i++)
		v_g[i] = se3.orientation * t->v[i]; // vertices in global coordinates
#define __VOP(op, ix) op(v_g[0][ix], op(v_g[1][ix], op(v_g[2][ix], v_g[3][ix])))
	aabb->min = se3.position + Vector3r(__VOP(math::min, 0), __VOP(math::min, 1), __VOP(math::min, 2));
	aabb->max = se3.position + Vector3r(__VOP(math::max, 0), __VOP(math::max, 1), __VOP(math::max, 2));
#undef __VOP
}


#ifdef YADE_CGAL
const int Ig2_Tetra_Tetra_TTetraSimpleGeom::psMap[4][3] = { // segments of point
	{ 0, 2, 3 },
	{ 0, 1, 4 },
	{ 1, 2, 5 },
	{ 3, 4, 5 }
};

const int Ig2_Tetra_Tetra_TTetraSimpleGeom::ptMap[4][3] = { // triangles of point
	{ 0, 1, 3 },
	{ 0, 1, 2 },
	{ 1, 2, 3 },
	{ 0, 2, 3 }
};

const int Ig2_Tetra_Tetra_TTetraSimpleGeom::stMap[6][2] = { // triangles of segments
	{ 0, 1 }, { 1, 2 }, { 1, 3 }, { 0, 3 }, { 0, 2 }, { 2, 3 }
};

const int Ig2_Tetra_Tetra_TTetraSimpleGeom::ppsMap[4][4] = { // point-point pair to segment
	{ -1, 0, 2, 3 },
	{ 0, -1, 1, 4 },
	{ 2, 1, -1, 5 },
	{ 3, 4, 5, -1 }
};

const int Ig2_Tetra_Tetra_TTetraSimpleGeom::tsMap[4][3] = { // segmnts of triangle
	{ 0, 3, 4 },
	{ 0, 1, 2 },
	{ 1, 4, 5 },
	{ 2, 3, 5 }
};

const int Ig2_Tetra_Tetra_TTetraSimpleGeom::sstMap[6][6] = { // segment-segment pair to triangle
	{ -1, 1, 1, 0, 0, -1 }, { 1, -1, 1, -1, 2, 2 }, { 1, 1, -1, 3, -1, 3 }, { 0, -1, 3, -1, 0, 3 }, { 0, 2, -1, 0, -1, 2 }, { -1, 2, 3, 3, 2, -1 }
};

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkVertexToTriangleCase(
        const Triangle tA[4], const Point pB[4], const Segment sB[6], Vector3r& normal, Vector3r& contactPoint, Real& penetrationVolume)
{
	for (int i = 0; i < 4; i++) {           // loop over triangles 1
		const Triangle& t = tA[i];      // choose triangle 1
		for (int j = 0; j < 4; j++) {   // loop over vertices 2
			const Point& p = pB[j]; // choose vertex 2
			// choose edges posessing p
			const Segment& sa = sB[psMap[j][0]];
			const Segment& sb = sB[psMap[j][1]];
			const Segment& sc = sB[psMap[j][2]];
			if (!(do_intersect(t, sa) && do_intersect(t, sb) && do_intersect(t, sc))) {
				continue;
			} // if all edges intersect with t
			  // evaluate the points
			CGAL::Object oa = intersection(t, sa);
			const Point* pa = CGAL::object_cast<Point>(&oa);
			CGAL::Object ob = intersection(t, sb);
			const Point* pb = CGAL::object_cast<Point>(&ob);
			CGAL::Object oc = intersection(t, sc);
			const Point* pc = CGAL::object_cast<Point>(&oc);
			if (!(pa && pb && pc)) { continue; }         // check that the intrsection really exists
			Vector_3 n = CGAL::normal(t[0], t[1], t[2]); // normal of triangle
			for (int k = 0; k < 3; k++) {
				normal[k] = n[k]; // sets normal of contact = nornal of triangle
				// contact point is center of mass of overlaping tetrahedron
				contactPoint[k] = .25 * (p[k] + pa->operator[](k) + pb->operator[](k) + pc->operator[](k));
			}
			normal.normalize();
			const Point* v[4] = { &p, pa, pb, pc };
			penetrationVolume = TetrahedronVolume(v);
			Real vol          = TetrahedronVolume(pB);
			if (penetrationVolume > .5 * vol) { penetrationVolume = vol - penetrationVolume; }
			return true;
		}
	}
	return false;
}

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkEdgeToEdgeCase(
        const Segment sA[6], const Segment sB[6], const Triangle tA[4], const Triangle tB[4], Vector3r& normal, Vector3r& contactPoint, Real& penetrationVolume)
{
	for (int i = 0; i < 6; i++) {
		const Segment&  sa  = sA[i];
		const Triangle& ta0 = tA[stMap[i][0]];
		const Triangle& ta1 = tA[stMap[i][1]];
		for (int j = 0; j < 6; j++) {
			const Segment sb = sB[j];
			if (!(do_intersect(sb, ta0) && do_intersect(sb, ta1))) { continue; }
			const Triangle tb0 = tB[stMap[j][0]];
			const Triangle tb1 = tB[stMap[j][1]];
			if (!(do_intersect(sa, tb0) && do_intersect(sa, tb1))) { continue; }
			CGAL::Object osb1 = intersection(sb, ta0);
			CGAL::Object osb2 = intersection(sb, ta1);
			CGAL::Object osa1 = intersection(sa, tb0);
			CGAL::Object osa2 = intersection(sa, tb1);
			const Point* psb1 = CGAL::object_cast<Point>(&osb1);
			const Point* psb2 = CGAL::object_cast<Point>(&osb2);
			const Point* psa1 = CGAL::object_cast<Point>(&osa1);
			const Point* psa2 = CGAL::object_cast<Point>(&osa2);
			if (!(psb1 && psb2 && psa1 && psa2)) { continue; }
			Vector_3 n = CGAL::cross_product(sa.to_vector(), sb.to_vector());
			Vector3r nApprox;
			for (int k = 0; k < 3; k++) {
				normal[k] = n[k];
#define OP(p) p->operator[](k)
				nApprox[k]      = .5 * (OP(psa1) + OP(psa2)) - .5 * (OP(psb1) + OP(psb2));
				contactPoint[k] = .25 * (OP(psa1) + OP(psa2) + OP(psb1) + OP(psb2));
#undef OP
			}
			if (nApprox.dot(normal) < 0) { normal *= (Real)-1.; }
			normal.normalize();
			const Point* p[4] = { psb1, psb2, psa1, psa2 };
			penetrationVolume = TetrahedronVolume(p);
			return true;
		}
	}
	return false;
}

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkEdgeToTriangleCase1( // edge smaller than triangle
        const Triangle tA[4],
        const Segment  sB[6],
        const Point    pB[6],
        Vector3r&      normal,
        Vector3r&      contactPoint,
        Real&          penetrationVolume)
{
	for (int i = 0; i < 4; i++) {
		const Triangle& ta = tA[i];
		int             ni = 0;
		for (int j = 0; j < 6; j++) {
			const Segment& s = sB[j];
			if (do_intersect(ta, s)) { ni++; }
		}
		if (ni != 4) { continue; }
		Vector_3 n = CGAL::normal(ta[0], ta[1], ta[2]);
		for (int j = 0; j < 3; j++) {
			const Point& p1 = pB[j];
			if (Vector_3(ta[0], p1) * n > 0.) { continue; }
			const Segment& s10 = sB[psMap[j][0]];
			const Segment& s11 = sB[psMap[j][1]];
			const Segment& s12 = sB[psMap[j][2]];
			bool           b10 = do_intersect(ta, s10);
			bool           b11 = do_intersect(ta, s11);
			bool           b12 = do_intersect(ta, s12);
			if (!((b10 && b11) || (b11 && b12) || (b12 && b10))) { continue; }
			for (int k = j + 1; k < 4; k++) {
				const Point& p2 = pB[k];
				if (Vector_3(ta[0], p2) * n > 0.) { continue; }
				const Segment& s20 = sB[psMap[k][0]];
				const Segment& s21 = sB[psMap[k][1]];
				const Segment& s22 = sB[psMap[k][2]];
				bool           b20 = do_intersect(ta, s20);
				bool           b21 = do_intersect(ta, s21);
				bool           b22 = do_intersect(ta, s22);
				if (!((b20 && b21) || (b21 && b22) || (b22 && b20))) { continue; }
				int l, m;
				for (l = 0; l < 3; l++) {
					if (l != j && l != k) { break; }
				}
				for (m = l + 1; m < 4; m++) {
					if (m != j && m != k) { break; }
				}
				const Segment& s13  = sB[ppsMap[j][l]];
				const Segment& s14  = sB[ppsMap[j][m]];
				const Segment& s23  = sB[ppsMap[k][l]];
				const Segment& s24  = sB[ppsMap[k][m]];
				CGAL::Object   o13  = intersection(ta, s13);
				CGAL::Object   o14  = intersection(ta, s14);
				CGAL::Object   o23  = intersection(ta, s23);
				CGAL::Object   o24  = intersection(ta, s24);
				const Point*   ps13 = CGAL::object_cast<Point>(&o13);
				const Point*   ps14 = CGAL::object_cast<Point>(&o14);
				const Point*   ps23 = CGAL::object_cast<Point>(&o23);
				const Point*   ps24 = CGAL::object_cast<Point>(&o24);
				if (!(ps13 && ps14 && ps23 && ps24)) { continue; }
				const Point* pp1[4] = { &p1, &p2, ps13, ps14 };
				const Point* pp2[4] = { &p2, ps23, ps24, ps14 };
				const Point* pp3[4] = { &p2, ps23, ps13, ps14 };
				Real         v1     = TetrahedronVolume(pp1);
				Real         v2     = TetrahedronVolume(pp2);
				Real         v3     = TetrahedronVolume(pp3);
				Vector3r     cg1, cg2, cg3;
				for (l = 0; l < 3; l++) {
					normal[l] = n[l];
#define OP(p) p->operator[](l)
					cg1[l] = .25 * (p1[l] + p2[l] + OP(ps13) + OP(ps14));
					cg2[l] = .25 * (p2[l] + OP(ps23) + OP(ps24) + OP(ps14));
					cg3[l] = .25 * (p2[l] + OP(ps23) + OP(ps13) + OP(ps14));
#undef OP
				}
				penetrationVolume = v1 + v2 + v3;
				contactPoint      = (v1 * cg1 + v2 * cg2 + v3 * cg3) / penetrationVolume;
				normal.normalize();
				return true;
			}
		}
	}
	return false;
}

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkEdgeToTriangleCase2( // edge larger than triangle
        const Triangle tA[4],
        const Triangle tB[4],
        const Segment  sA[6],
        const Segment  sB[6],
        Vector3r&      normal,
        Vector3r&      contactPoint,
        Real&          penetrationVolume)
{
	for (int i = 0; i < 6; i++) {
		const Segment& sb = sB[i];
		int            ni = 0;
		for (int j = 0; j < 4; j++) {
			const Triangle& t = tA[j];
			if (do_intersect(t, sb)) { ni++; }
		}
		if (ni != 2) { continue; }
		for (int j = 0; j < 3; j++) {
			const Triangle& ta1 = tA[j];
			if (!(do_intersect(ta1, sb))) { continue; }
			for (int k = j + 1; k < 4; k++) {
				const Triangle& ta2 = tA[k];
				if (!(do_intersect(ta2, sb))) { continue; }
				const Triangle& tb1  = tB[stMap[i][0]];
				const Triangle& tb2  = tB[stMap[i][1]];
				const Segment&  sa1a = sA[tsMap[j][0]];
				const Segment&  sa1b = sA[tsMap[j][1]];
				const Segment&  sa1c = sA[tsMap[j][2]];
				bool            b1a  = do_intersect(sa1a, tb1) && do_intersect(sa1a, tb2);
				bool            b1b  = do_intersect(sa1b, tb1) && do_intersect(sa1b, tb2);
				bool            b1c  = do_intersect(sa1c, tb1) && do_intersect(sa1c, tb2);
				if (!(b1a || b1b || b1c)) { continue; }
				const Segment& sa2a = sA[tsMap[k][0]];
				const Segment& sa2b = sA[tsMap[k][1]];
				const Segment& sa2c = sA[tsMap[k][2]];
				bool           b2a  = do_intersect(sa2a, tb1) && do_intersect(sa2a, tb2);
				bool           b2b  = do_intersect(sa2b, tb1) && do_intersect(sa2b, tb2);
				bool           b2c  = do_intersect(sa2c, tb1) && do_intersect(sa2c, tb2);
				if (!(b2a || b2b || b2c)) { continue; }
				int l = b1a ? tsMap[j][0] : b1b ? tsMap[j][1] : tsMap[j][2];
				int m = b2a ? tsMap[k][0] : b2b ? tsMap[k][1] : tsMap[k][2];
				if (sstMap[l][m] == -1) { continue; }
				const Segment&  sa1 = sA[l];
				const Segment&  sa2 = sA[m];
				const Triangle& taN = tA[sstMap[l][m]];
				CGAL::Object    o1  = intersection(sb, ta1);
				CGAL::Object    o2  = intersection(sb, ta2);
				CGAL::Object    o11 = intersection(sa1, tb1);
				CGAL::Object    o12 = intersection(sa1, tb2);
				CGAL::Object    o21 = intersection(sa2, tb1);
				CGAL::Object    o22 = intersection(sa2, tb2);
				const Point*    p1  = CGAL::object_cast<Point>(&o1);
				const Point*    p2  = CGAL::object_cast<Point>(&o2);
				const Point*    p11 = CGAL::object_cast<Point>(&o11);
				const Point*    p12 = CGAL::object_cast<Point>(&o12);
				const Point*    p21 = CGAL::object_cast<Point>(&o21);
				const Point*    p22 = CGAL::object_cast<Point>(&o22);
				if (!(p1 && p2 && p11 && p12 && p21 && p22)) { continue; }
				const Point* pp1[4] = { p1, p2, p11, p12 };
				const Point* pp2[4] = { p2, p21, p22, p12 };
				const Point* pp3[4] = { p2, p21, p11, p12 };
				Real         v1     = TetrahedronVolume(pp1);
				Real         v2     = TetrahedronVolume(pp2);
				Real         v3     = TetrahedronVolume(pp3);
				Vector3r     cg1, cg2, cg3;
				Vector_3     n = CGAL::normal(taN[0], taN[1], taN[2]);
				for (int r = 0; r < 3; r++) {
					normal[r] = n[r];
#define OP(p) p->operator[](r)
					cg1[r] = .25 * (OP(p1) + OP(p2) + OP(p11) + OP(p12));
					cg2[r] = .25 * (OP(p2) + OP(p21) + OP(p22) + OP(p12));
					cg3[r] = .25 * (OP(p2) + OP(p21) + OP(p11) + OP(p12));
#undef OP
				}
				penetrationVolume = v1 + v2 + v3;
				contactPoint      = (v1 * cg1 + v2 * cg2 + v3 * cg3) / penetrationVolume;
				normal.normalize();
				return true;
			}
		}
	}
	return false;
}

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkVertexToEdgeCase(
        const Point    pA[4],
        const Segment  sA[6],
        const Triangle tA[4],
        const Segment  sB[6],
        const Triangle tB[4],
        Vector3r&      normal,
        Vector3r&      contactPoint,
        Real&          penetrationVolume)
{
	for (int i = 0; i < 4; i++) {
		const Point& pa = pA[i];
		if (Vector_3(tB[0][0], pa) * CGAL::normal(tB[0][0], tB[0][1], tB[0][2]) > 0.) { continue; }
		if (Vector_3(tB[1][0], pa) * CGAL::normal(tB[1][0], tB[1][1], tB[1][2]) > 0.) { continue; }
		if (Vector_3(tB[2][0], pa) * CGAL::normal(tB[2][0], tB[2][1], tB[2][2]) > 0.) { continue; }
		if (Vector_3(tB[3][0], pa) * CGAL::normal(tB[3][0], tB[3][1], tB[3][2]) > 0.) { continue; }
		const Segment& sa1 = sA[psMap[i][0]];
		const Segment& sa2 = sA[psMap[i][1]];
		const Segment& sa3 = sA[psMap[i][2]];
		for (int j = 0; j < 6; j++) {
			const Segment&  sb      = sB[j];
			const Triangle& tb1     = tB[stMap[j][0]];
			const Triangle& tb2     = tB[stMap[j][1]];
			const Triangle& ta1     = tA[ptMap[i][0]];
			const Triangle& ta2     = tA[ptMap[i][1]];
			const Triangle& ta3     = tA[ptMap[i][2]];
			bool            bsa1tb1 = do_intersect(sa1, tb1);
			bool            bsa1tb2 = do_intersect(sa1, tb2);
			bool            bsa2tb1 = do_intersect(sa2, tb1);
			bool            bsa2tb2 = do_intersect(sa2, tb2);
			bool            bsa3tb1 = do_intersect(sa3, tb1);
			bool            bsa3tb2 = do_intersect(sa3, tb2);
			bool            bsbta1  = do_intersect(sb, ta1);
			bool            bsbta2  = do_intersect(sb, ta2);
			bool            bsbta3  = do_intersect(sb, ta3);
			if (!((bsa1tb1 || bsa1tb2) && (bsa2tb1 || bsa2tb2) && (bsa3tb1 || bsa3tb2)
			      && ((bsbta1 && bsbta2) || (bsbta2 && bsbta3) || (bsbta3 && bsbta1)))) {
				continue;
			}
			CGAL::Object oa1 = intersection(sa1, bsa1tb1 ? tb1 : tb2);
			CGAL::Object oa2 = intersection(sa2, bsa2tb1 ? tb1 : tb2);
			CGAL::Object oa3 = intersection(sa3, bsa3tb1 ? tb1 : tb2);
			CGAL::Object ob1 = intersection(sb, (bsbta1 && bsbta2) ? ta1 : (bsbta2 && bsbta3) ? ta2 : ta3);
			CGAL::Object ob2 = intersection(sb, (bsbta1 && bsbta2) ? ta2 : (bsbta2 && bsbta3) ? ta3 : ta1);
			const Point* pa1 = CGAL::object_cast<Point>(&oa1);
			const Point* pa2 = CGAL::object_cast<Point>(&oa2);
			const Point* pa3 = CGAL::object_cast<Point>(&oa3);
			const Point* pb1 = CGAL::object_cast<Point>(&ob1);
			const Point* pb2 = CGAL::object_cast<Point>(&ob2);
			if (!(pa1 && pa2 && pa3 && pb1 && pb2)) { continue; }
			Segment      sa(*pa1, *pa2);
			Real         d1     = sqrt(CGAL::squared_distance(sa, *pb1));
			Real         d2     = sqrt(CGAL::squared_distance(sa, *pb2));
			const Point* ppb1   = d1 < d2 ? pb1 : pb2;
			const Point* ppb2   = d1 < d2 ? pb2 : pb1;
			const Point* pp1[4] = { &pa, pa1, pa2, pa3 };
			const Point* pp2[4] = { pa1, pa2, pa3, ppb2 };
			const Point* pp3[4] = { pa1, pa2, ppb1, ppb2 };
			Real         v1     = TetrahedronVolume(pp1);
			Real         v2     = TetrahedronVolume(pp2);
			Real         v3     = TetrahedronVolume(pp3);
			Vector3r     cg1, cg2, cg3;
			Vector_3     n(pa, sb.supporting_line().projection(pa));
			for (int l = 0; l < 3; l++) {
				normal[l] = n[l];
#define OP(p) p->operator[](l)
				cg1[l] = .25 * (pa[l] + OP(pa1) + OP(pa2) + OP(pa3));
				cg2[l] = .25 * (OP(pa1) + OP(pa2) + OP(pa3) + OP(ppb2));
				cg3[l] = .25 * (OP(pa1) + OP(pa2) + OP(ppb1) + OP(ppb2));
#undef OP
			}
			penetrationVolume = v1 + v2 + v3;
			contactPoint      = (v1 * cg1 + v2 * cg2 + v3 * cg3) / penetrationVolume;
			normal.normalize();
			return true;
		}
	}
	return false;
}

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::checkVertexToVertexCase(
        const Point    pA[4],
        const Point    pB[4],
        const Segment  sA[6],
        const Triangle tA[4],
        const Triangle tB[4],
        Vector3r&      normal,
        Vector3r&      contactPoint,
        Real&          penetrationVolume)
{
	for (int i = 0; i < 4; i++) {
		const Point& pa = pA[i];
		if (Vector_3(tB[0][0], pa) * CGAL::normal(tB[0][0], tB[0][1], tB[0][2]) > 0.) { continue; }
		if (Vector_3(tB[1][0], pa) * CGAL::normal(tB[1][0], tB[1][1], tB[1][2]) > 0.) { continue; }
		if (Vector_3(tB[2][0], pa) * CGAL::normal(tB[2][0], tB[2][1], tB[2][2]) > 0.) { continue; }
		if (Vector_3(tB[3][0], pa) * CGAL::normal(tB[3][0], tB[3][1], tB[3][2]) > 0.) { continue; }
		const Segment& sa1 = sA[psMap[i][0]];
		const Segment& sa2 = sA[psMap[i][1]];
		const Segment& sa3 = sA[psMap[i][2]];
		for (int j = 0; j < 4; j++) {
			const Point& pb = pB[j];
			if (Vector_3(tA[0][0], pb) * CGAL::normal(tA[0][0], tA[0][1], tA[0][2]) > 0.) { continue; }
			if (Vector_3(tA[1][0], pb) * CGAL::normal(tA[1][0], tA[1][1], tA[1][2]) > 0.) { continue; }
			if (Vector_3(tA[2][0], pb) * CGAL::normal(tA[2][0], tA[2][1], tA[2][2]) > 0.) { continue; }
			if (Vector_3(tA[3][0], pb) * CGAL::normal(tA[3][0], tB[3][1], tB[3][2]) > 0.) { continue; }
			const Triangle& tb1 = tB[ptMap[j][0]];
			const Triangle& tb2 = tB[ptMap[j][1]];
			const Triangle& tb3 = tB[ptMap[j][2]];
			bool            b11 = do_intersect(sa1, tb1);
			bool            b12 = do_intersect(sa1, tb2);
			bool            b13 = do_intersect(sa1, tb3);
			bool            b21 = do_intersect(sa2, tb1);
			bool            b22 = do_intersect(sa2, tb2);
			bool            b23 = do_intersect(sa2, tb3);
			bool            b31 = do_intersect(sa3, tb1);
			bool            b32 = do_intersect(sa3, tb2);
			bool            b33 = do_intersect(sa3, tb3);
			if (!(b11 || b12 || b13) && (b21 || b22 || b23) && (b31 || b32 || b33)) { continue; }
			CGAL::Object o1 = intersection(sa1, b11 ? tb1 : b12 ? tb2 : tb3);
			CGAL::Object o2 = intersection(sa2, b21 ? tb1 : b22 ? tb2 : tb3);
			CGAL::Object o3 = intersection(sa3, b31 ? tb1 : b32 ? tb2 : tb3);
			const Point* p1 = CGAL::object_cast<Point>(&o1);
			const Point* p2 = CGAL::object_cast<Point>(&o2);
			const Point* p3 = CGAL::object_cast<Point>(&o3);
			if (!(p1 && p2 && p3)) { continue; }
			const Point* pp1[4] = { &pa, p1, p2, p3 };
			const Point* pp2[4] = { &pb, p2, p3, p3 };
			Real         v1     = TetrahedronVolume(pp1);
			Real         v2     = TetrahedronVolume(pp2);
			Vector3r     cg1, cg2;
			Vector_3     n(pa, pb);
			for (int l = 0; l < 3; l++) {
				normal[l] = n[l];
#define OP(p) p->operator[](l)
				cg1[l] = .25 * (pa[l] + OP(p1) + OP(p2) + OP(p3));
				cg2[l] = .25 * (pb[l] + OP(p1) + OP(p2) + OP(p3));
#undef OP
			}
			penetrationVolume = v1 + v2;
			contactPoint      = (v1 * cg1 + v2 * cg2) / penetrationVolume;
			normal.normalize();
			return true;
		}
	}
	return false;
}

bool Ig2_Tetra_Tetra_TTetraSimpleGeom::go(
        const shared_ptr<Shape>& cm1,
        const shared_ptr<Shape>& cm2,
        const State&             state1,
        const State&             state2,
        const Vector3r&          shift2,
        const bool& /*force*/,
        const shared_ptr<Interaction>& interaction)
{
	const Se3r& se31   = state1.se3;
	const Se3r& se32   = state2.se3;
	Tetra*      shape1 = static_cast<Tetra*>(cm1.get());
	Tetra*      shape2 = static_cast<Tetra*>(cm2.get());

	Point    p1[4], p2[4];
	Vector3r vTemp;
	// vertices in global coordinates
	for (int i = 0; i < 4; i++) {
		vTemp = se31.position + se31.orientation * shape1->v[i];
		p1[i] = Point(vTemp[0], vTemp[1], vTemp[2]);
		vTemp = se32.position + se32.orientation * shape2->v[i] + shift2;
		p2[i] = Point(vTemp[0], vTemp[1], vTemp[2]);
	}

// Faces (CGAL triangles) of each tetra
#define T(p, i, j, k) Triangle(p[i], p[j], p[k])
	const Triangle t1[4] = { T(p1, 0, 1, 3), T(p1, 0, 2, 1), T(p1, 1, 2, 3), T(p1, 0, 3, 2) };
	const Triangle t2[4] = { T(p2, 0, 1, 3), T(p2, 0, 2, 1), T(p2, 1, 2, 3), T(p2, 0, 3, 2) };
#undef T
// Edges (CGAL segments) of each tetra
#define S(p, i, j) Segment(p[i], p[j])
	const Segment s1[6] = { S(p1, 0, 1), S(p1, 1, 2), S(p1, 0, 2), S(p1, 0, 3), S(p1, 1, 3), S(p1, 2, 3) };
	const Segment s2[6] = { S(p2, 0, 1), S(p2, 1, 2), S(p2, 0, 2), S(p2, 0, 3), S(p2, 1, 3), S(p2, 2, 3) };
#undef S

	Vector3r n;
	Vector3r cp;
	Real     V;
	int      flag;

#define SET_GEOM_AND_RETURN_TRUE                                                                                                                               \
	shared_ptr<TTetraSimpleGeom> geom;                                                                                                                     \
	if (!interaction->geom) geom = shared_ptr<TTetraSimpleGeom>(new TTetraSimpleGeom());                                                                   \
	else                                                                                                                                                   \
		geom = YADE_PTR_CAST<TTetraSimpleGeom>(interaction->geom);                                                                                     \
	interaction->geom       = geom;                                                                                                                        \
	geom->normal            = n;                                                                                                                           \
	geom->contactPoint      = cp;                                                                                                                          \
	geom->penetrationVolume = V;                                                                                                                           \
	geom->flag              = flag;                                                                                                                        \
	return true;


	if (checkVertexToTriangleCase(t1, p2, s2, n, cp, V)) {
		flag = 1;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkVertexToTriangleCase(t2, p1, s1, n, cp, V)) {
		n *= -1.;
		flag = 2;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkEdgeToEdgeCase(s1, s2, t1, t2, n, cp, V)) {
		flag = 3;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkEdgeToTriangleCase1(t1, s2, p2, n, cp, V)) {
		flag = 4;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkEdgeToTriangleCase1(t2, s1, p1, n, cp, V)) {
		n *= -1.;
		flag = 5;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkEdgeToTriangleCase2(t1, t2, s1, s2, n, cp, V)) {
		flag = 6;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkEdgeToTriangleCase2(t2, t1, s2, s1, n, cp, V)) {
		n *= -1.;
		flag = 7;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkVertexToEdgeCase(p1, s1, t1, s2, t2, n, cp, V)) {
		n *= -1.;
		flag = 8;
		SET_GEOM_AND_RETURN_TRUE
	}
	if (checkVertexToEdgeCase(p2, s2, t2, s1, t1, n, cp, V)) {
		flag = 9;
		SET_GEOM_AND_RETURN_TRUE
	}

#undef SET_GEOM_AND_RETURN_TRUE


	if (interaction->geom) {
		TTetraSimpleGeom* geom  = static_cast<TTetraSimpleGeom*>(interaction->geom.get());
		geom->penetrationVolume = (Real)-1.;
		geom->flag              = 0;
		return true;
	}
	return false;
}
#endif


CREATE_LOGGER(Ig2_Tetra_Tetra_TTetraGeom);

/*! Calculate configuration of Tetra - Tetra intersection.
 *
 * Wildmagick's functions are used here: intersection is returned as a set of tetrahedra (may be empty, inwhich case there is no real intersection).
 * Then we calcualte volumetric proeprties of this intersection volume: inertia, centroid, volume.
 *
 * Contact normal (the direction in which repulsive force will act) coincides with the direction of least inertia,
 * since that is the gradient that maximizes the drop of elastic deformation energy and will reach minimum fastest.
 *
 * Equivalent cross section of the penetrating volume (as if it were a cuboid with the same inertia) and equivalent penetration depth are calculated;
 * Equivalent solid size in the dimension of normal serves as reference for strain calculation and is different for solids A and B.
 *
 * Strain will be then approximated by equivalentPenetrationDepth/.5*(maxPenetrationDepthA+maxPenetrationDepthB) (the average of A and B)
 *
 * All the relevant results are fed into TTetraGeom which is passed to TetraVolumetricLaw later that makes actual use of all this.
 *
 * @todo thoroughly test this for numerical correctness.
 *
 */
bool Ig2_Tetra_Tetra_TTetraGeom::go(
        const shared_ptr<Shape>&       cm1,
        const shared_ptr<Shape>&       cm2,
        const State&                   state1,
        const State&                   state2,
        const Vector3r&                shift2,
        const bool&                    force,
        const shared_ptr<Interaction>& interaction)
{
	const Se3r& se31 = state1.se3;
	const Se3r& se32 = state2.se3;
	Tetra*      A    = static_cast<Tetra*>(cm1.get());
	Tetra*      B    = static_cast<Tetra*>(cm2.get());
	//return false;

	shared_ptr<TTetraGeom> bang;
	// depending whether it's a new interaction: create new one, or use the existing one.
	if (!interaction->geom) bang = shared_ptr<TTetraGeom>(new TTetraGeom());
	else
		bang = YADE_PTR_CAST<TTetraGeom>(interaction->geom);
	interaction->geom = bang;

// use wildmagick's intersection routine?
#if 0
		// transform to global coordinates, build Tetrahedron3r objects to make wm3 happy
		Tetrahedron3r tA(se31.orientation*A->v[0]+se31.position,se31.orientation*A->v[1]+se31.position,se31.orientation*A->v[2]+se31.position,se31.orientation*A->v[3]+se31.position);
		Tetrahedron3r tB(se32.orientation*B->v[0]+se32.position,se32.orientation*B->v[1]+se32.position,se32.orientation*B->v[2]+se32.position,se32.orientation*B->v[3]+se32.position);

		IntrTetrahedron3Tetrahedron3r iAB(tA,tB);
		bool found=iAB.Find();  //calculates the intersection volume as a composition of 0 or more tetrahedra

		if(!found) return false; // no intersecting volume

		Real V(0); // volume of intersection (cummulative)
		Vector3r Sg(0,0,0); // static moment of intersection
		vector<vector<Vector3r> > tAB;

		Wm3::TArray<Wm3::Tetrahedron3d> iABinfo(iAB.GetIntersection()); // retrieve the array of 4hedra
		for(int i=0; i<iABinfo.GetQuantity(); i++){
			iABinfo[i];  // has i-th tehtrahedron as Tetrahedron3r&
#define v0 iABinfo[i].V[0]
#define v1 iABinfo[i].V[1]
#define v2 iABinfo[i].V[2]
#define v3 iABinfo[i].V[3]
			Real dV=math::abs(Vector3r(v1-v0).Dot((v2-v0).Cross(v3-v0)))/6.;
			V+=dV;
			Sg+=dV*(v0+v1+v2+v3)*.25;
			vector<Vector3r> t; t.push_back(v0); t.push_back(v1); t.push_back(v2); t.push_back(v3);
			tAB.push_back(t);
#undef v0
#undef v1
#undef v2
#undef v3
		}
#endif

	// transform to global coordinates, build Tetra objects
	Tetra tA(
	        se31.orientation * A->v[0] + se31.position,
	        se31.orientation * A->v[1] + se31.position,
	        se31.orientation * A->v[2] + se31.position,
	        se31.orientation * A->v[3] + se31.position);
	Tetra tB(
	        se32.orientation * B->v[0] + se32.position + shift2,
	        se32.orientation * B->v[1] + se32.position + shift2,
	        se32.orientation * B->v[2] + se32.position + shift2,
	        se32.orientation * B->v[3] + se32.position + shift2);
// calculate intersection
#if 0
		tB=Tetra(Vector3r(0,0,0),Vector3r(1.5,1,1),Vector3r(0.5,1,1),Vector3r(1,1,.5));
		tA=Tetra(Vector3r(0,0,0),Vector3r(1,0,0),Vector3r(0,1,0),Vector3r(0,0,1));
#endif
	std::list<Tetra> tAB = Tetra2TetraIntersection(tA, tB);
	if (!interaction->isReal() && !force) {
		if (tAB.size() == 0) { /* LOG_DEBUG("No intersection."); */
			return false;
		} //no intersecting volume
	}

	Real     V(0);        // volume of intersection (cummulative)
	Vector3r Sg(0, 0, 0); // static moment of intersection

	Vector3r tt[4];
	for (int i = 0; i < 4; i++)
		tt[i] = tA.v[i];

	for (std::list<Tetra>::iterator II = tAB.begin(); II != tAB.end(); II++) {
		Real dV = TetrahedronVolume(II->v);
		V += dV;
		Sg += dV * (II->v[0] + II->v[1] + II->v[2] + II->v[3]) * .25;
	}
	Vector3r centroid = Sg / V;
	Matrix3r I(Matrix3r::Zero()); // inertia tensor for the composition; zero matrix initially
	                              // I is purely geometrical (as if with unit density)

	// get total
	Vector3r dist;
	for (std::list<Tetra>::iterator II = tAB.begin(); II != tAB.end(); II++) {
		II->v[0] -= centroid;
		II->v[1] -= centroid;
		II->v[2] -= centroid;
		II->v[3] -= centroid;
		dist = (II->v[0] + II->v[1] + II->v[2] + II->v[3]) * .25 - centroid;
		/* use parallel axis theorem */
		Matrix3r distSq(Matrix3r::Zero());
		distSq(0, 0) = dist[0] * dist[0];
		distSq(1, 1) = dist[1] * dist[1];
		distSq(2, 2) = dist[2] * dist[2]; // could be done more intelligently with eigen
		I += TetrahedronInertiaTensor(II->v) + TetrahedronVolume(II->v) * distSq;
	}

	/* Now, we have the collision volumetrically described by intersection volume (V), its inertia tensor (I) and centroid (centroid; contact point).
	 * The inertia tensor is in global coordinates; by eigendecomposition, we find principal axes, which will give us
	 *  1. normal, the direction of the lest inertia; this is the gradient of penetration energy
	 *  	it may have either direction mathematically, but since 4hedra are convex, 
	 *  	normal will be always the direction pointing more towards the centroid of the other 4hedron
	 *  2. tangent?! hopefully not needed at all. */

	Matrix3r Ip, R; // principal moments of inertia, rotation matrix
	/* should check convergence*/ matrixEigenDecomposition(I, R, Ip);
	// according to the documentation in Wm3 header, diagonal entries are in ascending order: d0<=d1<=d2;
	// but keep it algorithmic for now and just assert that.
	int ix = (Ip(0, 0) < Ip(1, 1) && Ip(0, 0) < Ip(2, 2))
	        ? 0
	        : ((Ip(1, 1) < Ip(0, 0) && Ip(1, 1) < Ip(2, 2)) ? 1 : 2); // index of the minimum moment of inertia
	// the other two indices, modulated by 3, since they are ∈ {0,1,2}
	int ixx = (ix + 1) % 3, ixxx = (ix + 2) % 3;
	// assert what the documentation says (d0<=d1<=d2)
	assert(ix == 0);
	Vector3r minAxis(0, 0, 0);
	minAxis[ix]     = 1; // the axis of minimum inertia
	Vector3r normal = R * minAxis;
	normal.normalize(); // normal is minAxis in global coordinates (normalization shouldn't be needed since R is rotation matrix, but to make sure...)

	// centroid of B
	Vector3r Bcent = se31.orientation * ((B->v[0] + B->v[1] + B->v[2] + B->v[3]) * .25) + se31.position;
	// reverse direction if projection of the (contact_point-centroid_of_B) vector onto the normal is negative (i.e. the normal points more towards A)
	if ((Bcent - centroid).dot(normal) < 0) normal *= -1;

	/* now estimate the area of the solid that is perpendicular to the normal. This will be needed to estimate elastic force based on Young's modulus.
	 * Suppose we have cuboid, with edges of lengths x,y,z in the direction of respective axes.
	 * It's inertia are Ix=(V/12)*(y^2+z^2), Iy=(V/12)*(x^2+z^2), Iz=(V/12)*(x^2+y^2) and suppose Iz is maximal; Ix, Iy and Iz are known (from decomposition above).
	 * Then the area perpendicular to z (normal direction) is given by x*y=V/z, where V is known.
	 * Ix+Iy-Iz=(V/12)*(y^2+z^2+x^2+z^2-x^2-y^2)=(V*z^2)/6, z=√(6*(Ix+Iy-Iz)/V)
	 * Az=V/z=√(V^3/(6*(Ix+Iy-Iz))).
	 *
	 * In our case, the greatest inertia is along ixxx, the other coordinates are ixx and ix. equivalentPenetrationDepth means what was z.
	 */

	Real equivalentPenetrationDepth = sqrt(6. * (Ip(ix, ix) + Ip(ixx, ixx) - Ip(ixxx, ixxx)) / V);
	Real equivalentCrossSection     = V / equivalentPenetrationDepth;
	TRVAR3(V, equivalentPenetrationDepth, equivalentCrossSection);

	/* Now rotate the whole inertia tensors of A and B and estimate maxPenetrationDepth -- the length of the body in the direction of the contact normal.
	 * This will be used to calculate relative deformation, which is needed for elastic response. */
	const State* physA = Body::byId(interaction->getId1())->state.get();
	const State* physB = Body::byId(interaction->getId2())->state.get();
	// WARNING: Matrix3r(Vector3r(...)) is compiled, but gives zero matrix??!! Use explicitly constructor from diagonal entries
	//Matrix3r IA(physA->inertia[0],physA->inertia[1],physA->inertia[2]); Matrix3r IB(physB->inertia[0],physB->inertia[1],physB->inertia[2]);
	Matrix3r IA = Matrix3r::Zero(), IB = Matrix3r::Zero();
	for (int i = 0; i < 3; i++) {
		IA(i, i) = physA->inertia[i];
		IB(i, i) = physB->inertia[i];
	}
	// see Clump::inertiaTensorRotate for references
	IA = R.transpose() * IA * R;
	IB = R.transpose() * IB * R;

	Real maxPenetrationDepthA = sqrt(6 * (IA(ix, ix) + IA(ixx, ixx) - IA(ixxx, ixxx)) / V);
	Real maxPenetrationDepthB = sqrt(6 * (IB(ix, ix) + IB(ixx, ixx) - IB(ixxx, ixxx)) / V);
	TRVAR2(maxPenetrationDepthA, maxPenetrationDepthB);

	//normal = se32.position - se31.position; normal.normalize();

	/* store calculated stuff in bang; some is redundant */
	bang->normal                 = normal;
	bang->equivalentCrossSection = equivalentCrossSection;
	bang->contactPoint           = centroid;
	bang->penetrationVolume      = V;

	bang->equivalentPenetrationDepth = equivalentPenetrationDepth;
	bang->maxPenetrationDepthA       = maxPenetrationDepthA;
	bang->maxPenetrationDepthB       = maxPenetrationDepthB;

	return true;
}

/*! Calculate intersection o Tetrahedron A and B as union of set (std::list) of 4hedra.
 *
 * intersecting tetrahedra A and B
 * S=intersection set (4hedra)
 * S={A}
 * for face in B_faces:
 *		for t in S:  [ S is mutable, but if list, iterators remain valid? ]
 * 		tmp = clip t by face // may return multiple 4hedra or none
 * 		replace t by tmp (possibly none) in S
 * return S
 *
 */
std::list<Tetra> Ig2_Tetra_Tetra_TTetraGeom::Tetra2TetraIntersection(const Tetra& A, const Tetra& B)
{
	// list of 4hedra to split; initially A
	std::list<Tetra> ret;
	ret.push_back(A);
	/* I is vertex index at B;
	 * clipping face is [i i1 i2], normal points away from i3 */
	int      i, i1, i2, i3;
	Vector3r normal;
	/* LOG_TRACE("===========================================================================================")
	LOG_TRACE("===========================================================================================")
	LOG_TRACE(ret.size());
	LOG_TRACE("DUMP A and B:"); A.dump(); B.dump(); */
	for (i = 0; i < 4; i++) {
		i1 = (i + 1) % 4;
		i2 = (i + 2) % 4;
		i3 = (i + 3) % 4;
		const Vector3r& P(B.v[i]); // reference point on the plane
		normal = (B.v[i1] - P).cross(B.v[i2] - P);
		normal.normalize();                              // normal
		if ((B.v[i3] - P).dot(normal) > 0) normal *= -1; // outer normal
		for (std::list<Tetra>::iterator I = ret.begin(); I != ret.end(); /* I++ */) {
			std::list<Tetra> splitDecomposition = TetraClipByPlane(*I, P, normal);
			// replace current list element by the result of decomposition;
			// I points after the erased one, so decomposed 4hedra will not be touched in this iteration, just as we want.
			// Since it will be incremented by I++ at the end of the cycle, compensate for that by I--;
			I = ret.erase(I);
			ret.insert(I, splitDecomposition.begin(), splitDecomposition.end()); /* I--; */
			/* LOG_TRACE("DUMP current tetrahedron list:"); for(list<Tetra>::iterator I=ret.begin(); I!=ret.end(); I++) (*I).dump();*/
		}
	}
	//exit(0);
	return ret;
}

/*! Clip Tetra T by plane give by point P and outer normal n.
 *
 * Algorithm: 
 *
 * clip t by face
 * 	sort points of t into positive, negative, zero (face normal n points outside)
 * 		-: inside; +: outside; 0: on face
 * 		homogeneous cases (no split):
 * 			++++, +++0, ++00, +000 :
 * 				0Δ full clip (everything outside), nothing left; return ∅
 * 			----, ---0, --00, -000 :
 * 				1Δ all inside, return identity
 *			split (at least one - and one +)
 *				-+++
 * 				1Δ [A AB AC AD]
 *				-++0
 * 				1Δ [A AB AC D]
 *				-+00:
 * 				1Δ [A AB C D]
 * 			--++:
 * 				3Δ [A AC AD B BC BD] ⇒ (e.g.) [A AC AD B] [B BC BD AD] [B AD AC BC]
 * 			--+0:
 * 				2Δ [A B AC BC D] ⇒ (e.g.) [A AC BC D] [B BC A D] 
 * 			---+:
 * 				3Δ tetrahedrize [A B C AD BD CD]
 *
 * http://members.tripod.com/~Paul_Kirby/vector/Vplanelineint.html
 */
std::list<Tetra> Ig2_Tetra_Tetra_TTetraGeom::TetraClipByPlane(const Tetra& T, const Vector3r& P, const Vector3r& normal)
{
	std::list<Tetra> ret;
	// scaling factor for Mathr::EPSILON: average edge length
	Real scaledEPSILON = Mathr::EPSILON * (1 / 6.)
	        * ((T.v[1] - T.v[0]) + (T.v[2] - T.v[0]) + (T.v[3] - T.v[0]) + (T.v[2] - T.v[1]) + (T.v[3] - T.v[1]) + (T.v[3] - T.v[2])).norm();

	vector<size_t> pos, neg, zer;
	Real           dist[4];
	for (size_t i = 0; i < 4; i++) {
		dist[i] = (T.v[i] - P).dot(normal);
		if (dist[i] > scaledEPSILON) pos.push_back(i);
		else if (dist[i] < -scaledEPSILON)
			neg.push_back(i);
		else
			zer.push_back(i);
	}
/* LOG_TRACE("dist[i]=["<<dist[0]<<","<<dist[1]<<","<<dist[2]<<","<<dist[3]<<"]"); */
#define NEG neg.size()
#define POS pos.size()
#define ZER zer.size()
#define PTPT(i, j) PtPtPlaneIntr(v[i], v[j], P, normal)
	assert(NEG + POS + ZER == 4);

	// HOMOGENEOUS CASES
	// ++++, +++0, ++00, +000, 0000 (degenerate (planar) tetrahedron)
	if (POS == 4 || (POS == 3 && ZER == 1) || (POS == 2 && ZER == 2) || (POS == 1 && ZER == 3) || ZER == 4)
		return ret; // ∅
		            // ----, ---0, --00, -000 :
	if (NEG == 4 || (NEG == 3 && ZER == 1) || (NEG == 2 && ZER == 2) || (NEG == 1 && ZER == 3)) {
		ret.push_back(T);
		return ret;
	}
	// HETEROGENEOUS CASES
	// points are ordered -+0
	Vector3r v[4];
	for (size_t i = 0; i < NEG; i++)
		v[i + 0 + 0] = T.v[neg[i]];
	for (size_t i = 0; i < POS; i++)
		v[i + 0 + NEG] = T.v[pos[i]];
	for (size_t i = 0; i < ZER; i++)
		v[i + POS + NEG] = T.v[zer[i]];

#define _A v[0]
#define _B v[1]
#define _C v[2]
#define _D v[3]
#define _AB PTPT(0, 1)
#define _AC PTPT(0, 2)
#define _AD PTPT(0, 3)
#define _BC PTPT(1, 2)
#define _BD PTPT(1, 3)
#define _CD PTPT(2, 3)
	// -+++ → 1Δ [A AB AC AD]
	if (NEG == 1 && POS == 3) {
		ret.push_back(Tetra(_A, _AB, _AC, _AD));
		return ret;
	}
	// -++0 → 1Δ [A AB AC D]
	if (NEG == 1 && POS == 2 && ZER == 1) {
		ret.push_back(Tetra(_A, _AB, _AC, _D));
		return ret;
	}
	//	-+00 → 1Δ [A AB C D]
	if (NEG == 1 && POS == 1 && ZER == 2) {
		ret.push_back(Tetra(_A, _AB, _C, _D));
		return ret;
	}
	// --++ → 3Δ [A AC AD B BC BD] ⇒ (e.g.) [A AC AD B] [B BC BD AD] [B AD AC BC]
	if (NEG == 2 && POS == 2) {
		// [A AC AD B]
		ret.push_back(Tetra(_A, _AC, _AD, _B));
		// [B BC BD AD]
		ret.push_back(Tetra(_B, _BC, _BD, _AD));
		// [B AD AC BC]
		ret.push_back(Tetra(_B, _AD, _AC, _BC));
		return ret;
	}
	// --+0 → 2Δ [A B AC BC D] ⇒ (e.g.) [A AC BC D] [B BC A D]
	if (NEG == 2 && POS == 1 && ZER == 1) {
		// [A AC BC D]
		ret.push_back(Tetra(_A, _AC, _BC, _D));
		// [B BC A D]
		ret.push_back(Tetra(_B, _BC, _A, _D));
		return ret;
	}
	// ---+ → 3Δ [A B C AD BD CD] ⇒ (e.g.) [A B C AD] [AD BD CD B] [AD C B BD]
	if (NEG == 3 && POS == 1) {
		//[A B C AD]
		ret.push_back(Tetra(_A, _B, _C, _AD));
		//[AD BD CD B]
		ret.push_back(Tetra(_AD, _BD, _CD, _B));
		//[AD C B BD]
		ret.push_back(Tetra(_AD, _C, _B, _BD));
		return ret;
	}
#undef _A
#undef _B
#undef _C
#undef _D
#undef _AB
#undef _AC
#undef _AD
#undef _BC
#undef _BD
#undef _CD

#undef PTPT
#undef NEG
#undef POS
#undef ZER
	// unreachable
	assert(false);
	return (ret); // prevent warning
}


CREATE_LOGGER(TetraVolumetricLaw);

/*! Apply forces on tetrahedra in collision based on geometric configuration provided by Ig2_Tetra_Tetra_TTetraGeom.
 *
 * DO NOT USE, probably doesn't work.
 * Comments on functionality limitations are in the code. It has not been tested at all!!! */
void TetraVolumetricLaw::action()
{
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
	{
		// normally, we would test isReal(), but TetraVolumetricLaw doesn't use phys at all
		if (!I->geom) continue; // Ig2_Tetra_Tetra_TTetraGeom::go returned false for this interaction, skip it
		const shared_ptr<TTetraGeom>& contactGeom(YADE_PTR_DYN_CAST<TTetraGeom>(I->geom));
		if (!contactGeom) continue;

		const Body::id_t       idA = I->getId1(), idB = I->getId2();
		const shared_ptr<Body>&A = Body::byId(idA), B = Body::byId(idB);

		const shared_ptr<ElastMat>& physA(YADE_PTR_DYN_CAST<ElastMat>(A->material));
		const shared_ptr<ElastMat>& physB(YADE_PTR_DYN_CAST<ElastMat>(B->material));


		/* Cross-section is volumetrically equivalent to the penetration configuration */
		Real averageStrain = contactGeom->equivalentPenetrationDepth / (.5 * (contactGeom->maxPenetrationDepthA + contactGeom->maxPenetrationDepthB));

		/* Do not use NormPhys::kn (as calculated by ElasticBodySimpleRelationship).
		 * NormPhys::kn is not Young's modulus, it is calculated by MacroMicroElasticRelationships. So perhaps
		 * a new IPhysFunctor will be needed that will just pass the average Young's modulus here?
		 * For now, just go back to Young's moduli directly here. */
		Real young = .5 * (physA->young + physB->young);
		TRVAR3(young, averageStrain, contactGeom->equivalentCrossSection);
		// F=σA=εEA
		// this is unused; should it?: contactPhys->kn
		Vector3r F = contactGeom->normal * averageStrain * young * contactGeom->equivalentCrossSection;

		scene->forces.addForce(idA, -F);
		scene->forces.addForce(idB, F);
		scene->forces.addTorque(idA, -(A->state->pos - contactGeom->contactPoint).cross(F));
		scene->forces.addTorque(idB, (B->state->pos - contactGeom->contactPoint).cross(F));
	}
}

#ifdef YADE_OPENGL

bool Gl1_Tetra::wire;
void Gl1_Tetra::go(const shared_ptr<Shape>& cm, const shared_ptr<State>&, bool wire2, const GLViewInfo&)
{
	glMaterialv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, Vector3r(cm->color[0], cm->color[1], cm->color[2]));
	glColor3v(cm->color);
	Tetra* t = static_cast<Tetra*>(cm.get());
	if (wire && wire2) { // wireframe, as for Tetrahedron
		glDisable(GL_LIGHTING);
		glBegin(GL_LINES)
			;
			glOneWire(t, 0, 1);
			glOneWire(t, 0, 2);
			glOneWire(t, 0, 3);
			glOneWire(t, 1, 2);
			glOneWire(t, 1, 3);
			glOneWire(t, 2, 3);
		glEnd();
	} else {
		glDisable(GL_CULL_FACE);
		glEnable(GL_LIGHTING);
		glBegin(GL_TRIANGLES)
			;
			glOneFace(t, 0, 2, 1);
			glOneFace(t, 0, 1, 3);
			glOneFace(t, 1, 2, 3);
			glOneFace(t, 0, 3, 2);
		glEnd();
	}
}
#endif

/*! Calculates tetrahedron inertia relative to the origin (0,0,0), with unit density (scales linearly).

See article F. Tonon, "Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of its Vertex Coordinates", http://www.scipub.org/fulltext/jms2/jms2118-11.pdf

Numerical example to check:

vertices:
	(8.33220, 11.86875, 0.93355)
	(0.75523 ,5.00000, 16.37072)
	(52.61236, 5.00000, 5.38580)
	(2.00000, 5.00000, 3.00000)
centroid:
	(15.92492, 0.78281, 3.72962)
intertia/density WRT centroid:
	a/μ = 43520.33257 m⁵
	b/μ = 194711.28938 m⁵
	c/μ = 191168.76173 m⁵
	a’/μ= 4417.66150 m⁵
	b’/μ=-46343.16662 m⁵
	c’/μ= 11996.20119 m⁵

The numerical testcase (in TetraTestGen::generate) is exact as in the article for inertia (as well as centroid):

43520.3
194711
191169
4417.66
-46343.2
11996.2

*/
//Matrix3r TetrahedronInertiaTensor(const Vector3r v[4]){
Matrix3r TetrahedronInertiaTensor(const vector<Vector3r>& v)
{
#define x1 v[0][0]
#define y1 v[0][1]
#define z1 v[0][2]
#define x2 v[1][0]
#define y2 v[1][1]
#define z2 v[1][2]
#define x3 v[2][0]
#define y3 v[2][1]
#define z3 v[2][2]
#define x4 v[3][0]
#define y4 v[3][1]
#define z4 v[3][2]

	assert(v.size() == 4);

	// Jacobian of transformation to the reference 4hedron
	Real detJ = (x2 - x1) * (y3 - y1) * (z4 - z1) + (x3 - x1) * (y4 - y1) * (z2 - z1) + (x4 - x1) * (y2 - y1) * (z3 - z1)
	        - (x2 - x1) * (y4 - y1) * (z3 - z1) - (x3 - x1) * (y2 - y1) * (z4 - z1) - (x4 - x1) * (y3 - y1) * (z2 - z1);
	detJ   = math::abs(detJ);
	Real a = detJ
	        * (y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3 + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4 + z1 * z1 + z1 * z2 + z2 * z2 + z1 * z3
	           + z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
	        / 60.;
	Real b = detJ
	        * (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + z1 * z1 + z1 * z2 + z2 * z2 + z1 * z3
	           + z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
	        / 60.;
	Real c = detJ
	        * (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3
	           + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4)
	        / 60.;
	// a' in the article etc.
	Real a__ = detJ
	        * (2 * y1 * z1 + y2 * z1 + y3 * z1 + y4 * z1 + y1 * z2 + 2 * y2 * z2 + y3 * z2 + y4 * z2 + y1 * z3 + y2 * z3 + 2 * y3 * z3 + y4 * z3 + y1 * z4
	           + y2 * z4 + y3 * z4 + 2 * y4 * z4)
	        / 120.;
	Real b__ = detJ
	        * (2 * x1 * z1 + x2 * z1 + x3 * z1 + x4 * z1 + x1 * z2 + 2 * x2 * z2 + x3 * z2 + x4 * z2 + x1 * z3 + x2 * z3 + 2 * x3 * z3 + x4 * z3 + x1 * z4
	           + x2 * z4 + x3 * z4 + 2 * x4 * z4)
	        / 120.;
	Real c__ = detJ
	        * (2 * x1 * y1 + x2 * y1 + x3 * y1 + x4 * y1 + x1 * y2 + 2 * x2 * y2 + x3 * y2 + x4 * y2 + x1 * y3 + x2 * y3 + 2 * x3 * y3 + x4 * y3 + x1 * y4
	           + x2 * y4 + x3 * y4 + 2 * x4 * y4)
	        / 120.;

	Matrix3r ret;
	ret << a, -c__, -b__, -c__, b, -a__, -b__, -a__, c;
	return ret;

#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef x4
#undef y4
#undef z4
}

/*! Caluclate tetrahedron's central inertia tensor */
//Matrix3r TetrahedronCentralInertiaTensor(const Vector3r v[4]){
Matrix3r TetrahedronCentralInertiaTensor(const vector<Vector3r>& v)
{
	assert(v.size() == 4);
	vector<Vector3r> vv;

	//	Vector3r vv[4];
	Vector3r cg = (v[0] + v[1] + v[2] + v[3]) * .25;
	//	vv[0]=v[0]-cg;
	//	vv[1]=v[1]-cg;
	//	vv[2]=v[2]-cg;
	//	vv[3]=v[3]-cg;
	vv.push_back(v[0] - cg);
	vv.push_back(v[1] - cg);
	vv.push_back(v[2] - cg);
	vv.push_back(v[3] - cg);

	return TetrahedronInertiaTensor(vv);
}

/*! Rotate and translate terahedron body so that its local axes are principal, keeping global position by updating vertex positions as well.
 * Updates all body parameters as need.
 *
 * @returns rotation that was done as Wm3::Quaternionr.
 * @todo check for geometrical correctness...
 * */
Quaternionr TetrahedronWithLocalAxesPrincipal(shared_ptr<Body>& tetraBody)
{
	//const shared_ptr<RigidBodyParameters>& rbp(YADE_PTR_CAST<RigidBodyParameters>(tetraBody->physicalParameters));
	State*                   rbp = tetraBody->state.get();
	const shared_ptr<Tetra>& tMold(YADE_PTR_DYN_CAST<Tetra>(tetraBody->shape));

#define v0 tMold->v[0]
#define v1 tMold->v[1]
#define v2 tMold->v[2]
#define v3 tMold->v[3]

	// adjust position (origin to centroid)
	Vector3r cg = (v0 + v1 + v2 + v3) * .25;
	v0 -= cg;
	v1 -= cg;
	v2 -= cg;
	v3 -= cg;
	//tMold->v[0]=v0; tMold->v[1]=v1; tMold->v[2]=v2; tMold->v[3]=v3;
	rbp->se3.position += cg;

	// adjust orientation (local axes to principal axes)
	Matrix3r I_old = TetrahedronInertiaTensor(tMold->v); //≡TetrahedronCentralInertiaTensor
	Matrix3r I_rot(Matrix3r::Zero()), I_new(Matrix3r::Zero());
	matrixEigenDecomposition(I_old, I_rot, I_new);
	Quaternionr I_Qrot(I_rot);
	//! @fixme from right to left: rotate by I_rot, then add original rotation (?!!)
	rbp->se3.orientation = rbp->se3.orientation * I_Qrot;
	for (size_t i = 0; i < 4; i++) {
		tMold->v[i] = I_Qrot.conjugate() * tMold->v[i];
	}

	// set inertia
	rbp->inertia = Vector3r(I_new(0, 0), I_new(1, 1), I_new(2, 2));

	return I_Qrot;
#undef v0
#undef v1
#undef v2
#undef v3
}


Real TetrahedronSignedVolume(const Vector3r v[4])
{
	return (Vector3r(v[3]) - Vector3r(v[0])).dot((Vector3r(v[3]) - Vector3r(v[1])).cross(Vector3r(v[3]) - Vector3r(v[2]))) / 6.;
}
Real TetrahedronVolume(const Vector3r v[4]) { return math::abs(TetrahedronSignedVolume(v)); }
Real TetrahedronSignedVolume(const vector<Vector3r>& v) { return Vector3r(v[1] - v[0]).dot(Vector3r(v[2] - v[0]).cross(v[3] - v[0])) / 6.; }
Real TetrahedronVolume(const vector<Vector3r>& v) { return math::abs(TetrahedronSignedVolume(v)); }
#ifdef YADE_CGAL
Real TetrahedronVolume(const CGAL::Point_3<CGAL::Cartesian<Real>>* v[4])
{
	Vector3r vv[4];
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 3; j++) {
			vv[i][j] = v[i]->operator[](j);
		}
	}
	return TetrahedronVolume(vv);
}
Real TetrahedronVolume(const CGAL::Point_3<CGAL::Cartesian<Real>> v[4])
{
	Vector3r vv[4];
	for (int i = 0; i < 4; i++) {
		for (int j = 0; j < 3; j++) {
			vv[i][j] = v[i][j];
		}
	}
	return TetrahedronVolume(vv);
}
#endif


#ifdef YADE_CGAL
bool Law2_TTetraSimpleGeom_NormPhys_Simple::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
	int               id1 = contact->getId1(), id2 = contact->getId2();
	TTetraSimpleGeom* geom = static_cast<TTetraSimpleGeom*>(ig.get());
	NormPhys*         phys = static_cast<NormPhys*>(ip.get());
	if (geom->flag == 0 || geom->penetrationVolume <= 0.) { return false; }
	Real& un          = geom->penetrationVolume;
	phys->normalForce = phys->kn * math::max(un, (Real)0) * geom->normal;

	State* de1 = Body::byId(id1, scene)->state.get();
	State* de2 = Body::byId(id2, scene)->state.get();
	applyForceAtContactPoint(-phys->normalForce, geom->contactPoint, id1, de1->se3.position, id2, de2->se3.position);
	// TODO periodic
	return true;
}
#endif

} // namespace yade