1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*************************************************************************
* Copyright (C) 2006 by Bruno Chareyre *
* bruno.chareyre@grenoble-inp.fr *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#include "TriaxialStressController.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Clump.hpp>
#include <core/Scene.hpp>
#include <core/State.hpp>
#include <pkg/common/Box.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/FrictPhys.hpp>
#include <pkg/dem/ScGeom.hpp>
#include <assert.h>
#include <preprocessing/dem/Shop.hpp>
#ifdef FLOW_ENGINE
//#include<pkg/pfv/FlowEngine.hpp>
#include "FlowEngine_FlowEngineT.hpp"
#endif
namespace yade { // Cannot have #include directive inside.
CREATE_LOGGER(TriaxialStressController);
YADE_PLUGIN((TriaxialStressController));
TriaxialStressController::~TriaxialStressController() { }
Vector3r TriaxialStressController::getStress(int boundId) const
{
assert(boundId >= 0 && boundId <= 5);
return stress[boundId];
}
Vector3r TriaxialStressController::getStrainRate() const
{
if (scene->bodies->exists(wall_right_id) and scene->bodies->exists(wall_left_id) and scene->bodies->exists(wall_top_id)
and scene->bodies->exists(wall_bottom_id) and scene->bodies->exists(wall_front_id) and scene->bodies->exists(wall_back_id)) {
return Vector3r(
(Body::byId(wall_right_id, scene)->state->vel[0] - Body::byId(wall_left_id, scene)->state->vel[0]) / width,
(Body::byId(wall_top_id, scene)->state->vel[1] - Body::byId(wall_bottom_id, scene)->state->vel[1]) / height,
(Body::byId(wall_front_id, scene)->state->vel[2] - Body::byId(wall_back_id, scene)->state->vel[2]) / depth);
} else {
return Vector3r::Zero();
}
}
void TriaxialStressController::updateStiffness()
{
Real fluidStiffness = 0.;
#ifdef FLOW_ENGINE
for (const auto& e : Omega::instance().getScene()->engines) {
if (e->getClassName() == "FlowEngine") {
TemplateFlowEngine_FlowEngineT<FlowCellInfo_FlowEngineT, FlowVertexInfo_FlowEngineT>* flow
= dynamic_cast<TemplateFlowEngine_FlowEngineT<FlowCellInfo_FlowEngineT, FlowVertexInfo_FlowEngineT>*>(e.get());
if ((flow->fluidBulkModulus > 0) && (!(flow->dead))) fluidStiffness = flow->fluidBulkModulus / porosity;
}
}
#endif
for (int i = 0; i < 6; ++i)
stiffness[i] = 0;
InteractionContainer::iterator ii = scene->interactions->begin();
InteractionContainer::iterator iiEnd = scene->interactions->end();
for (; ii != iiEnd; ++ii)
if ((*ii)->isReal()) {
const shared_ptr<Interaction>& contact = *ii;
Real fn = (static_cast<FrictPhys*>(contact->phys.get()))->normalForce.norm();
if (fn != 0) {
int id1 = contact->getId1(), id2 = contact->getId2();
for (int index = 0; index < 6; ++index)
if (wall_id[index] == id1 || wall_id[index] == id2) {
FrictPhys* currentContactPhysics = static_cast<FrictPhys*>(contact->phys.get());
stiffness[index] += currentContactPhysics->kn;
}
}
}
if (fluidStiffness > 0) {
stiffness[0] += fluidStiffness * width * depth / height;
stiffness[1] += fluidStiffness * width * depth / height;
stiffness[2] += fluidStiffness * height * depth / width;
stiffness[3] += fluidStiffness * height * depth / width;
stiffness[4] += fluidStiffness * width * height / depth;
stiffness[5] += fluidStiffness * width * height / depth;
}
}
void TriaxialStressController::controlExternalStress(
int wall, Vector3r resultantForce, State* p, Real wall_max_vel) // controls walls such that Sum Forces from Sample on Wall = resultantForce
{
scene->forces.sync();
Real translation = normal[wall].dot(getForce(scene, wall_id[wall]) - resultantForce);
const bool log = false;
if (log)
LOG_DEBUG(
"wall=" << wall << " actualForce=" << getForce(scene, wall_id[wall]) << ", resultantForce=" << resultantForce
<< ", translation=" << translation);
if (translation != 0) {
if (stiffness[wall] != 0) {
translation /= stiffness[wall];
if (log) TRVAR2(translation, wall_max_vel * scene->dt)
translation = math::min(math::abs(translation), wall_max_vel * scene->dt) * math::sign(translation);
} else
translation = wall_max_vel * math::sign(translation) * scene->dt;
}
previousTranslation[wall]
= (1 - stressDamping) * translation * normal[wall] + 0.8 * previousTranslation[wall]; // formula for "steady-flow" evolution with fluctuations
//Don't update position since Newton is doing that starting from bzr2612
// p->se3.position += previousTranslation[wall];
externalWork += previousTranslation[wall].dot(getForce(scene, wall_id[wall]));
// this is important is using VelocityBins. Otherwise the motion is never detected. Related to (old site, fixed bug) https://bugs.launchpad.net/yade/+bug/398089
p->vel = previousTranslation[wall] / scene->dt;
//if(log)TRVAR2(previousTranslation,p->se3.position);
}
void TriaxialStressController::action()
{
// sync thread storage of ForceContainer
scene->forces.sync();
if (first) { // sync boundaries ids in the table
wall_id[wall_bottom] = wall_bottom_id;
wall_id[wall_top] = wall_top_id;
wall_id[wall_left] = wall_left_id;
wall_id[wall_right] = wall_right_id;
wall_id[wall_front] = wall_front_id;
wall_id[wall_back] = wall_back_id;
}
if (thickness < 0) thickness = 2.0 * YADE_PTR_CAST<Box>(Body::byId(wall_bottom_id, scene)->shape)->extents.y();
State* p_bottom = Body::byId(wall_bottom_id, scene)->state.get();
State* p_top = Body::byId(wall_top_id, scene)->state.get();
State* p_left = Body::byId(wall_left_id, scene)->state.get();
State* p_right = Body::byId(wall_right_id, scene)->state.get();
State* p_front = Body::byId(wall_front_id, scene)->state.get();
State* p_back = Body::byId(wall_back_id, scene)->state.get();
height = p_top->se3.position.y() - p_bottom->se3.position.y() - thickness;
width = p_right->se3.position.x() - p_left->se3.position.x() - thickness;
depth = p_front->se3.position.z() - p_back->se3.position.z() - thickness;
boxVolume = height * width * depth;
if ((first) || (updatePorosity)) {
particlesVolume = 0;
for (const auto& b : *scene->bodies) {
if (b->isClump()) {
const shared_ptr<Clump>& clump = YADE_PTR_CAST<Clump>(b->shape);
const shared_ptr<Body>& member = Body::byId(clump->members.begin()->first, scene);
particlesVolume += b->state->mass / member->material->density;
} else if (b->isDynamic() && !b->isClumpMember()) {
const shared_ptr<Sphere>& sphere = YADE_PTR_CAST<Sphere>(b->shape);
particlesVolume += 1.3333333 * Mathr::PI * pow(sphere->radius, 3);
}
}
first = false;
updatePorosity = false;
}
max_vel1 = 3 * width / (height + width + depth) * max_vel;
max_vel2 = 3 * height / (height + width + depth) * max_vel;
max_vel3 = 3 * depth / (height + width + depth) * max_vel;
porosity = (boxVolume - particlesVolume) / boxVolume;
position_top = p_top->se3.position.y();
position_bottom = p_bottom->se3.position.y();
position_right = p_right->se3.position.x();
position_left = p_left->se3.position.x();
position_front = p_front->se3.position.z();
position_back = p_back->se3.position.z();
// must be done _after_ height, width, depth have been calculated
//Update stiffness only if it has been computed by StiffnessCounter (see "stiffnessUpdateInterval")
if (scene->iter % stiffnessUpdateInterval == 0 || scene->iter < 100) updateStiffness();
bool isARadiusControlIteration = (scene->iter % radiusControlInterval == 0);
if (scene->iter % computeStressStrainInterval == 0 || (internalCompaction && isARadiusControlIteration)) computeStressStrain();
if (!internalCompaction) {
Vector3r wallForce(0, goal2 * width * depth, 0);
if (wall_bottom_activated) {
if (stressMask & 2) controlExternalStress(wall_bottom, wallForce, p_bottom, max_vel2);
else {
p_bottom->vel[1] += (-normal[wall_bottom][1] * 0.5 * goal2 * height - p_bottom->vel[1]) * (1 - strainDamping);
externalWork += p_bottom->vel.dot(getForce(scene, wall_bottom_id)) * scene->dt;
}
} else
p_bottom->vel = Vector3r::Zero();
if (wall_top_activated) {
if (stressMask & 2) controlExternalStress(wall_top, -wallForce, p_top, max_vel2);
else {
p_top->vel[1] += (-normal[wall_top][1] * 0.5 * goal2 * height - p_top->vel[1]) * (1 - strainDamping);
externalWork += p_top->vel.dot(getForce(scene, wall_top_id)) * scene->dt;
}
} else
p_top->vel = Vector3r::Zero();
wallForce = Vector3r(goal1 * height * depth, 0, 0);
if (wall_left_activated) {
if (stressMask & 1) controlExternalStress(wall_left, wallForce, p_left, max_vel1);
else {
p_left->vel[0] += (-normal[wall_left][0] * 0.5 * goal1 * width - p_left->vel[0]) * (1 - strainDamping);
externalWork += p_left->vel.dot(getForce(scene, wall_left_id)) * scene->dt;
}
} else
p_left->vel = Vector3r::Zero();
if (wall_right_activated) {
if (stressMask & 1) controlExternalStress(wall_right, -wallForce, p_right, max_vel1);
else {
p_right->vel[0] += (-normal[wall_right][0] * 0.5 * goal1 * width - p_right->vel[0]) * (1 - strainDamping);
externalWork += p_right->vel.dot(getForce(scene, wall_right_id)) * scene->dt;
}
} else
p_right->vel = Vector3r::Zero();
wallForce = Vector3r(0, 0, goal3 * height * width);
if (wall_back_activated) {
if (stressMask & 4) controlExternalStress(wall_back, wallForce, p_back, max_vel3);
else {
p_back->vel[2] += (-normal[wall_back][2] * 0.5 * goal3 * depth - p_back->vel[2]) * (1 - strainDamping);
externalWork += p_back->vel.dot(getForce(scene, wall_back_id)) * scene->dt;
}
} else
p_back->vel = Vector3r::Zero();
if (wall_front_activated) {
if (stressMask & 4) controlExternalStress(wall_front, -wallForce, p_front, max_vel3);
else {
p_front->vel[2] += (-normal[wall_front][2] * 0.5 * goal3 * depth - p_front->vel[2]) * (1 - strainDamping);
externalWork += p_front->vel.dot(getForce(scene, wall_front_id)) * scene->dt;
}
} else
p_front->vel = Vector3r::Zero();
} else //if internal compaction
{
p_bottom->vel = Vector3r::Zero();
p_top->vel = Vector3r::Zero();
p_left->vel = Vector3r::Zero();
p_right->vel = Vector3r::Zero();
p_back->vel = Vector3r::Zero();
p_front->vel = Vector3r::Zero();
if (isARadiusControlIteration) {
Real sigma_iso_ = bool(stressMask & 1) * goal1 + bool(stressMask & 2) * goal2 + bool(stressMask & 4) * goal3;
sigma_iso_ /= bool(stressMask & 1) + bool(stressMask & 2) + bool(stressMask & 4);
if (math::abs(sigma_iso_) <= math::abs(meanStress)) maxMultiplier = finalMaxMultiplier;
if (meanStress == 0) previousMultiplier = maxMultiplier;
else {
// previousMultiplier = 1+0.7*(sigma_iso-s)*(previousMultiplier-1.f)/(s-previousStress); // = (Dsigma/apparentModulus)*0.7
// previousMultiplier = math::max(2-maxMultiplier, math::min(previousMultiplier, maxMultiplier));
if (sigma_iso_
< 0) // compressive case: we have to increase radii if meanStress > sigma_iso_, considering that sigma_iso_ < 0. We end with the same expression as before sign change
previousMultiplier
= 1. + (sigma_iso_ - meanStress) / sigma_iso_ * (maxMultiplier - 1.); // = (Dsigma/apparentModulus)*0.7
else // tensile case: we have to increase radii if meanStress > sigma_iso_ too. But here sigma_iso_ > 0 => another expression
previousMultiplier
= 1. + (meanStress - sigma_iso_) / sigma_iso_ * (maxMultiplier - 1.); // = (Dsigma/apparentModulus)*0.7
}
previousStress = meanStress;
//Real apparentModulus = (s-previousStress)/(previousMultiplier-1.f);
controlInternalStress(previousMultiplier);
}
}
}
void TriaxialStressController::computeStressStrain()
{
scene->forces.sync();
State* p_bottom = Body::byId(wall_bottom_id, scene)->state.get();
State* p_top = Body::byId(wall_top_id, scene)->state.get();
State* p_left = Body::byId(wall_left_id, scene)->state.get();
State* p_right = Body::byId(wall_right_id, scene)->state.get();
State* p_front = Body::byId(wall_front_id, scene)->state.get();
State* p_back = Body::byId(wall_back_id, scene)->state.get();
height = p_top->se3.position.y() - p_bottom->se3.position.y() - thickness;
width = p_right->se3.position.x() - p_left->se3.position.x() - thickness;
depth = p_front->se3.position.z() - p_back->se3.position.z() - thickness;
meanStress = 0;
if (height0 == 0) height0 = height;
if (width0 == 0) width0 = width;
if (depth0 == 0) depth0 = depth;
strain[0] = log(width / width0); // all strain values are positiv for extension
strain[1] = log(height / height0);
strain[2] = log(depth / depth0);
volumetricStrain = strain[0] + strain[1] + strain[2];
Real invXSurface = 1.f / (height * depth);
Real invYSurface = 1.f / (width * depth);
Real invZSurface = 1.f / (width * height);
force[wall_bottom] = getForce(scene, wall_id[wall_bottom]);
stress[wall_bottom] = force[wall_bottom] * invYSurface; // all stress values are positiv for tension
force[wall_top] = getForce(scene, wall_id[wall_top]);
stress[wall_top] = -force[wall_top] * invYSurface;
force[wall_left] = getForce(scene, wall_id[wall_left]);
stress[wall_left] = force[wall_left] * invXSurface;
force[wall_right] = getForce(scene, wall_id[wall_right]);
stress[wall_right] = -force[wall_right] * invXSurface;
force[wall_front] = getForce(scene, wall_id[wall_front]);
stress[wall_front] = -force[wall_front] * invZSurface;
force[wall_back] = getForce(scene, wall_id[wall_back]);
stress[wall_back] = force[wall_back] * invZSurface;
for (int i = 0; i < 6; i++)
meanStress += stress[i].dot(pow(-1.0, i) * normal[i]); // normal[i] is always inwards
meanStress /= 6.; // ( sXX(xLeft) + sXX(xRight) + sYY(yBottom) + sYY(yTop) + sZZ(zBack) + sZZ(zFront) ) / 6
}
void TriaxialStressController::controlInternalStress(Real multiplier)
{
particlesVolume *= pow(multiplier, 3);
Shop::growParticles(multiplier, true, true);
}
/*!
\fn TriaxialStressController::ComputeUnbalancedForce( bool maxUnbalanced)
*/
Real TriaxialStressController::ComputeUnbalancedForce(bool maxUnbalanced) { return Shop::unbalancedForce(maxUnbalanced, scene); }
} // namespace yade
|