1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
// 2009 © Sergei Dorofeenko <sega@users.berlios.de>
#include "ViscoelasticPM.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <core/State.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/ScGeom.hpp>
#ifdef YADE_SPH
#include <pkg/common/SPHEngine.hpp>
#endif
#ifdef YADE_DEFORM
#include <boost/math/tools/roots.hpp>
#endif
namespace yade { // Cannot have #include directive inside.
using math::isfinite;
YADE_PLUGIN((ViscElMat)(ViscElPhys)(Ip2_ViscElMat_ViscElMat_ViscElPhys)(Law2_ScGeom_ViscElPhys_Basic));
/* ViscElMat */
ViscElMat::~ViscElMat() { }
/* ViscElPhys */
ViscElPhys::~ViscElPhys() { }
Real Ip2_ViscElMat_ViscElMat_ViscElPhys::epsilon = 1.0e-8;
/* Ip2_ViscElMat_ViscElMat_ViscElPhys */
void Ip2_ViscElMat_ViscElMat_ViscElPhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
// no updates of an existing contact
if (interaction->phys) return;
shared_ptr<ViscElPhys> phys(new ViscElPhys());
Calculate_ViscElMat_ViscElMat_ViscElPhys(b1, b2, interaction, phys);
#ifdef YADE_DEFORM
const ViscElMat* mat1 = static_cast<ViscElMat*>(b1.get());
const ViscElMat* mat2 = static_cast<ViscElMat*>(b2.get());
phys->DeformEnabled = mat1->DeformEnabled && mat2->DeformEnabled;
#endif
interaction->phys = phys;
}
/* Law2_ScGeom_ViscElPhys_Basic */
bool Law2_ScGeom_ViscElPhys_Basic::go(shared_ptr<IGeom>& _geom, shared_ptr<IPhys>& _phys, Interaction* I)
{
Vector3r force = Vector3r::Zero();
Vector3r torque1 = Vector3r::Zero();
Vector3r torque2 = Vector3r::Zero();
if (computeForceTorqueViscEl(_geom, _phys, I, force, torque1, torque2) and (I->isActive)) {
const int id1 = I->getId1();
const int id2 = I->getId2();
addForce(id1, -force, scene);
addForce(id2, force, scene);
addTorque(id1, torque1, scene);
addTorque(id2, torque2, scene);
return true;
} else
return false;
}
bool computeForceTorqueViscEl(shared_ptr<IGeom>& _geom, shared_ptr<IPhys>& _phys, Interaction* I, Vector3r& force, Vector3r& torque1, Vector3r& torque2)
{
ViscElPhys& phys = *static_cast<ViscElPhys*>(_phys.get());
const ScGeom& geom = *static_cast<ScGeom*>(_geom.get());
Scene* scene = Omega::instance().getScene().get();
#ifdef YADE_SPH
//=======================================================================================================
if (phys.SPHmode) {
if (computeForceSPH(_geom, _phys, I, force)) {
return true;
} else {
return false;
}
}
//=======================================================================================================
#endif
const int id1 = I->getId1();
const int id2 = I->getId2();
Real addDR = 0.;
#ifdef YADE_DEFORM
const BodyContainer& bodies = *scene->bodies;
const State& de1 = *static_cast<State*>(bodies[id1]->state.get());
const State& de2 = *static_cast<State*>(bodies[id2]->state.get());
addDR = de1.dR + de2.dR;
#endif
if ((geom.penetrationDepth + addDR) < 0) {
return false;
} else {
#ifndef YADE_DEFORM
// These 3 lines were duplicated (see above) not to loose
// runtime performance, if YADE_DEFORM is disabled and no
// contact detected
const BodyContainer& bodies = *scene->bodies;
const State& de1 = *static_cast<State*>(bodies[id1]->state.get());
const State& de2 = *static_cast<State*>(bodies[id2]->state.get());
#endif
Vector3r& shearForce = phys.shearForce;
if (I->isFresh(scene)) shearForce = Vector3r(0, 0, 0);
const Real& dt = scene->dt;
shearForce = geom.rotate(shearForce);
// Handle periodicity.
const Vector3r shift2 = scene->isPeriodic ? scene->cell->intrShiftPos(I->cellDist) : Vector3r::Zero();
const Vector3r shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(I->cellDist) : Vector3r::Zero();
const Vector3r c1x = (geom.contactPoint - de1.pos);
const Vector3r c2x = (geom.contactPoint - de2.pos - shift2);
const Vector3r relativeVelocity = (de1.vel + de1.angVel.cross(c1x)) - (de2.vel + de2.angVel.cross(c2x)) + shiftVel;
const Real normalVelocity = geom.normal.dot(relativeVelocity);
const Vector3r shearVelocity = relativeVelocity - normalVelocity * geom.normal;
// As Chiara Modenese suggest, we store the elastic part
// and then add the viscous part if we pass the Mohr-Coulomb criterion.
// See http://www.mail-archive.com/yade-users@lists.launchpad.net/msg01391.html
shearForce += phys.ks * dt * shearVelocity; // the elastic shear force have a history, but
Vector3r shearForceVisc = Vector3r::Zero(); // the viscous shear damping haven't a history because it is a function of the instant velocity
// Prevent appearing of attraction forces due to a viscous component
// [Radjai2011], page 3, equation [1.7]
// [Schwager2007]
phys.Fn = phys.kn * (geom.penetrationDepth + addDR);
phys.Fv = phys.cn * normalVelocity;
const Real normForceReal = phys.Fn + phys.Fv;
if (normForceReal < 0) {
phys.normalForce = Vector3r::Zero();
} else {
phys.normalForce = normForceReal * geom.normal;
}
Vector3r momentResistance = Vector3r::Zero();
if (phys.mR > 0.0) {
const Vector3r relAngVel = de1.angVel - de2.angVel;
relAngVel.normalized();
if (phys.mRtype == 1) {
momentResistance = -phys.mR * phys.normalForce.norm() * relAngVel; // [Zhou1999536], equation (3)
} else if (phys.mRtype == 2) {
momentResistance = -phys.mR * (c1x.cross(de1.angVel) - c2x.cross(de2.angVel)).norm() * phys.normalForce.norm()
* relAngVel; // [Zhou1999536], equation (4)
}
}
const Real maxFs = phys.normalForce.squaredNorm() * math::pow(phys.tangensOfFrictionAngle, 2);
if (shearForce.squaredNorm() > maxFs) {
// Then Mohr-Coulomb is violated (so, we slip),
// we have the max value of the shear force, so
// we consider only friction damping.
const Real ratio = sqrt(maxFs) / shearForce.norm();
shearForce *= ratio;
} else {
// Then no slip occurs we consider friction damping + viscous damping.
shearForceVisc = phys.cs * shearVelocity;
}
force = phys.normalForce + shearForce + shearForceVisc;
torque1 = -c1x.cross(force) + momentResistance;
torque2 = c2x.cross(force) - momentResistance;
return true;
}
}
void Ip2_ViscElMat_ViscElMat_ViscElPhys::Calculate_ViscElMat_ViscElMat_ViscElPhys(
const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction, shared_ptr<ViscElPhys> phys)
{
ViscElMat* mat1 = static_cast<ViscElMat*>(b1.get());
ViscElMat* mat2 = static_cast<ViscElMat*>(b2.get());
Real mass1 = 1.0;
Real mass2 = 1.0;
if ((isfinite(mat1->kn) and not(isfinite(mat2->kn))) or (isfinite(mat2->kn) and not(isfinite(mat1->kn)))
or (isfinite(mat1->ks) and not(isfinite(mat2->ks))) or (isfinite(mat2->ks) and not(isfinite(mat1->ks)))
or (isfinite(mat1->cn) and not(isfinite(mat2->cn))) or (isfinite(mat2->cn) and not(isfinite(mat1->cn)))
or (isfinite(mat1->cs) and not(isfinite(mat2->cs))) or (isfinite(mat2->cs) and not(isfinite(mat1->cs)))
or (isfinite(mat1->tc) and not(isfinite(mat2->tc))) or (isfinite(mat2->tc) and not(isfinite(mat1->tc)))
or (isfinite(mat1->en) and not(isfinite(mat2->en))) or (isfinite(mat2->en) and not(isfinite(mat1->en)))
or (isfinite(mat1->et) and not(isfinite(mat2->et))) or (isfinite(mat2->et) and not(isfinite(mat1->et)))) {
throw runtime_error("Both materials should have the same defined set of variables e.g. tc, ks etc.!");
}
mass1 = Body::byId(interaction->getId1())->state->mass;
mass2 = Body::byId(interaction->getId2())->state->mass;
if (mass1 == 0.0 and mass2 > 0.0) {
mass1 = mass2;
} else if (mass2 == 0.0 and mass1 > 0.0) {
mass2 = mass1;
}
// See [Pournin2001, just below equation (19)]
const Real massR = mass1 * mass2 / (mass1 + mass2);
GenericSpheresContact* sphCont = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
Real R1 = sphCont->refR1 > 0 ? sphCont->refR1 : sphCont->refR2;
Real R2 = sphCont->refR2 > 0 ? sphCont->refR2 : sphCont->refR1;
Real kn1 = 0.0;
Real kn2 = 0.0;
Real cn1 = 0.0;
Real cn2 = 0.0;
Real ks1 = 0.0;
Real ks2 = 0.0;
Real cs1 = 0.0;
Real cs2 = 0.0;
if (((isfinite(mat1->tc)) and (isfinite(mat1->en)) and (isfinite(mat1->et))) or ((tc) and (en) and (et))) {
//Set parameters according to [Pournin2001]
const Real Tc = (tc) ? (*tc)(mat1->id, mat2->id) : (mat1->tc + mat2->tc) / 2.0;
const Real En = (en) ? (*en)(mat1->id, mat2->id) : (mat1->en + mat2->en) / 2.0;
const Real Et = (et) ? (*et)(mat1->id, mat2->id) : (mat1->et + mat2->et) / 2.0;
// Factor 2 at the end of each expression is necessary, because we calculate
// individual kn1, kn2, ks1, ks2 etc., because kn1 = 2*kn, ks1 = 2*ks
// http://www.mail-archive.com/yade-users@lists.launchpad.net/msg08778.html
kn1 = kn2 = 1 / Tc / Tc * (Mathr::PI * Mathr::PI + pow(log(En), 2)) * massR * 2;
cn1 = cn2 = -2.0 / Tc * log(En) * massR * 2;
ks1 = ks2 = 2.0 / 7.0 / Tc / Tc * (Mathr::PI * Mathr::PI + pow(log(Et), 2)) * massR * 2;
cs1 = cs2 = -4.0 / 7.0 / Tc * log(Et) * massR * 2;
// ^^^
// It seems to be an error in [Pournin2001] (22) Eq.4, missing factor 2
// Thanks to Dominik Boemer for pointing this out
// http://www.mail-archive.com/yade-users@lists.launchpad.net/msg08741.html
if (math::abs(cn1) <= Mathr::ZERO_TOLERANCE) cn1 = 0;
if (math::abs(cn2) <= Mathr::ZERO_TOLERANCE) cn2 = 0;
if (math::abs(cs1) <= Mathr::ZERO_TOLERANCE) cs1 = 0;
if (math::abs(cs2) <= Mathr::ZERO_TOLERANCE) cs2 = 0;
} else if ((isfinite(mat1->kn)) and (isfinite(mat1->ks)) and (isfinite(mat1->cn)) and (isfinite(mat1->cs))) {
//Set parameters explicitly
kn1 = mat1->kn;
kn2 = mat2->kn;
ks1 = mat1->ks;
ks2 = mat2->ks;
cn1 = mat1->cn;
cn2 = mat2->cn;
cs1 = mat1->cs;
cs2 = mat2->cs;
} else {
//Set parameters on the base of young modulus
kn1 = 2 * mat1->young * R1;
kn2 = 2 * mat2->young * R2;
ks1 = kn1 * mat1->poisson;
ks2 = kn2 * mat2->poisson;
if ((isfinite(mat1->cn)) and (isfinite(mat1->cs))) {
cn1 = mat1->cn;
cn2 = mat2->cn;
cs1 = mat1->cs;
cs2 = mat2->cs;
} else if (isfinite(mat1->en)) {
auto En = (en) ? (*en)(mat1->id, mat2->id) : (mat1->en + mat2->en) / 2.0;
//lubrication
if (mat1->lubrication == true && mat2->lubrication == true) {
const auto id1 = interaction->getId1();
const auto id2 = interaction->getId2();
const auto& bodies = *scene->bodies;
const auto& de1 = *static_cast<State*>(bodies[id1]->state.get());
const auto& de2 = *static_cast<State*>(bodies[id2]->state.get());
// Handle periodicity.
const auto shift2 = scene->isPeriodic ? scene->cell->intrShiftPos(interaction->cellDist) : Vector3r::Zero();
const auto shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(interaction->cellDist) : Vector3r::Zero();
const auto c1x = (sphCont->contactPoint - de1.pos);
const auto c2x = (sphCont->contactPoint - de2.pos - shift2);
const auto relativeVelocity = (de1.vel + de1.angVel.cross(c1x)) - (de2.vel + de2.angVel.cross(c2x)) + shiftVel;
const auto normalVelocity = relativeVelocity.dot(sphCont->normal);
const auto densPart = (mat1->density + mat2->density) / 2.;
const auto visco = (mat1->viscoDyn + mat2->viscoDyn) / 2.;
const auto roughness = (mat1->roughnessScale + mat2->roughnessScale) / 2.;
const auto stokes = densPart * abs(normalVelocity) * (R1 + R2) / visco; //<rhop> U <d> /eta
En = math::max(1e-3, En * (1 + 1 / stokes * log(roughness / ((R1 + R2) * 0.5))));
}
cn1 = cn2 = 2.0 * find_cn_from_en(En, massR, contactParameterCalculation(kn1, kn2), interaction);
cs1 = cs2 = 0;
} else {
throw runtime_error("Inconsistent material constants for ViscElMat's, please check input");
}
}
const Real mR1 = mat1->mR;
const Real mR2 = mat2->mR;
const int mRtype1 = mat1->mRtype;
const int mRtype2 = mat2->mRtype;
phys->kn = contactParameterCalculation(kn1, kn2);
phys->ks = contactParameterCalculation(ks1, ks2);
phys->cn = contactParameterCalculation(cn1, cn2);
phys->cs = contactParameterCalculation(cs1, cs2);
if ((mR1 > 0) or (mR2 > 0)) {
phys->mR = 2.0 / (((mR1 > 0) ? 1 / mR1 : 0) + ((mR2 > 0) ? 1 / mR2 : 0));
} else {
phys->mR = 0;
}
if (frictAngle) {
phys->tangensOfFrictionAngle = math::tan((*frictAngle)(mat1->id, mat2->id));
} else {
phys->tangensOfFrictionAngle = math::tan(math::min(mat1->frictionAngle, mat2->frictionAngle));
}
phys->shearForce = Vector3r(0, 0, 0);
if ((mRtype1 != mRtype2) or (mRtype1 > 2) or (mRtype2 > 2) or (mRtype1 < 1) or (mRtype2 < 1)) {
throw runtime_error("mRtype should be equal for both materials and have the values 1 or 2!");
} else {
phys->mRtype = mRtype1;
}
#ifdef YADE_SPH
if (mat1->SPHmode and mat2->SPHmode) {
phys->SPHmode = true;
phys->mu = (mat1->mu + mat2->mu);
phys->h = (mat1->h + mat2->h) / 2.0;
}
phys->kernelFunctionCurrentPressure = returnKernelFunction(mat1->KernFunctionPressure, mat2->KernFunctionPressure, Grad);
phys->kernelFunctionCurrentVisco = returnKernelFunction(mat1->KernFunctionVisco, mat2->KernFunctionVisco, Lapl);
#endif
}
/* Contact parameter calculation function */
Real contactParameterCalculation(const Real& l1, const Real& l2)
{
// If one of paramaters > 0. we DO NOT return 0
Real a = (l1 ? 1 / l1 : 0) + (l2 ? 1 / l2 : 0);
if (a) return 1 / a;
else
return 0;
}
Real find_cn_from_en(const Real& en, const Real& m, const Real& kn, const shared_ptr<Interaction>& interaction)
{
Real eps = Ip2_ViscElMat_ViscElMat_ViscElPhys::epsilon;
Real cn = eps; //initial small value
Real en_temp = get_en_from_cn(cn, m, kn);
int i = 0;
Real error = 1.0 / eps;
while (error > 1.0e-2 or error != error) {
if (i > 15) {
cn = 0.;
en_temp = 1.;
cerr << "Warning in ViscoelasticPM.cpp : Newton-Raphson algorithm did not converged within 15 iterations for contact between "
<< interaction->id1 << " and " << interaction->id2 << ". Continue with values : cn=" << cn << " en=" << en_temp << endl;
break;
}
i++;
Real deriv = (get_en_from_cn(cn - eps, m, kn) - get_en_from_cn(cn + eps, m, kn)) / (-2. * eps);
deriv = fabs(deriv) > 1e-15 ? deriv : 1e-15;
cn = cn - (en_temp - en) / deriv;
en_temp = get_en_from_cn(cn, m, kn);
error = fabs(en_temp - en) / en;
}
// cout<<"i="<<i<<" error="<<error<<endl;
return cn;
}
Real get_en_from_cn(const Real& cn, const Real& m, const Real& kn)
{
Real beta = 0.5 * cn / m;
Real omega0 = sqrt(kn / m);
Real omega = sqrt(omega0 * omega0 - beta * beta);
Real Omega = sqrt(beta * beta - omega0 * omega0);
if (beta < omega0 / sqrt(2.)) return exp(-beta / omega * (Mathr::PI - atan(2. * beta * omega / (omega * omega - beta * beta))));
else if (beta > omega0 / sqrt(2.) and beta < omega0)
return exp(-beta / omega * atan(-2. * beta * omega / (omega * omega - beta * beta)));
else if (beta > omega0)
return exp(-beta / Omega * log((beta + Omega) / (beta - Omega)));
else if (beta == omega0 / sqrt(2.) or beta == omega0)
return get_en_from_cn(cn + Ip2_ViscElMat_ViscElMat_ViscElPhys::epsilon, m, kn);
else
return 0;
}
#ifdef YADE_DEFORM
// The reference paper [Haustein2017]
// functor with Raji1999 Eq. 2.52
template <class T> struct fkt_functor {
fkt_functor(T Radius, T tdR, vector<T>& distanceVector)
: R(Radius)
, dR(tdR)
, coef(distanceVector)
{
}
pair<T, T> operator()(T const& Rs)
{
// solve for radius of deformed sphere Rs
T funktion = -R * R * R + Rs * Rs * Rs; // Raji1999 Eq. 2.52 - Part outside of the sum
T dfunktion = 3 * Rs * Rs; // Derivation of Raji1999 Eq. 2.52 - Part outside of the sum
// Summation over every contact distance dsi (C++11)
for (auto const& dsi : coef) {
funktion += -0.25 * (Rs - dsi) * (Rs - dsi) * (2 * Rs + dsi); // Raji1999 Eq. 2.51 - part in the sum
dfunktion += 3.0 / 2.0 * (Rs * Rs - Rs * dsi); // Derivation of Raji1999 Eq. 2.52 - part in the sum
}
return make_pair(funktion, dfunktion);
}
private:
T R; // radius of the undeformed sphere
T dR; // dR of sphere
vector<T> coef; // vector of all contact distances dsi
};
// function for easy calling of Newton-Raphson method
template <class T> T fkt(T R, T dR, vector<T> z)
{
double guess = R + dR; // start guess
double min = guess * 0.99; // minimum
double max = guess * 1.05; // maximum
int digits = std::numeric_limits<T>::digits;
// use Newton-Raphson method for numerical solution
return boost::math::tools::newton_raphson_iterate(fkt_functor<T>(R, dR, z), guess, min, max, digits);
}
YADE_PLUGIN((DeformControl));
void DeformControl::action()
{
Scene* scene2 = Omega::instance().getScene().get();
const BodyContainer& b = *scene2->bodies;
for (size_t i = 0; i < b.size(); ++i) {
vector<double> dsi;
if (Sphere* s1 = dynamic_cast<Sphere*>(b[i]->shape.get())) {
double s1Rad = s1->radius;
State* s1_state = static_cast<State*>(b[i]->state.get());
double s1dR = s1_state->dR;
for (Body::MapId2IntrT::iterator it = b[i]->intrs.begin(), end = b[i]->intrs.end(); it != end; ++it) {
if (!it->second->isReal()) continue;
unsigned int partnerID;
if (it->second->getId1() == Body::id_t(i)) {
partnerID = it->second->getId2();
} else {
partnerID = it->second->getId1();
}
// Sphere - Sphere contact
if (Sphere* s2 = dynamic_cast<Sphere*>(b[partnerID]->shape.get())) {
double s2Rad = s2->radius;
State* s2_state = static_cast<State*>(b[partnerID]->state.get());
double s2dR = s2_state->dR;
if (ScGeom* scg = dynamic_cast<ScGeom*>(it->second->geom.get())) {
double L = s1Rad + s2Rad - scg->penetrationDepth;
double s1RdR = s1Rad + s1dR;
double s2RdR = s2Rad + s2dR;
double ds = (L * L + s1RdR * s1RdR - s2RdR * s2RdR) / (2.0 * L);
dsi.push_back(ds);
}
} else // Sphere - Facet / Wall contact
{
if (ScGeom* scg = dynamic_cast<ScGeom*>(it->second->geom.get())) {
double ds = s1Rad - scg->penetrationDepth;
dsi.push_back(ds);
}
}
}
s1_state->dR = fkt(s1Rad, s1dR, dsi) - s1Rad;
}
}
}
#endif
} // namespace yade
|