File: ViscoelasticPM.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (481 lines) | stat: -rw-r--r-- 18,534 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
// 2009 © Sergei Dorofeenko <sega@users.berlios.de>
#include "ViscoelasticPM.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <core/State.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/ScGeom.hpp>

#ifdef YADE_SPH
#include <pkg/common/SPHEngine.hpp>
#endif

#ifdef YADE_DEFORM
#include <boost/math/tools/roots.hpp>
#endif

namespace yade { // Cannot have #include directive inside.

using math::isfinite;
YADE_PLUGIN((ViscElMat)(ViscElPhys)(Ip2_ViscElMat_ViscElMat_ViscElPhys)(Law2_ScGeom_ViscElPhys_Basic));

/* ViscElMat */
ViscElMat::~ViscElMat() { }

/* ViscElPhys */
ViscElPhys::~ViscElPhys() { }

Real Ip2_ViscElMat_ViscElMat_ViscElPhys::epsilon = 1.0e-8;

/* Ip2_ViscElMat_ViscElMat_ViscElPhys */
void Ip2_ViscElMat_ViscElMat_ViscElPhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
	// no updates of an existing contact
	if (interaction->phys) return;
	shared_ptr<ViscElPhys> phys(new ViscElPhys());
	Calculate_ViscElMat_ViscElMat_ViscElPhys(b1, b2, interaction, phys);

#ifdef YADE_DEFORM
	const ViscElMat* mat1 = static_cast<ViscElMat*>(b1.get());
	const ViscElMat* mat2 = static_cast<ViscElMat*>(b2.get());
	phys->DeformEnabled   = mat1->DeformEnabled && mat2->DeformEnabled;
#endif
	interaction->phys = phys;
}

/* Law2_ScGeom_ViscElPhys_Basic */
bool Law2_ScGeom_ViscElPhys_Basic::go(shared_ptr<IGeom>& _geom, shared_ptr<IPhys>& _phys, Interaction* I)
{
	Vector3r force   = Vector3r::Zero();
	Vector3r torque1 = Vector3r::Zero();
	Vector3r torque2 = Vector3r::Zero();
	if (computeForceTorqueViscEl(_geom, _phys, I, force, torque1, torque2) and (I->isActive)) {
		const int id1 = I->getId1();
		const int id2 = I->getId2();

		addForce(id1, -force, scene);
		addForce(id2, force, scene);
		addTorque(id1, torque1, scene);
		addTorque(id2, torque2, scene);
		return true;
	} else
		return false;
}

bool computeForceTorqueViscEl(shared_ptr<IGeom>& _geom, shared_ptr<IPhys>& _phys, Interaction* I, Vector3r& force, Vector3r& torque1, Vector3r& torque2)
{
	ViscElPhys&   phys  = *static_cast<ViscElPhys*>(_phys.get());
	const ScGeom& geom  = *static_cast<ScGeom*>(_geom.get());
	Scene*        scene = Omega::instance().getScene().get();

#ifdef YADE_SPH
	//=======================================================================================================
	if (phys.SPHmode) {
		if (computeForceSPH(_geom, _phys, I, force)) {
			return true;
		} else {
			return false;
		}
	}
//=======================================================================================================
#endif

	const int id1 = I->getId1();
	const int id2 = I->getId2();

	Real addDR = 0.;
#ifdef YADE_DEFORM
	const BodyContainer& bodies = *scene->bodies;
	const State&         de1    = *static_cast<State*>(bodies[id1]->state.get());
	const State&         de2    = *static_cast<State*>(bodies[id2]->state.get());
	addDR                       = de1.dR + de2.dR;
#endif

	if ((geom.penetrationDepth + addDR) < 0) {
		return false;
	} else {
#ifndef YADE_DEFORM
		// These 3 lines were duplicated (see above) not to loose
		// runtime performance, if YADE_DEFORM is disabled and no
		// contact detected
		const BodyContainer& bodies = *scene->bodies;
		const State&         de1    = *static_cast<State*>(bodies[id1]->state.get());
		const State&         de2    = *static_cast<State*>(bodies[id2]->state.get());
#endif
		Vector3r& shearForce = phys.shearForce;
		if (I->isFresh(scene)) shearForce = Vector3r(0, 0, 0);
		const Real& dt = scene->dt;
		shearForce     = geom.rotate(shearForce);

		// Handle periodicity.
		const Vector3r shift2   = scene->isPeriodic ? scene->cell->intrShiftPos(I->cellDist) : Vector3r::Zero();
		const Vector3r shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(I->cellDist) : Vector3r::Zero();

		const Vector3r c1x = (geom.contactPoint - de1.pos);
		const Vector3r c2x = (geom.contactPoint - de2.pos - shift2);

		const Vector3r relativeVelocity = (de1.vel + de1.angVel.cross(c1x)) - (de2.vel + de2.angVel.cross(c2x)) + shiftVel;
		const Real     normalVelocity   = geom.normal.dot(relativeVelocity);
		const Vector3r shearVelocity    = relativeVelocity - normalVelocity * geom.normal;

		// As Chiara Modenese suggest, we store the elastic part
		// and then add the viscous part if we pass the Mohr-Coulomb criterion.
		// See http://www.mail-archive.com/yade-users@lists.launchpad.net/msg01391.html
		shearForce += phys.ks * dt * shearVelocity; // the elastic shear force have a history, but
		Vector3r shearForceVisc = Vector3r::Zero(); // the viscous shear damping haven't a history because it is a function of the instant velocity


		// Prevent appearing of attraction forces due to a viscous component
		// [Radjai2011], page 3, equation [1.7]
		// [Schwager2007]
		phys.Fn                  = phys.kn * (geom.penetrationDepth + addDR);
		phys.Fv                  = phys.cn * normalVelocity;
		const Real normForceReal = phys.Fn + phys.Fv;
		if (normForceReal < 0) {
			phys.normalForce = Vector3r::Zero();
		} else {
			phys.normalForce = normForceReal * geom.normal;
		}

		Vector3r momentResistance = Vector3r::Zero();
		if (phys.mR > 0.0) {
			const Vector3r relAngVel = de1.angVel - de2.angVel;
			relAngVel.normalized();

			if (phys.mRtype == 1) {
				momentResistance = -phys.mR * phys.normalForce.norm() * relAngVel; // [Zhou1999536], equation (3)
			} else if (phys.mRtype == 2) {
				momentResistance = -phys.mR * (c1x.cross(de1.angVel) - c2x.cross(de2.angVel)).norm() * phys.normalForce.norm()
				        * relAngVel; // [Zhou1999536], equation (4)
			}
		}

		const Real maxFs = phys.normalForce.squaredNorm() * math::pow(phys.tangensOfFrictionAngle, 2);
		if (shearForce.squaredNorm() > maxFs) {
			// Then Mohr-Coulomb is violated (so, we slip),
			// we have the max value of the shear force, so
			// we consider only friction damping.
			const Real ratio = sqrt(maxFs) / shearForce.norm();
			shearForce *= ratio;
		} else {
			// Then no slip occurs we consider friction damping + viscous damping.
			shearForceVisc = phys.cs * shearVelocity;
		}
		force   = phys.normalForce + shearForce + shearForceVisc;
		torque1 = -c1x.cross(force) + momentResistance;
		torque2 = c2x.cross(force) - momentResistance;
		return true;
	}
}

void Ip2_ViscElMat_ViscElMat_ViscElPhys::Calculate_ViscElMat_ViscElMat_ViscElPhys(
        const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction, shared_ptr<ViscElPhys> phys)
{
	ViscElMat* mat1  = static_cast<ViscElMat*>(b1.get());
	ViscElMat* mat2  = static_cast<ViscElMat*>(b2.get());
	Real       mass1 = 1.0;
	Real       mass2 = 1.0;

	if ((isfinite(mat1->kn) and not(isfinite(mat2->kn))) or (isfinite(mat2->kn) and not(isfinite(mat1->kn)))
	    or (isfinite(mat1->ks) and not(isfinite(mat2->ks))) or (isfinite(mat2->ks) and not(isfinite(mat1->ks)))
	    or (isfinite(mat1->cn) and not(isfinite(mat2->cn))) or (isfinite(mat2->cn) and not(isfinite(mat1->cn)))
	    or (isfinite(mat1->cs) and not(isfinite(mat2->cs))) or (isfinite(mat2->cs) and not(isfinite(mat1->cs)))
	    or (isfinite(mat1->tc) and not(isfinite(mat2->tc))) or (isfinite(mat2->tc) and not(isfinite(mat1->tc)))
	    or (isfinite(mat1->en) and not(isfinite(mat2->en))) or (isfinite(mat2->en) and not(isfinite(mat1->en)))
	    or (isfinite(mat1->et) and not(isfinite(mat2->et))) or (isfinite(mat2->et) and not(isfinite(mat1->et)))) {
		throw runtime_error("Both materials should have the same defined set of variables e.g. tc, ks etc.!");
	}

	mass1 = Body::byId(interaction->getId1())->state->mass;
	mass2 = Body::byId(interaction->getId2())->state->mass;
	if (mass1 == 0.0 and mass2 > 0.0) {
		mass1 = mass2;
	} else if (mass2 == 0.0 and mass1 > 0.0) {
		mass2 = mass1;
	}

	// See [Pournin2001, just below equation (19)]
	const Real massR = mass1 * mass2 / (mass1 + mass2);

	GenericSpheresContact* sphCont = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());
	Real                   R1      = sphCont->refR1 > 0 ? sphCont->refR1 : sphCont->refR2;
	Real                   R2      = sphCont->refR2 > 0 ? sphCont->refR2 : sphCont->refR1;

	Real kn1 = 0.0;
	Real kn2 = 0.0;
	Real cn1 = 0.0;
	Real cn2 = 0.0;
	Real ks1 = 0.0;
	Real ks2 = 0.0;
	Real cs1 = 0.0;
	Real cs2 = 0.0;

	if (((isfinite(mat1->tc)) and (isfinite(mat1->en)) and (isfinite(mat1->et))) or ((tc) and (en) and (et))) {
		//Set parameters according to [Pournin2001]

		const Real Tc = (tc) ? (*tc)(mat1->id, mat2->id) : (mat1->tc + mat2->tc) / 2.0;
		const Real En = (en) ? (*en)(mat1->id, mat2->id) : (mat1->en + mat2->en) / 2.0;
		const Real Et = (et) ? (*et)(mat1->id, mat2->id) : (mat1->et + mat2->et) / 2.0;

		// Factor 2 at the end of each expression is necessary, because we calculate
		// individual kn1, kn2, ks1, ks2 etc., because kn1 = 2*kn, ks1 = 2*ks
		// http://www.mail-archive.com/yade-users@lists.launchpad.net/msg08778.html
		kn1 = kn2 = 1 / Tc / Tc * (Mathr::PI * Mathr::PI + pow(log(En), 2)) * massR * 2;
		cn1 = cn2 = -2.0 / Tc * log(En) * massR * 2;
		ks1 = ks2 = 2.0 / 7.0 / Tc / Tc * (Mathr::PI * Mathr::PI + pow(log(Et), 2)) * massR * 2;
		cs1 = cs2 = -4.0 / 7.0 / Tc * log(Et) * massR * 2;
		//           ^^^
		// It seems to be an error in [Pournin2001] (22) Eq.4, missing factor 2
		// Thanks to Dominik Boemer for pointing this out
		// http://www.mail-archive.com/yade-users@lists.launchpad.net/msg08741.html

		if (math::abs(cn1) <= Mathr::ZERO_TOLERANCE) cn1 = 0;
		if (math::abs(cn2) <= Mathr::ZERO_TOLERANCE) cn2 = 0;
		if (math::abs(cs1) <= Mathr::ZERO_TOLERANCE) cs1 = 0;
		if (math::abs(cs2) <= Mathr::ZERO_TOLERANCE) cs2 = 0;
	} else if ((isfinite(mat1->kn)) and (isfinite(mat1->ks)) and (isfinite(mat1->cn)) and (isfinite(mat1->cs))) {
		//Set parameters explicitly
		kn1 = mat1->kn;
		kn2 = mat2->kn;
		ks1 = mat1->ks;
		ks2 = mat2->ks;
		cn1 = mat1->cn;
		cn2 = mat2->cn;
		cs1 = mat1->cs;
		cs2 = mat2->cs;
	} else {
		//Set parameters on the base of young modulus
		kn1 = 2 * mat1->young * R1;
		kn2 = 2 * mat2->young * R2;
		ks1 = kn1 * mat1->poisson;
		ks2 = kn2 * mat2->poisson;
		if ((isfinite(mat1->cn)) and (isfinite(mat1->cs))) {
			cn1 = mat1->cn;
			cn2 = mat2->cn;
			cs1 = mat1->cs;
			cs2 = mat2->cs;
		} else if (isfinite(mat1->en)) {
			auto En = (en) ? (*en)(mat1->id, mat2->id) : (mat1->en + mat2->en) / 2.0;
			//lubrication
			if (mat1->lubrication == true && mat2->lubrication == true) {
				const auto  id1    = interaction->getId1();
				const auto  id2    = interaction->getId2();
				const auto& bodies = *scene->bodies;
				const auto& de1    = *static_cast<State*>(bodies[id1]->state.get());
				const auto& de2    = *static_cast<State*>(bodies[id2]->state.get());

				// Handle periodicity.
				const auto shift2   = scene->isPeriodic ? scene->cell->intrShiftPos(interaction->cellDist) : Vector3r::Zero();
				const auto shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(interaction->cellDist) : Vector3r::Zero();

				const auto c1x = (sphCont->contactPoint - de1.pos);
				const auto c2x = (sphCont->contactPoint - de2.pos - shift2);

				const auto relativeVelocity = (de1.vel + de1.angVel.cross(c1x)) - (de2.vel + de2.angVel.cross(c2x)) + shiftVel;
				const auto normalVelocity   = relativeVelocity.dot(sphCont->normal);
				const auto densPart         = (mat1->density + mat2->density) / 2.;
				const auto visco            = (mat1->viscoDyn + mat2->viscoDyn) / 2.;
				const auto roughness        = (mat1->roughnessScale + mat2->roughnessScale) / 2.;
				const auto stokes           = densPart * abs(normalVelocity) * (R1 + R2) / visco; //<rhop> U <d> /eta
				En                          = math::max(1e-3, En * (1 + 1 / stokes * log(roughness / ((R1 + R2) * 0.5))));
			}

			cn1 = cn2 = 2.0 * find_cn_from_en(En, massR, contactParameterCalculation(kn1, kn2), interaction);
			cs1 = cs2 = 0;
		} else {
			throw runtime_error("Inconsistent material constants for ViscElMat's, please check input");
		}
	}

	const Real mR1     = mat1->mR;
	const Real mR2     = mat2->mR;
	const int  mRtype1 = mat1->mRtype;
	const int  mRtype2 = mat2->mRtype;


	phys->kn = contactParameterCalculation(kn1, kn2);
	phys->ks = contactParameterCalculation(ks1, ks2);
	phys->cn = contactParameterCalculation(cn1, cn2);
	phys->cs = contactParameterCalculation(cs1, cs2);

	if ((mR1 > 0) or (mR2 > 0)) {
		phys->mR = 2.0 / (((mR1 > 0) ? 1 / mR1 : 0) + ((mR2 > 0) ? 1 / mR2 : 0));
	} else {
		phys->mR = 0;
	}

	if (frictAngle) {
		phys->tangensOfFrictionAngle = math::tan((*frictAngle)(mat1->id, mat2->id));
	} else {
		phys->tangensOfFrictionAngle = math::tan(math::min(mat1->frictionAngle, mat2->frictionAngle));
	}
	phys->shearForce = Vector3r(0, 0, 0);

	if ((mRtype1 != mRtype2) or (mRtype1 > 2) or (mRtype2 > 2) or (mRtype1 < 1) or (mRtype2 < 1)) {
		throw runtime_error("mRtype should be equal for both materials and have the values 1 or 2!");
	} else {
		phys->mRtype = mRtype1;
	}
#ifdef YADE_SPH
	if (mat1->SPHmode and mat2->SPHmode) {
		phys->SPHmode = true;
		phys->mu      = (mat1->mu + mat2->mu);
		phys->h       = (mat1->h + mat2->h) / 2.0;
	}

	phys->kernelFunctionCurrentPressure = returnKernelFunction(mat1->KernFunctionPressure, mat2->KernFunctionPressure, Grad);
	phys->kernelFunctionCurrentVisco    = returnKernelFunction(mat1->KernFunctionVisco, mat2->KernFunctionVisco, Lapl);
#endif
}

/* Contact parameter calculation function */
Real contactParameterCalculation(const Real& l1, const Real& l2)
{
	// If one of paramaters > 0. we DO NOT return 0
	Real a = (l1 ? 1 / l1 : 0) + (l2 ? 1 / l2 : 0);
	if (a) return 1 / a;
	else
		return 0;
}

Real find_cn_from_en(const Real& en, const Real& m, const Real& kn, const shared_ptr<Interaction>& interaction)
{
	Real eps     = Ip2_ViscElMat_ViscElMat_ViscElPhys::epsilon;
	Real cn      = eps; //initial small value
	Real en_temp = get_en_from_cn(cn, m, kn);
	int  i       = 0;
	Real error   = 1.0 / eps;
	while (error > 1.0e-2 or error != error) {
		if (i > 15) {
			cn      = 0.;
			en_temp = 1.;
			cerr << "Warning in ViscoelasticPM.cpp : Newton-Raphson algorithm did not converged within 15 iterations for contact between "
			     << interaction->id1 << " and " << interaction->id2 << ". Continue with values : cn=" << cn << " en=" << en_temp << endl;
			break;
		}
		i++;
		Real deriv = (get_en_from_cn(cn - eps, m, kn) - get_en_from_cn(cn + eps, m, kn)) / (-2. * eps);
		deriv      = fabs(deriv) > 1e-15 ? deriv : 1e-15;
		cn         = cn - (en_temp - en) / deriv;
		en_temp    = get_en_from_cn(cn, m, kn);
		error      = fabs(en_temp - en) / en;
	}
	// 	cout<<"i="<<i<<" error="<<error<<endl;
	return cn;
}

Real get_en_from_cn(const Real& cn, const Real& m, const Real& kn)
{
	Real beta   = 0.5 * cn / m;
	Real omega0 = sqrt(kn / m);
	Real omega  = sqrt(omega0 * omega0 - beta * beta);
	Real Omega  = sqrt(beta * beta - omega0 * omega0);
	if (beta < omega0 / sqrt(2.)) return exp(-beta / omega * (Mathr::PI - atan(2. * beta * omega / (omega * omega - beta * beta))));
	else if (beta > omega0 / sqrt(2.) and beta < omega0)
		return exp(-beta / omega * atan(-2. * beta * omega / (omega * omega - beta * beta)));
	else if (beta > omega0)
		return exp(-beta / Omega * log((beta + Omega) / (beta - Omega)));
	else if (beta == omega0 / sqrt(2.) or beta == omega0)
		return get_en_from_cn(cn + Ip2_ViscElMat_ViscElMat_ViscElPhys::epsilon, m, kn);
	else
		return 0;
}


#ifdef YADE_DEFORM
// The reference paper [Haustein2017]
// functor with Raji1999 Eq. 2.52
template <class T> struct fkt_functor {
	fkt_functor(T Radius, T tdR, vector<T>& distanceVector)
	        : R(Radius)
	        , dR(tdR)
	        , coef(distanceVector)
	{
	}

	pair<T, T> operator()(T const& Rs)
	{
		// solve for radius of deformed sphere Rs
		T funktion  = -R * R * R + Rs * Rs * Rs; // Raji1999 Eq. 2.52 - Part outside of the sum
		T dfunktion = 3 * Rs * Rs;               // Derivation of Raji1999 Eq. 2.52 - Part outside of the sum

		// Summation over every contact distance dsi (C++11)
		for (auto const& dsi : coef) {
			funktion += -0.25 * (Rs - dsi) * (Rs - dsi) * (2 * Rs + dsi); // Raji1999 Eq. 2.51 - part in the sum
			dfunktion += 3.0 / 2.0 * (Rs * Rs - Rs * dsi);                // Derivation of Raji1999 Eq. 2.52 - part in the sum
		}

		return make_pair(funktion, dfunktion);
	}

private:
	T         R;    // radius of the undeformed sphere
	T         dR;   // dR of sphere
	vector<T> coef; // vector of all contact distances dsi
};

// function for easy calling of Newton-Raphson method
template <class T> T fkt(T R, T dR, vector<T> z)
{
	double guess  = R + dR;       // start guess
	double min    = guess * 0.99; // minimum
	double max    = guess * 1.05; // maximum
	int    digits = std::numeric_limits<T>::digits;

	// use Newton-Raphson method for numerical solution
	return boost::math::tools::newton_raphson_iterate(fkt_functor<T>(R, dR, z), guess, min, max, digits);
}


YADE_PLUGIN((DeformControl));
void DeformControl::action()
{
	Scene*               scene2 = Omega::instance().getScene().get();
	const BodyContainer& b      = *scene2->bodies;

	for (size_t i = 0; i < b.size(); ++i) {
		vector<double> dsi;
		if (Sphere* s1 = dynamic_cast<Sphere*>(b[i]->shape.get())) {
			double s1Rad    = s1->radius;
			State* s1_state = static_cast<State*>(b[i]->state.get());
			double s1dR     = s1_state->dR;

			for (Body::MapId2IntrT::iterator it = b[i]->intrs.begin(), end = b[i]->intrs.end(); it != end; ++it) {
				if (!it->second->isReal()) continue;

				unsigned int partnerID;
				if (it->second->getId1() == Body::id_t(i)) {
					partnerID = it->second->getId2();
				} else {
					partnerID = it->second->getId1();
				}

				// Sphere - Sphere contact
				if (Sphere* s2 = dynamic_cast<Sphere*>(b[partnerID]->shape.get())) {
					double s2Rad    = s2->radius;
					State* s2_state = static_cast<State*>(b[partnerID]->state.get());
					double s2dR     = s2_state->dR;

					if (ScGeom* scg = dynamic_cast<ScGeom*>(it->second->geom.get())) {
						double L     = s1Rad + s2Rad - scg->penetrationDepth;
						double s1RdR = s1Rad + s1dR;
						double s2RdR = s2Rad + s2dR;
						double ds    = (L * L + s1RdR * s1RdR - s2RdR * s2RdR) / (2.0 * L);
						dsi.push_back(ds);
					}
				} else // Sphere - Facet / Wall contact
				{
					if (ScGeom* scg = dynamic_cast<ScGeom*>(it->second->geom.get())) {
						double ds = s1Rad - scg->penetrationDepth;
						dsi.push_back(ds);
					}
				}
			}
			s1_state->dR = fkt(s1Rad, s1dR, dsi) - s1Rad;
		}
	}
}
#endif

} // namespace yade