File: WirePM.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (334 lines) | stat: -rw-r--r-- 13,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/*************************************************************************
*  Copyright (C) 2010 by Klaus Thoeni                                    *
*  klaus.thoeni@newcastle.edu.au                                         *
*                                                                        *
*  This program is free software; it is licensed under the terms of the  *
*  GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/

#include "WirePM.hpp"
#include "../../lib/base/Math.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/ScGeom.hpp>

#include <boost/random/linear_congruential.hpp>
#include <boost/random/triangle_distribution.hpp>
#include <boost/random/variate_generator.hpp>

#include <core/Timing.hpp>

namespace yade { // Cannot have #include directive inside.

YADE_PLUGIN((WireMat)(WireState)(WirePhys)(Ip2_WireMat_WireMat_WirePhys)(Law2_ScGeom_WirePhys_WirePM));


/********************** WireMat ****************************/
CREATE_LOGGER(WireMat);

void WireMat::postLoad(WireMat&)
{
	//BUG: ????? postLoad is called twice,
	LOG_TRACE("WireMat::postLoad - update material parameters");

	// compute cross-section area for single wire
	as = pow(diameter * 0.5, 2) * Mathr::PI;

	// check for stress strain curve for single wire
	if (strainStressValues.empty()) return; // uninitialized object, don't do nothing at all
	if (strainStressValues.size() < 2) throw std::invalid_argument("WireMat.strainStressValues: at least two points must be given.");
	if (strainStressValues[0](0) == 0. && strainStressValues[0](1) == 0.)
		throw std::invalid_argument("WireMat.strainStressValues: Definition must start with values greater than zero (strain>0,stress>0)");

	switch (type) {
		case 0:
			LOG_DEBUG("WireMat - Bertrand's approach");
			if (!strainStressValuesDT.empty()) throw std::invalid_argument("Use of WireMat.strainStressValuesDT has no effect!");
			break;
		case 1:
			// check stress strain curve four double twist if type=1
			LOG_DEBUG("WireMat - New approach with two curves");
			if (isDoubleTwist) {
				if (strainStressValuesDT.empty()) throw runtime_error("WireMat.strainStressValuesDT not defined");
				if (strainStressValuesDT.size() < 2)
					throw std::invalid_argument("WireMat.strainStressValuesDT: at least two points must be given.");
				if (strainStressValuesDT[0](0) == 0. && strainStressValuesDT[0](1))
					throw std::invalid_argument(
					        "WireMat.strainStressValuesDT: Definition must start with values greater than zero (strain>0,stress>0)");
			}
			break;
		case 2:
			// check stress strain curve four double twist if type=2
			LOG_DEBUG("WireMat - New approach with two curves and initial shift");
			if (isDoubleTwist) {
				if (strainStressValuesDT.empty()) throw runtime_error("WireMat.strainStressValuesDT not defined");
				if (strainStressValuesDT.size() < 2)
					throw std::invalid_argument("WireMat.strainStressValuesDT: at least two points must be given.");
				if (strainStressValuesDT[0](0) == 0. && strainStressValuesDT[0](1))
					throw std::invalid_argument(
					        "WireMat.strainStressValuesDT: Definition must start with values greater than zero (strain>0,stress>0)");
			}
			break;
		default: throw std::invalid_argument("WireMat.type: Type must be 0, 1 or 2."); break;
	}
}


/********************** Law2_ScGeom_WirePhys_WirePM ****************************/
CREATE_LOGGER(Law2_ScGeom_WirePhys_WirePM);

bool Law2_ScGeom_WirePhys_WirePM::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
	LOG_TRACE("Law2_ScGeom_WirePhys_WirePM::go - contact law");

	ScGeom*    geom = static_cast<ScGeom*>(ig.get());
	WirePhys*  phys = static_cast<WirePhys*>(ip.get());
	const int& id1  = contact->getId1();
	const int& id2  = contact->getId2();
	Body*      b1   = Body::byId(id1, scene).get();
	Body*      b2   = Body::byId(id2, scene).get();

	Real displN = geom->penetrationDepth; // NOTE: ScGeom -> penetrationDepth>0 when spheres interpenetrate, and therefore, for wire always negative

	/* get reference to values since values are updated/changed in order to take unloading into account */
	vector<Vector2r>& DFValues = phys->displForceValues;
	vector<Real>&     kValues  = phys->stiffnessValues;
	Real              kn       = phys->kn;

	Real D = displN - phys->initD; // interparticular distance is computed depending on the equilibrium distance

	/* check whether the particles are linked or not */
	if (!phys->isLinked) { // destroy the interaction before calculation
		return false;
	}
	if ((phys->isLinked) && (D < DFValues.back()(0))) { // spheres are linked but failure because of reaching maximal admissible displacement
		phys->isLinked = false;
		// update body state with the number of broken links
		WireState* st1 = dynamic_cast<WireState*>(b1->state.get());
		WireState* st2 = dynamic_cast<WireState*>(b2->state.get());
		st1->numBrokenLinks += 1;
		st2->numBrokenLinks += 1;
		return false;
	}

	/* compute normal force Fn */
	Real Fn = 0.;
	if (D > DFValues[0](0)) { // unloading
		LOG_TRACE("WirePM: Unloading");
		Fn = kn * (D - phys->plastD);
	} else { // loading
		LOG_TRACE("WirePM: Loading");
		for (unsigned int i = 1; i < DFValues.size(); i++) {
			if (D > DFValues[i](0)) {
				Fn           = DFValues[i - 1](1) + (D - DFValues[i - 1](0)) * kValues[i - 1];
				phys->plastD = D - Fn / kn;
				// update values for unloading
				DFValues[0](0) = D;
				DFValues[0](1) = Fn;
				break;
			}
		}
	}

	/* compression forces cannot be applied to wires */
	if (Fn > 0.) Fn = 0.;

	TRVAR3(displN, D, Fn);

	phys->normalForce = Fn * geom->normal; // NOTE: normal is position2-position1 - It is directed from particle1 to particle2

	/* compute a limit value to check how far the interaction is from failing */
	Real limitFactor = 0.;
	if (Fn < 0.) limitFactor = math::abs(D / (DFValues.back()(0)));
	phys->limitFactor = limitFactor;

	State* st1 = Body::byId(id1, scene)->state.get();
	State* st2 = Body::byId(id2, scene)->state.get();

	/* apply forces */
	Vector3r f = phys->normalForce;
	// these lines to adapt to periodic boundary conditions
	if (!scene->isPeriodic) applyForceAtContactPoint(f, geom->contactPoint, id2, st2->se3.position, id1, st1->se3.position);
	else { // in scg we do not wrap particles positions, hence "applyForceAtContactPoint" cannot be used when scene is periodic
		scene->forces.addForce(id1, -f);
		scene->forces.addForce(id2, f);
	}

	/* set shear force to zero */
	phys->shearForce = Vector3r::Zero();
	return true;
}

/********************** Ip2_WireMat_WireMat_WirePhys ****************************/
CREATE_LOGGER(Ip2_WireMat_WireMat_WirePhys);

void Ip2_WireMat_WireMat_WirePhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
	/* avoid any updates if interactions which already exist */
	if (interaction->phys) return;
	//TODO: make boolean to make sure physics are never updated, optimisation of contact detection mesh (no contact detection after link is created)

	LOG_TRACE("Ip2_WireMat_WireMat_WirePhys::go - create interaction physics");

	ScGeom* geom = dynamic_cast<ScGeom*>(interaction->geom.get());
	assert(geom);

	/* set equilibrium distance, e.g. initial distance between particle (stress free state) */
	shared_ptr<WirePhys> contactPhysics(new WirePhys());
	Real                 initD  = geom->penetrationDepth;
	contactPhysics->normalForce = Vector3r::Zero();

	/* get values from material */
	const shared_ptr<WireMat>& mat1 = YADE_PTR_CAST<WireMat>(b1);
	const shared_ptr<WireMat>& mat2 = YADE_PTR_CAST<WireMat>(b2);

	Real             crossSection;
	vector<Vector2r> SSValues;

	/* check properties of interaction */
	if (mat1->id == mat2->id) { // interaction of two bodies of the same material
		crossSection = mat1->as;
		SSValues     = mat1->strainStressValues;
		if ((mat1->isDoubleTwist)
		    && (std::abs(interaction->getId1() - interaction->getId2()) == 1)) { // bodies which id differs by 1 are double twisted
			contactPhysics->isDoubleTwist = true;
			if (mat1->type == 1 || mat1->type == 2) {
				SSValues = mat1->strainStressValuesDT;
				crossSection *= 2.;
			}
		} else {
			contactPhysics->isDoubleTwist = false;
		}
	} else { // interaction of two bodies of two different materials, take weaker material and no double-twist
		contactPhysics->isDoubleTwist = false;
		if (mat1->diameter <= mat2->diameter) {
			crossSection = mat1->as;
			SSValues     = mat1->strainStressValues;
		} else {
			crossSection = mat2->as;
			SSValues     = mat2->strainStressValues;
		}
	}

	Real R1 = geom->radius1;
	Real R2 = geom->radius2;

	Real l0 = R1 + R2 - initD; // initial length of the wire (can be single or double twisted)

	/* compute displacement-force values */
	vector<Vector2r> DFValues;
	vector<Real>     kValues;
	Real             dl        = 0.;
	bool             isShifted = false;

	/* account for random distortion if type=2 */
	if (mat1->type == 2) {
		isShifted = true;
		if (mat1->seed == -1) dl = l0 * mat1->lambdau;
		else {
			// initialize random number generator
			static boost::minstd_rand randGenLoc(mat1->seed != 0 ? mat1->seed : (int)TimingInfo::getNow(true));
			static boost::variate_generator<boost::minstd_rand&, boost::triangle_distribution<Real>> rnd(
			        randGenLoc, boost::triangle_distribution<Real>(0, 0.5, 1));
			Real rndu = rnd();
			TRVAR1(rndu);
			dl        = l0 * mat1->lambdau * rndu;
			isShifted = true;
		}
	} else if (mat2->type == 2) {
		isShifted = true;
		if (mat2->seed == -1) dl = l0 * mat2->lambdau;
		else {
			// initialize random number generator
			static boost::minstd_rand randGenLoc(mat2->seed != 0 ? mat2->seed : (int)TimingInfo::getNow(true));
			static boost::variate_generator<boost::minstd_rand&, boost::triangle_distribution<Real>> rnd(
			        randGenLoc, boost::triangle_distribution<Real>(0, 0.5, 1));
			Real rndu = rnd();
			TRVAR1(rndu);
			dl = l0 * mat2->lambdau * rndu;
		}
	}
	contactPhysics->dL        = dl;
	contactPhysics->isShifted = isShifted;

	// update geometry values
	l0 += dl;
	contactPhysics->initD = initD;

	/* compute threshold displacement-force values (tension negative since ScGem is used!) */
	for (vector<Vector2r>::iterator it = SSValues.begin(); it != SSValues.end(); it++) {
		Vector2r values = Vector2r::Zero();
		// 		values(0) = -(*it)(0)*l0;
		values(0) = -(*it)(0) * l0 - dl;
		values(1) = -(*it)(1) * crossSection;
		DFValues.push_back(values);
	}

	/* compute elastic stiffness for unloading*/
	Real k = DFValues[0](1) / (DFValues[0](0) + dl);

	/* update values if the interaction is a double twist and type=0 */
	if (contactPhysics->isDoubleTwist && mat1->type == 0) {
		// type=0 (force displacement values are computed by manipulating the values of the single wire by using the parameters lambdak and lambdaEps)
		Real alpha = atan(l0 / (3. * Mathr::PI * mat1->diameter));
		Real kh    = k * (l0 * mat1->diameter / crossSection) / (48. * cos(alpha) * (41. / 9. * (1. + mat1->poisson) + 17. / 4. * pow(tan(alpha), 2)));
		k          = 2. * (mat1->lambdak * kh + (1 - mat1->lambdak) * k);
		Real F     = k * DFValues[0](0);
		Real mappingF  = F / DFValues[0](1);
		DFValues[0](1) = F;
		for (unsigned int i = 1; i < DFValues.size(); i++) {
			DFValues[i](0) *= mat1->lambdaEps;
			DFValues[i](1) *= mappingF;
		}
	} else {
		// type=1 and type=2 (force displacement values have already been computed by given stress-strain curve)
	}

	/* store elastic/unloading stiffness as kn in physics */
	contactPhysics->kn = k;
	contactPhysics->ks = 0.;
	TRVAR1(k);

	/* consider an additional point for the initial shift if type==2 */
	if (mat1->type == 2) {
		Vector2r values = Vector2r::Zero();
		values(0)       = -dl + mat1->lambdaF * (DFValues[0](0) + dl);
		values(1)       = DFValues[0](1) * mat1->lambdaF;
		k               = values(1) / values(0);
		if (mat1->lambdaF < 1.) DFValues.insert(DFValues.begin(), values);
	} else if (mat2->type == 2) {
		Vector2r values = Vector2r::Zero();
		values(0)       = -dl + mat2->lambdaF * (DFValues[0](0) + dl);
		values(1)       = DFValues[0](1) * mat2->lambdaF;
		k               = values(1) / values(0);
		if (mat2->lambdaF < 1.) DFValues.insert(DFValues.begin(), values);
	}

	/* compute stiffness-values of wire */
	kValues.push_back(k);
	for (unsigned int i = 1; i < DFValues.size(); i++) {
		Real deltau = -DFValues[i](0) + DFValues[i - 1](0);
		Real deltaF = -DFValues[i](1) + DFValues[i - 1](1);
		k           = deltaF / deltau;
		kValues.push_back(k);
	}

	/* add zero values for first point */
	DFValues.insert(DFValues.begin(), Vector2r::Zero());

	/* store values in physics */
	contactPhysics->displForceValues = DFValues;
	contactPhysics->stiffnessValues  = kValues;

	/* set particles as linked */
	if ((scene->iter < linkThresholdIteration)) contactPhysics->isLinked = true;
	else
		contactPhysics->isLinked = false;

	interaction->phys = contactPhysics;
}

WirePhys::~WirePhys() { }

} // namespace yade