1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/*************************************************************************
* Copyright (C) 2010 by Klaus Thoeni *
* klaus.thoeni@newcastle.edu.au *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#include "WirePM.hpp"
#include "../../lib/base/Math.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/ScGeom.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/triangle_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include <core/Timing.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((WireMat)(WireState)(WirePhys)(Ip2_WireMat_WireMat_WirePhys)(Law2_ScGeom_WirePhys_WirePM));
/********************** WireMat ****************************/
CREATE_LOGGER(WireMat);
void WireMat::postLoad(WireMat&)
{
//BUG: ????? postLoad is called twice,
LOG_TRACE("WireMat::postLoad - update material parameters");
// compute cross-section area for single wire
as = pow(diameter * 0.5, 2) * Mathr::PI;
// check for stress strain curve for single wire
if (strainStressValues.empty()) return; // uninitialized object, don't do nothing at all
if (strainStressValues.size() < 2) throw std::invalid_argument("WireMat.strainStressValues: at least two points must be given.");
if (strainStressValues[0](0) == 0. && strainStressValues[0](1) == 0.)
throw std::invalid_argument("WireMat.strainStressValues: Definition must start with values greater than zero (strain>0,stress>0)");
switch (type) {
case 0:
LOG_DEBUG("WireMat - Bertrand's approach");
if (!strainStressValuesDT.empty()) throw std::invalid_argument("Use of WireMat.strainStressValuesDT has no effect!");
break;
case 1:
// check stress strain curve four double twist if type=1
LOG_DEBUG("WireMat - New approach with two curves");
if (isDoubleTwist) {
if (strainStressValuesDT.empty()) throw runtime_error("WireMat.strainStressValuesDT not defined");
if (strainStressValuesDT.size() < 2)
throw std::invalid_argument("WireMat.strainStressValuesDT: at least two points must be given.");
if (strainStressValuesDT[0](0) == 0. && strainStressValuesDT[0](1))
throw std::invalid_argument(
"WireMat.strainStressValuesDT: Definition must start with values greater than zero (strain>0,stress>0)");
}
break;
case 2:
// check stress strain curve four double twist if type=2
LOG_DEBUG("WireMat - New approach with two curves and initial shift");
if (isDoubleTwist) {
if (strainStressValuesDT.empty()) throw runtime_error("WireMat.strainStressValuesDT not defined");
if (strainStressValuesDT.size() < 2)
throw std::invalid_argument("WireMat.strainStressValuesDT: at least two points must be given.");
if (strainStressValuesDT[0](0) == 0. && strainStressValuesDT[0](1))
throw std::invalid_argument(
"WireMat.strainStressValuesDT: Definition must start with values greater than zero (strain>0,stress>0)");
}
break;
default: throw std::invalid_argument("WireMat.type: Type must be 0, 1 or 2."); break;
}
}
/********************** Law2_ScGeom_WirePhys_WirePM ****************************/
CREATE_LOGGER(Law2_ScGeom_WirePhys_WirePM);
bool Law2_ScGeom_WirePhys_WirePM::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
LOG_TRACE("Law2_ScGeom_WirePhys_WirePM::go - contact law");
ScGeom* geom = static_cast<ScGeom*>(ig.get());
WirePhys* phys = static_cast<WirePhys*>(ip.get());
const int& id1 = contact->getId1();
const int& id2 = contact->getId2();
Body* b1 = Body::byId(id1, scene).get();
Body* b2 = Body::byId(id2, scene).get();
Real displN = geom->penetrationDepth; // NOTE: ScGeom -> penetrationDepth>0 when spheres interpenetrate, and therefore, for wire always negative
/* get reference to values since values are updated/changed in order to take unloading into account */
vector<Vector2r>& DFValues = phys->displForceValues;
vector<Real>& kValues = phys->stiffnessValues;
Real kn = phys->kn;
Real D = displN - phys->initD; // interparticular distance is computed depending on the equilibrium distance
/* check whether the particles are linked or not */
if (!phys->isLinked) { // destroy the interaction before calculation
return false;
}
if ((phys->isLinked) && (D < DFValues.back()(0))) { // spheres are linked but failure because of reaching maximal admissible displacement
phys->isLinked = false;
// update body state with the number of broken links
WireState* st1 = dynamic_cast<WireState*>(b1->state.get());
WireState* st2 = dynamic_cast<WireState*>(b2->state.get());
st1->numBrokenLinks += 1;
st2->numBrokenLinks += 1;
return false;
}
/* compute normal force Fn */
Real Fn = 0.;
if (D > DFValues[0](0)) { // unloading
LOG_TRACE("WirePM: Unloading");
Fn = kn * (D - phys->plastD);
} else { // loading
LOG_TRACE("WirePM: Loading");
for (unsigned int i = 1; i < DFValues.size(); i++) {
if (D > DFValues[i](0)) {
Fn = DFValues[i - 1](1) + (D - DFValues[i - 1](0)) * kValues[i - 1];
phys->plastD = D - Fn / kn;
// update values for unloading
DFValues[0](0) = D;
DFValues[0](1) = Fn;
break;
}
}
}
/* compression forces cannot be applied to wires */
if (Fn > 0.) Fn = 0.;
TRVAR3(displN, D, Fn);
phys->normalForce = Fn * geom->normal; // NOTE: normal is position2-position1 - It is directed from particle1 to particle2
/* compute a limit value to check how far the interaction is from failing */
Real limitFactor = 0.;
if (Fn < 0.) limitFactor = math::abs(D / (DFValues.back()(0)));
phys->limitFactor = limitFactor;
State* st1 = Body::byId(id1, scene)->state.get();
State* st2 = Body::byId(id2, scene)->state.get();
/* apply forces */
Vector3r f = phys->normalForce;
// these lines to adapt to periodic boundary conditions
if (!scene->isPeriodic) applyForceAtContactPoint(f, geom->contactPoint, id2, st2->se3.position, id1, st1->se3.position);
else { // in scg we do not wrap particles positions, hence "applyForceAtContactPoint" cannot be used when scene is periodic
scene->forces.addForce(id1, -f);
scene->forces.addForce(id2, f);
}
/* set shear force to zero */
phys->shearForce = Vector3r::Zero();
return true;
}
/********************** Ip2_WireMat_WireMat_WirePhys ****************************/
CREATE_LOGGER(Ip2_WireMat_WireMat_WirePhys);
void Ip2_WireMat_WireMat_WirePhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
/* avoid any updates if interactions which already exist */
if (interaction->phys) return;
//TODO: make boolean to make sure physics are never updated, optimisation of contact detection mesh (no contact detection after link is created)
LOG_TRACE("Ip2_WireMat_WireMat_WirePhys::go - create interaction physics");
ScGeom* geom = dynamic_cast<ScGeom*>(interaction->geom.get());
assert(geom);
/* set equilibrium distance, e.g. initial distance between particle (stress free state) */
shared_ptr<WirePhys> contactPhysics(new WirePhys());
Real initD = geom->penetrationDepth;
contactPhysics->normalForce = Vector3r::Zero();
/* get values from material */
const shared_ptr<WireMat>& mat1 = YADE_PTR_CAST<WireMat>(b1);
const shared_ptr<WireMat>& mat2 = YADE_PTR_CAST<WireMat>(b2);
Real crossSection;
vector<Vector2r> SSValues;
/* check properties of interaction */
if (mat1->id == mat2->id) { // interaction of two bodies of the same material
crossSection = mat1->as;
SSValues = mat1->strainStressValues;
if ((mat1->isDoubleTwist)
&& (std::abs(interaction->getId1() - interaction->getId2()) == 1)) { // bodies which id differs by 1 are double twisted
contactPhysics->isDoubleTwist = true;
if (mat1->type == 1 || mat1->type == 2) {
SSValues = mat1->strainStressValuesDT;
crossSection *= 2.;
}
} else {
contactPhysics->isDoubleTwist = false;
}
} else { // interaction of two bodies of two different materials, take weaker material and no double-twist
contactPhysics->isDoubleTwist = false;
if (mat1->diameter <= mat2->diameter) {
crossSection = mat1->as;
SSValues = mat1->strainStressValues;
} else {
crossSection = mat2->as;
SSValues = mat2->strainStressValues;
}
}
Real R1 = geom->radius1;
Real R2 = geom->radius2;
Real l0 = R1 + R2 - initD; // initial length of the wire (can be single or double twisted)
/* compute displacement-force values */
vector<Vector2r> DFValues;
vector<Real> kValues;
Real dl = 0.;
bool isShifted = false;
/* account for random distortion if type=2 */
if (mat1->type == 2) {
isShifted = true;
if (mat1->seed == -1) dl = l0 * mat1->lambdau;
else {
// initialize random number generator
static boost::minstd_rand randGenLoc(mat1->seed != 0 ? mat1->seed : (int)TimingInfo::getNow(true));
static boost::variate_generator<boost::minstd_rand&, boost::triangle_distribution<Real>> rnd(
randGenLoc, boost::triangle_distribution<Real>(0, 0.5, 1));
Real rndu = rnd();
TRVAR1(rndu);
dl = l0 * mat1->lambdau * rndu;
isShifted = true;
}
} else if (mat2->type == 2) {
isShifted = true;
if (mat2->seed == -1) dl = l0 * mat2->lambdau;
else {
// initialize random number generator
static boost::minstd_rand randGenLoc(mat2->seed != 0 ? mat2->seed : (int)TimingInfo::getNow(true));
static boost::variate_generator<boost::minstd_rand&, boost::triangle_distribution<Real>> rnd(
randGenLoc, boost::triangle_distribution<Real>(0, 0.5, 1));
Real rndu = rnd();
TRVAR1(rndu);
dl = l0 * mat2->lambdau * rndu;
}
}
contactPhysics->dL = dl;
contactPhysics->isShifted = isShifted;
// update geometry values
l0 += dl;
contactPhysics->initD = initD;
/* compute threshold displacement-force values (tension negative since ScGem is used!) */
for (vector<Vector2r>::iterator it = SSValues.begin(); it != SSValues.end(); it++) {
Vector2r values = Vector2r::Zero();
// values(0) = -(*it)(0)*l0;
values(0) = -(*it)(0) * l0 - dl;
values(1) = -(*it)(1) * crossSection;
DFValues.push_back(values);
}
/* compute elastic stiffness for unloading*/
Real k = DFValues[0](1) / (DFValues[0](0) + dl);
/* update values if the interaction is a double twist and type=0 */
if (contactPhysics->isDoubleTwist && mat1->type == 0) {
// type=0 (force displacement values are computed by manipulating the values of the single wire by using the parameters lambdak and lambdaEps)
Real alpha = atan(l0 / (3. * Mathr::PI * mat1->diameter));
Real kh = k * (l0 * mat1->diameter / crossSection) / (48. * cos(alpha) * (41. / 9. * (1. + mat1->poisson) + 17. / 4. * pow(tan(alpha), 2)));
k = 2. * (mat1->lambdak * kh + (1 - mat1->lambdak) * k);
Real F = k * DFValues[0](0);
Real mappingF = F / DFValues[0](1);
DFValues[0](1) = F;
for (unsigned int i = 1; i < DFValues.size(); i++) {
DFValues[i](0) *= mat1->lambdaEps;
DFValues[i](1) *= mappingF;
}
} else {
// type=1 and type=2 (force displacement values have already been computed by given stress-strain curve)
}
/* store elastic/unloading stiffness as kn in physics */
contactPhysics->kn = k;
contactPhysics->ks = 0.;
TRVAR1(k);
/* consider an additional point for the initial shift if type==2 */
if (mat1->type == 2) {
Vector2r values = Vector2r::Zero();
values(0) = -dl + mat1->lambdaF * (DFValues[0](0) + dl);
values(1) = DFValues[0](1) * mat1->lambdaF;
k = values(1) / values(0);
if (mat1->lambdaF < 1.) DFValues.insert(DFValues.begin(), values);
} else if (mat2->type == 2) {
Vector2r values = Vector2r::Zero();
values(0) = -dl + mat2->lambdaF * (DFValues[0](0) + dl);
values(1) = DFValues[0](1) * mat2->lambdaF;
k = values(1) / values(0);
if (mat2->lambdaF < 1.) DFValues.insert(DFValues.begin(), values);
}
/* compute stiffness-values of wire */
kValues.push_back(k);
for (unsigned int i = 1; i < DFValues.size(); i++) {
Real deltau = -DFValues[i](0) + DFValues[i - 1](0);
Real deltaF = -DFValues[i](1) + DFValues[i - 1](1);
k = deltaF / deltau;
kValues.push_back(k);
}
/* add zero values for first point */
DFValues.insert(DFValues.begin(), Vector2r::Zero());
/* store values in physics */
contactPhysics->displForceValues = DFValues;
contactPhysics->stiffnessValues = kValues;
/* set particles as linked */
if ((scene->iter < linkThresholdIteration)) contactPhysics->isLinked = true;
else
contactPhysics->isLinked = false;
interaction->phys = contactPhysics;
}
WirePhys::~WirePhys() { }
} // namespace yade
|