1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
/****************************************************************************
* 2023 DLH van der Haven, dannyvdhaven@gmail.com, University of Cambridge *
* *
* For details, please see van der Haven et al., "A physically consistent *
* Discrete Element Method for arbitrary shapes using Volume-interacting *
* Level Sets", Comput. Methods Appl. Mech. Engrg., 414 (116165):1-21 *
* https://doi.org/10.1016/j.cma.2023.116165 *
* This project has been financed by Novo Nordisk A/S (Bagsværd, Denmark). *
* *
* This program is licensed under GNU GPLv2, see file LICENSE for details. *
****************************************************************************/
#ifdef YADE_LS_DEM
#include <lib/high-precision/Constants.hpp>
#include <pkg/levelSet/LevelSetVolumeIg2.hpp>
#include <pkg/levelSet/ShopLS.hpp>
#include <preprocessing/dem/Shop.hpp>
namespace yade {
YADE_PLUGIN((Ig2_LevelSet_LevelSet_VolumeGeom)(Ig2_Wall_LevelSet_VolumeGeom)); // To add:(Ig2_Box_LevelSet_VolumeGeom)
//CREATE_LOGGER(Ig2_Box_LevelSet_VolumeGeom); // To be implemented
CREATE_LOGGER(Ig2_LevelSet_LevelSet_VolumeGeom);
CREATE_LOGGER(Ig2_Wall_LevelSet_VolumeGeom);
shared_ptr<VolumeGeom> ShopLSvolume::volGeomPtr(
Vector3r ctctPt,
Real un,
Real rad1,
Real rad2,
const State& rbp1,
const State& rbp2,
const shared_ptr<Interaction>& c,
const Vector3r& currentNormal,
const Vector3r& shift2)
{
shared_ptr<VolumeGeom> volGeomPtr;
bool isNew = !c->geom;
if (isNew) volGeomPtr = shared_ptr<VolumeGeom>(new VolumeGeom());
else
volGeomPtr = YADE_PTR_CAST<VolumeGeom>(c->geom);
volGeomPtr->contactPoint = ctctPt;
volGeomPtr->penetrationVolume = un;
// NB radius1, radius2: are still useful for time step determination with respect to rotational stiffnesses
// and also, as refR1, refR2, for contact stiffness expression in FrictPhys/FrictMat.
volGeomPtr->radius1 = rad1;
volGeomPtr->radius2 = rad2;
volGeomPtr->refR1 = rad1;
volGeomPtr->refR2 = rad2;
volGeomPtr->precompute(rbp1, rbp2, Omega::instance().getScene().get(), c, currentNormal, isNew, shift2);
// precompute will take care of
// * preparing the rotation of shearForce to the new tangent plane (done later, in Law2) defining these orthonormal_axis and twist_axis
// * updating geomPtr->normal to normal
// * computing the relative velocity at contact, through getIncidentVel(avoidGranularRatcheting=false), using now-defined contactPoint
return volGeomPtr;
}
shared_ptr<VolumeGeom> ShopLSvolume::volGeomPtrForLaterRemoval(const State& rbp1, const State& rbp2, const shared_ptr<Interaction>& c)
{
// Use when no overlap, but still need to have some geom data (while returning true for InteractionLoop workflow).
// Otherwise we would need to update InteractionLoop itself to avoid LOG_WARN messages).
// Data mostly include an infinite tensile stretch to insure subsequent interaction removal (by Law2).
return ShopLSvolume::volGeomPtr(
Vector3r::Zero() /* Inconsequential bullsh..*/,
-std::numeric_limits<Real>::infinity() /* Arbitrary big tensile value to trigger interaction removal by Law2*/,
1, /* Inconsequential bullsh..*/
1, /* Inconsequential bullsh..*/
rbp1,
rbp2,
c,
Vector3r::UnitX() /* Inconsequential bullsh..*/,
Vector3r::Zero() /* Inconsequential bullsh..*/);
}
/*************************
* PARTICLE-PARTICLE *
**************************/
bool Ig2_LevelSet_LevelSet_VolumeGeom::go(
const shared_ptr<Shape>& shape1,
const shared_ptr<Shape>& shape2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
// Determine the AABB zone where the bodies' bounds overlap. TODO: possible use of Eigen AlignedBox?
std::array<Real, 6> overlapAABB; // Format: [xmin,xmax,ymin,ymax,zmin,zmax]
const shared_ptr<Bound> bound1 = Body::byId(c->id1, scene)->bound;
const shared_ptr<Bound> bound2 = Body::byId(c->id2, scene)->bound;
for (unsigned int axis = 0; axis < 3; axis++) {
overlapAABB[2 * axis] = math::max(bound1->min[axis], bound2->min[axis] + shift2[axis]);
overlapAABB[2 * axis + 1] = math::min(bound1->max[axis], bound2->max[axis] + shift2[axis]);
if (overlapAABB[2 * axis + 1]
< overlapAABB[2 * axis]) { // Overlap AABB is empty. Possible when bodies' bounds themselves are parallel and overlapping.
if (c->isReal()) { // Check if the potential interaction is new in this step.
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
} else {
// Do not create new interaction.
return false;
}
}
}
Vector3r minBoOverlap = Vector3r(overlapAABB[0], overlapAABB[2], overlapAABB[4]),
maxBoOverlap = Vector3r(overlapAABB[1], overlapAABB[3], overlapAABB[5]);
Vector3r sizeBoOverlap = maxBoOverlap - minBoOverlap;
Real volBoOverlap = sizeBoOverlap.prod();
Vector3r cntrBoOverlap = minBoOverlap + sizeBoOverlap / 2;
// The AABB size and centre can be randomised a bit with (2*double(rand())/RAND_MAX-1)*sizeBo/pow(8,nRefineOctree-1)*4
// in attempt to smear numerical error, but the effect is not big.
// Positions and orientations of the particles at start and end
shared_ptr<LevelSet> lsShape1 = YADE_PTR_CAST<LevelSet>(shape1);
shared_ptr<LevelSet> lsShape2 = YADE_PTR_CAST<LevelSet>(shape2);
Vector3r centrEnd1(state1.pos), centrEnd2(state2.pos + shift2);
// ori = rotation from reference configuration (local axes) to current one (global axes)
// ori.conjugate() from the current configuration (global axes) to the reference one (local axes)
Quaternionr rot1(state1.ori), rot2(state2.ori), rotConj1(state1.ori.conjugate()), rotConj2(state2.ori.conjugate());
// Box reduction based on projection on ellipsoid slices.
Quaternionr rotGuess1, rotGuess2, rotGuess1conj, rotGuess2conj;
if (useAABE && lsShape1->hasAABE && lsShape2->hasAABE) {
// These properties should be added to the level set shape and retrieved here with something like
// Vector3r prinAxes1 = lsShape1->principalAxes();
Vector3r prinAxes1 = lsShape1->axesAABE, prinAxes2 = lsShape2->axesAABE;
// Check if the bounding spheres overlap. If not, do not create an interaction.
Vector3r centrToCentr = centrEnd2 - centrEnd1;
Real ctcDist = centrToCentr.norm();
if (!c->isReal() && !force && (ctcDist > (prinAxes1.maxCoeff() + prinAxes2.maxCoeff()))) {
return false;
} else if (ctcDist > (prinAxes1.maxCoeff() + prinAxes2.maxCoeff())) {
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
}
// Get a sensible guess for the normal of the interaction between the particles.
Vector3r nGuess = centrToCentr.normalized(); // Normal, global coordinates, from 1 to 2
Vector3r nzGuessLoc1 = rotConj1 * nGuess, nzGuessLoc2 = rotConj2 * nGuess; // Normal, local coordinates, from 1 to 2
// Squared principal half axes
Vector3r axSq1 = Vector3r(prinAxes1[0] * prinAxes1[0], prinAxes1[1] * prinAxes1[1], prinAxes1[2] * prinAxes1[2]),
axSq2 = Vector3r(prinAxes2[0] * prinAxes2[0], prinAxes2[1] * prinAxes2[1], prinAxes2[2] * prinAxes2[2]);
// To bound the potential overlap, find the farthest point on the ellipsoid in the direction of the guessed interaction normal
Vector3r farPtz1 = ShopLSvolume::normalToPointOnEllipsoid(nzGuessLoc1, axSq1);
Vector3r farPtz2 = -ShopLSvolume::normalToPointOnEllipsoid(nzGuessLoc2, axSq2);
// We now proceed to make a bounding box for the overlap volume between the two particles,
// based on the axis-aligned bounding ellipsoids. To do this, we will rotate the ellipsoids
// in local coordinates to align with the guessed interation normal. This allows us to
// easily slice the ellipsoids at the farthest point in the direction of the guessed normal.
// Get the rotation that moves the local guessed interaction normal onto the local z axis (and back)
rotGuess1 = Quaternionr().setFromTwoVectors(nzGuessLoc1, Vector3r::UnitZ()),
rotGuess2 = Quaternionr().setFromTwoVectors(nzGuessLoc2, Vector3r::UnitZ());
rotGuess1conj = rotGuess1.conjugate(), rotGuess2conj = rotGuess2.conjugate();
// Rotate farthest points, aling interaction normal onto the z axis
Vector3r farPtz1rot = rotGuess1 * farPtz1, farPtz2rot = rotGuess2 * farPtz2;
// Check if the ellipsoids can touch by using the farthest z coordinates of the ellipsoids
if ((farPtz2rot[2] + ctcDist - farPtz1rot[2]) < 0.0) {
// The matrix describing a general ellipsoid (not restricted to the axis-aligned case)
Matrix3r A1 = Vector3r(1.0 / axSq1[0], 1.0 / axSq1[1], 1.0 / axSq1[2]).asDiagonal(),
A2 = Vector3r(1.0 / axSq2[0], 1.0 / axSq2[1], 1.0 / axSq2[2]).asDiagonal();
// Rotate the ellipsoids using the tensor relation: Anew = R*A*inv(R)
// The coordinate systems of the ellipsoids are now aliged but with a z offset of ctcDist
Matrix3r A1rot = rotGuess1 * A1 * rotGuess1.inverse(), A2rot = rotGuess2 * A2 * rotGuess2.inverse();
// We now do a plane-ellipsoid intersection at the extreme coordinates as given by the
// farthest points on the ellipsoid in direction of the guessed interaction normal.
// The resulting extremes of the resulting ellipses will give us the x and y limits of
// the bounding box for the potential interaction.
// Should funtionalise this at some point.
// The full equation of the ellipse resulting from a sliced ellipsoid at z = h:
// axx x^2 + ayy y^2 + azz h^2 + 2 axy x y + 2 axz x h + 2 ayz y h = 1
// The h are the extreme z coordinates and locations to intersect the ellipsoids at
Real axx = A1rot(0, 0), ayy = A1rot(1, 1), azz = A1rot(2, 2), axy = A1rot(0, 1), axz = A1rot(0, 2), ayz = A1rot(1, 2);
// Location on z axis for the slicing plane, determined by extreme of the OTHER ellipsoid
// (because that is the one that penetrates).
// NB: For the rotated ellipsoids, particle 1 is always below particle 2!!
Real h = farPtz2rot[2] + ctcDist;
// Compute x limits of ellipse
Real xterm1 = 0.5 / (axx - axy * axy / ayy), xterm2 = 2 * axz * h - (2 * axy * ayz * h) / ayy,
xterm3 = sqrt(pow(-xterm2, 2) - 4 * (-axy * axy / ayy + axx) * (-1 - ayz * ayz * h * h / ayy + azz * h * h));
Real xlim11 = xterm1 * (xterm2 - xterm3), xlim12 = xterm1 * (xterm2 + xterm3);
Real xlim1neg, xlim1pos;
if (xlim11 > xlim12) {
xlim1pos = xlim11;
xlim1neg = xlim12;
} else {
xlim1pos = xlim12;
xlim1neg = xlim11;
}
// Compute y limits of ellipse
Real yterm1 = 0.5 / (ayy - axy * axy / axx), yterm2 = 2 * ayz * h - (2 * axy * axz * h) / axx,
yterm3 = sqrt(pow(-yterm2, 2) - 4 * (-axy * axy / axx + ayy) * (-1 - axz * axz * h * h / axx + azz * h * h));
Real ylim11 = yterm1 * (yterm2 + yterm3), ylim12 = yterm1 * (yterm2 - yterm3);
Real ylim1neg, ylim1pos;
if (ylim11 > ylim12) {
ylim1pos = ylim11;
ylim1neg = ylim12;
} else {
ylim1pos = ylim12;
ylim1neg = ylim11;
}
// Check if the slice we took is not actually smaller than the widest slice
// within the potential overlap volume. Check along x axis.
Vector3r nxGuessLoc1 = rotGuess1conj * Vector3r::UnitX();
Vector3r farPtx1 = ShopLSvolume::normalToPointOnEllipsoid(nxGuessLoc1, axSq1);
Vector3r farPtx1rot = rotGuess1 * farPtx1;
if (farPtx1rot[2] > h) { // Point is above slice, needs to be considered
if (farPtx1rot[0] > 0) {
xlim1pos = std::max(xlim1pos, farPtx1rot[0]);
} else {
xlim1neg = std::min(xlim1neg, farPtx1rot[0]);
}
if (farPtx1rot[1] > 0) {
ylim1pos = std::max(ylim1pos, farPtx1rot[1]);
} else {
ylim1neg = std::min(ylim1neg, farPtx1rot[1]);
}
}
// Same for the extreme point on the other side of the ellipse
// is -farPt1xrot due to inversion symmetry.
if (-farPtx1rot[2] > h) { // Point is above slice, needs to be considered
if (-farPtx1rot[0] > 0) {
xlim1pos = std::max(xlim1pos, -farPtx1rot[0]);
} else {
xlim1neg = std::min(xlim1neg, -farPtx1rot[0]);
}
if (-farPtx1rot[1] > 0) {
ylim1pos = std::max(ylim1pos, -farPtx1rot[1]);
} else {
ylim1neg = std::min(ylim1neg, -farPtx1rot[1]);
}
}
// Now check along y axis.
Vector3r nyGuessLoc1 = rotGuess1conj * Vector3r::UnitY();
Vector3r farPty1 = ShopLSvolume::normalToPointOnEllipsoid(nyGuessLoc1, axSq1);
Vector3r farPty1rot = rotGuess1 * farPty1;
if (farPty1rot[2] > h) { // Point is above slice, needs to be considered
if (farPty1rot[0] > 0) {
xlim1pos = std::max(xlim1pos, farPty1rot[0]);
} else {
xlim1neg = std::min(xlim1neg, farPty1rot[0]);
}
if (farPty1rot[1] > 0) {
ylim1pos = std::max(ylim1pos, farPty1rot[1]);
} else {
ylim1neg = std::min(ylim1neg, farPty1rot[1]);
}
}
// Same for the extreme point on the other side of the ellipse
// is -farPt1xrot due to inversion symmetry.
if (-farPty1rot[2] > h) { // Point is above slice, needs to be considered
if (-farPty1rot[0] > 0) {
xlim1pos = std::max(xlim1pos, -farPty1rot[0]);
} else {
xlim1neg = std::min(xlim1neg, -farPty1rot[0]);
}
if (-farPty1rot[1] > 0) {
ylim1pos = std::max(ylim1pos, -farPty1rot[1]);
} else {
ylim1neg = std::min(ylim1neg, -farPty1rot[1]);
}
}
//
// Repeat for the other particle
//
axx = A2rot(0, 0), ayy = A2rot(1, 1), azz = A2rot(2, 2), axy = A2rot(0, 1), axz = A2rot(0, 2), ayz = A2rot(1, 2);
h = farPtz1rot[2] - ctcDist; // Other way around for particle 2
// Compute x limits of ellipse
xterm1 = 0.5 / (axx - axy * axy / ayy), xterm2 = 2 * axz * h - (2 * axy * ayz * h) / ayy,
xterm3 = sqrt(pow(-xterm2, 2) - 4 * (-axy * axy / ayy + axx) * (-1 - ayz * ayz * h * h / ayy + azz * h * h));
Real xlim21 = xterm1 * (xterm2 - xterm3), xlim22 = xterm1 * (xterm2 + xterm3);
Real xlim2neg, xlim2pos;
if (xlim21 > xlim22) {
xlim2pos = xlim21;
xlim2neg = xlim22;
} else {
xlim2pos = xlim22;
xlim2neg = xlim21;
}
// Compute y limits of ellipse
yterm1 = 0.5 / (ayy - axy * axy / axx), yterm2 = 2 * ayz * h - (2 * axy * axz * h) / axx,
yterm3 = sqrt(pow(-yterm2, 2) - 4 * (-axy * axy / axx + ayy) * (-1 - axz * axz * h * h / axx + azz * h * h));
Real ylim21 = yterm1 * (yterm2 + yterm3), ylim22 = yterm1 * (yterm2 - yterm3);
Real ylim2neg, ylim2pos;
if (ylim21 > ylim22) {
ylim2pos = ylim21;
ylim2neg = ylim22;
} else {
ylim2pos = ylim22;
ylim2neg = ylim21;
}
// Check along x axis.
Vector3r nxGuessLoc2 = rotGuess2conj * Vector3r::UnitX();
Vector3r farPtx2 = ShopLSvolume::normalToPointOnEllipsoid(nxGuessLoc2, axSq2);
Vector3r farPtx2rot = rotGuess2 * farPtx2;
if (farPtx2rot[2] < h) { // Point is below slice, needs to be considered
if (farPtx2rot[0] > 0) {
xlim2pos = std::max(xlim2pos, farPtx2rot[0]);
} else {
xlim2neg = std::min(xlim2neg, farPtx2rot[0]);
}
if (farPtx2rot[1] > 0) {
ylim2pos = std::max(ylim2pos, farPtx2rot[1]);
} else {
ylim2neg = std::min(ylim2neg, farPtx2rot[1]);
}
}
// Same for the extreme point on the other side of the ellipse
if (-farPtx2rot[2] < h) { // Point is below slice, needs to be considered
if (-farPtx2rot[0] > 0) {
xlim2pos = std::max(xlim2pos, -farPtx2rot[0]);
} else {
xlim2neg = std::min(xlim2neg, -farPtx2rot[0]);
}
if (-farPtx2rot[1] > 0) {
ylim2pos = std::max(ylim2pos, -farPtx2rot[1]);
} else {
ylim2neg = std::min(ylim2neg, -farPtx2rot[1]);
}
}
// Now check along y axis.
Vector3r nyGuessLoc2 = rotGuess2conj * Vector3r::UnitY();
Vector3r farPty2 = ShopLSvolume::normalToPointOnEllipsoid(nyGuessLoc2, axSq2);
Vector3r farPty2rot = rotGuess2 * farPty2;
if (farPty2rot[2] < h) { // Point is below slice, needs to be considered
if (farPty2rot[0] > 0) {
xlim2pos = std::max(xlim2pos, farPty2rot[0]);
} else {
xlim2neg = std::min(xlim2neg, farPty2rot[0]);
}
if (farPty2rot[1] > 0) {
ylim2pos = std::max(ylim2pos, farPty2rot[1]);
} else {
ylim2neg = std::min(ylim2neg, farPty2rot[1]);
}
}
// Same for the extreme point on the other side of the ellipse
if (-farPty2rot[2] < h) { // Point is below slice, needs to be considered
if (-farPty2rot[0] > 0) {
xlim2pos = std::max(xlim2pos, -farPty2rot[0]);
} else {
xlim2neg = std::min(xlim2neg, -farPty2rot[0]);
}
if (-farPty2rot[1] > 0) {
ylim2pos = std::max(ylim2pos, -farPty2rot[1]);
} else {
ylim2neg = std::min(ylim2neg, -farPty2rot[1]);
}
}
// Bounding box dimensions in local rotated frame of particle 1, intersecting the limits set by each ellipsoid
Vector3r minBoOverlap1 = Vector3r(std::max(xlim1neg, xlim2neg), std::max(ylim1neg, ylim2neg), farPtz2rot[2] + ctcDist);
Vector3r maxBoOverlap1 = Vector3r(std::min(xlim1pos, xlim2pos), std::min(ylim1pos, ylim2pos), farPtz1rot[2]);
// Initialise limits in global coordinates
Vector3r minBoOverlapOld = Vector3r(
std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity());
Vector3r maxBoOverlapOld = Vector3r(
-std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity());
// Move the old global AABB to local coordinates
for (int i = 0; i < 2; i++) { // Go through all possible corners
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++) {
// Select one of the corners of the AABB
Vector3r cornerGlob = Vector3r(
minBoOverlap[0] + i * (sizeBoOverlap[0]),
minBoOverlap[1] + j * (sizeBoOverlap[1]),
minBoOverlap[2] + k * (sizeBoOverlap[2]));
// Move corner to local coordinates
Vector3r cornerLoc = rotGuess1 * rotConj1 * (cornerGlob - centrEnd1);
// Find maximum and minimum values of the corners
for (int m = 0; m < 3; m++) {
if (cornerLoc[m] > maxBoOverlapOld[m]) { maxBoOverlapOld[m] = cornerLoc[m]; }
if (cornerLoc[m] < minBoOverlapOld[m]) { minBoOverlapOld[m] = cornerLoc[m]; }
}
}
}
}
// Recompute the AABB by intersecting the individual bounding boxes
// All still local and z-aligned!
for (int i = 0; i < 3; i++) {
minBoOverlap1[i] = math::max(minBoOverlap1[i], minBoOverlapOld[i]);
maxBoOverlap1[i] = math::min(maxBoOverlap1[i], maxBoOverlapOld[i]);
}
// Compute the final bounding box (BB) parameters.
// Note: Depending on how tight the ellipsoid fits around the shape,
// the BB can be a tight fit as well. This means that a litte bit of volume that would
// be added because of smearing is not added. Currently, it seems that this works best.
Vector3r cntrBoOverlap1 = (minBoOverlap1 + maxBoOverlap1) / 2;
cntrBoOverlap = rot1 * (rotGuess1conj * cntrBoOverlap1) + centrEnd1;
sizeBoOverlap = (maxBoOverlap1 - minBoOverlap1);
volBoOverlap = sizeBoOverlap.prod();
} else {
volBoOverlap = 0.0;
}
// Test if there is any overlap at all. Otherwise, do not create an interaction.
if (!c->isReal() && !force && volBoOverlap < Mathr::EPSILON) {
return false;
} else if (volBoOverlap < Mathr::EPSILON) {
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
}
}
// End of overlap bounding box computations
// Determine the initial query point (center of the overlap bounding box) for the volume intergration in local axes
// Doing this avoids that we have to do a rigid mapping for every new query point upon refining the intergration mesh
// The disadvantage is that we have to compute the location of each point twice, but this is still cheaper than ShopLS::rigidMapping.
Vector3r pt1 = rotConj1 * (cntrBoOverlap - centrEnd1), pt2 = rotConj2 * (cntrBoOverlap - centrEnd2);
// Precompute a number of parameters that depend on the refinement (number of layers) of the integration mesh.
// Start at the most coarse layer and end at the finest layer. Note that the refinement step has to be rotated as the
// orientation of the overlap AABB is different in the respective local axes.
std::vector<ShopLSvolume::layerData> layers(nRefineOctree); //was layers
Real RmaxBoOverlap = 0.5 * sqrt(sizeBoOverlap[0] * sizeBoOverlap[0] + sizeBoOverlap[1] * sizeBoOverlap[1] + sizeBoOverlap[2] * sizeBoOverlap[2]);
if (useAABE) {
for (uint h = 0; h < nRefineOctree; h++) {
Real a = 1.0 / pow(2.0, h); // Is pow() the correct function to use or is there a high-precision variant?
Vector3r refineStep = 0.25 * a * sizeBoOverlap;
layers[h].cellVolume = volBoOverlap / pow(8, h); // Cell volume
layers[h].Rmax = a * RmaxBoOverlap; // Maximum center-to-edge distance
int q = 0; // Looping through all the octants
for (int i = -1; i < 2; i = i + 2) { // Ugly way to go through all possible sign combinations
for (int j = -1; j < 2; j = j + 2) {
for (int k = -1; k < 2; k = k + 2) {
Vector3r refStepPerm = Vector3r(i * refineStep[0], j * refineStep[1], k * refineStep[2]);
// Need a different rotation because the AABB is in local coordinates of particle 1
layers[h].refineStep1[q] = rotGuess1conj * refStepPerm; // Mesh refinement step grid 1
layers[h].refineStep2[q] = rotGuess2conj * refStepPerm; // Mesh refinement step grid 2
q++;
}
}
}
}
} else {
for (uint h = 0; h < nRefineOctree; h++) {
Real a = 1.0 / pow(2.0, h); // Is pow() the correct function to use or is there a high-precision variant?
Vector3r refineStep = 0.25 * a * sizeBoOverlap;
layers[h].cellVolume = volBoOverlap / pow(8, h); // Cell volume
layers[h].Rmax = a * RmaxBoOverlap; // Maximum center-to-edge distance
int q = 0; // Looping through all the octants
for (int i = -1; i < 2; i = i + 2) { // Ugly way to go through all possible sign combinations
for (int j = -1; j < 2; j = j + 2) {
for (int k = -1; k < 2; k = k + 2) {
Vector3r refStepPerm = Vector3r(i * refineStep[0], j * refineStep[1], k * refineStep[2]) + cntrBoOverlap;
layers[h].refineStep1[q] = rotConj1 * (refStepPerm - centrEnd1) - pt1; // Mesh refinement step grid 1
layers[h].refineStep2[q] = rotConj2 * (refStepPerm - centrEnd2) - pt2; // Mesh refinement step grid 2
q++;
}
}
}
}
}
// Recursive volume integration
// NB: normals and centroids are not yet normalised by the total overlap volume. Also, normals and centroids are still in local coordinates.
uint layerId = 0; // Starting layer, always zero. Needed for recursion.
ShopLSvolume::overlapRegionData overlap = ShopLSvolume::recursiveVolumeIntegration(lsShape1, lsShape2, pt1, pt2, layers, layerId, smearCoeffOctree);
Real vn = overlap.volume;
// Test if there is any overlap at all. Otherwise, do not create an interaction.
if (!c->isReal() && !force && vn < Mathr::EPSILON) { // Smallest output overlap volume will be just above volAcc/8.
return false;
} else if (vn <= Mathr::EPSILON) {
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
}
// Centroids and normal vector pointing from particle 1 to particle 2.
// Normals need not be the same for the particles so we average them.
Vector3r normal = ((rot1 * overlap.normal1).normalized() - (rot2 * overlap.normal2).normalized()).normalized(), centroidLocal1 = overlap.centroid1 / vn,
centroidLocal2 = overlap.centroid2 / vn;
// Moving centroids to global coordinates
Vector3r centroid1 = rot1 * centroidLocal1 + centrEnd1, centroid2 = rot2 * centroidLocal2 + centrEnd2;
// The contact point is the centroid (or center of mass) of the overlap volume
// The two centers should be exactly the same but we average them just to be sure
// and reduce numerical error.
Vector3r contactPoint = 0.5 * (centroid1 + centroid2);
// Compute a crude estimate of the overlap distance
Real overlapDistance = pow(vn, 1.0 / 3.0);
// Compute the center-to-contact distance for the torque computation.
// NB: Only works if the normal aligns with the center-to-contact vector. We add overlapDistance/2
// because it is later subtracted when using e.g. ElasticContactLaw (see Law2_VolumeGeom_FrictPhys_Elastic::go in .cpp file).
// This variable is no longer used because the torque computation is fixed to use the proper center-to-contact vector.
Real radius1 = (contactPoint - centrEnd1).norm() + 0.5 * overlapDistance, radius2 = (contactPoint - centrEnd2).norm() + 0.5 * overlapDistance;
// Finalise computation and create or update the interaction
c->geom = ShopLSvolume::volGeomPtr(contactPoint, vn, radius1, radius2, state1, state2, c, normal, shift2);
return true;
}
Vector3r ShopLSvolume::normalToPointOnEllipsoid(const Vector3r normal, const Vector3r prinAxesSq)
{
// Given a normal and an axis-aligned ellipsoid, compute the point on the ellipsoid that has the same normal.
// This point also equals the farthest point on the ellipsoid in the direction of the normal.
// Vector prinAxesSq holds the squared principal half axes of the ellipsoid, i.e. (Rx^2,Ry^2,Rz^2).
/*
The solutions are found using (1) the ellipsoid equation (x/Rx)^2 + (y/Ry)^2 + (z/Rz)^2 = 1
and (2) the ellipsoid normal n = (2x/Rx^2,2y/Ry^2,2z/Rz^2)/|(2x/Rx^2,2y/Ry^2,2z/Rz^2)|.
Solve (1) for x. Substitute found x in ny = 2y/Ry^2/|(2x/Rx^2,2y/Ry^2,2z/Rz^2)|.
Substitute found x and y in nz = 2z/Rz^2/|(2x/Rx^2,2y/Ry^2,2z/Rz^2)| to get z.
Similar procedure for the y component. The x component is then given by the very first
expression we found for x.
*/
// Precompute common term
Real term1 = prinAxesSq[0] + (prinAxesSq[1] - prinAxesSq[0]) * normal[1] * normal[1] + (prinAxesSq[2] - prinAxesSq[0]) * normal[2] * normal[2];
// Get y and z components, set x component to zero for now.
Vector3r pt = Vector3r(
0.0,
math::sign(normal[1]) * sqrt(normal[1] * normal[1] * prinAxesSq[1] * prinAxesSq[1] / term1),
math::sign(normal[2]) * sqrt(normal[2] * normal[2] * prinAxesSq[2] * prinAxesSq[2] / term1));
// Precompute term
Real term2 = prinAxesSq.prod() - prinAxesSq[0] * prinAxesSq[2] * pt[1] * pt[1] - prinAxesSq[0] * prinAxesSq[1] * pt[2] * pt[2];
// Check if the computed term is close to zero, if so, x is also zero. Set x component.
if (term2 > Mathr::EPSILON) {
pt[0] = math::sign(normal[0]) * sqrt(term2 / (prinAxesSq[1] * prinAxesSq[2]));
} else {
pt[0] = 0.0;
}
// Give point on ellipsoid as output.
// Due to inversion symmetry of axis-aligned ellipsoids, the point with the opposite normal is simply -pt.
return pt;
}
ShopLSvolume::overlapRegionData
ShopLSvolume::recursiveVolumeIntegration( // Move to ShopLS.*pp or keep here? Maybe nice to have all relevant functions in this file.
const shared_ptr<LevelSet>& lsShape1,
const shared_ptr<LevelSet>& lsShape2,
const Vector3r pt1,
const Vector3r pt2,
const std::vector<layerData>& layers, // cell volume, Rmax, refinement steps for grid 1 and 2
const uint layerId,
const Real smearCoeffOctree)
{
// A recursive or hierarchical method for integrating the overlap volume of two intersecting level set shapes.
// The approach is similar to the Octree data structure or adaptive mesh refinement (AMR).
// NB: Because we allow for concave geometries, the level-set normal at the contact point need not be the correct normal
// for computing the forces, we thus compute the normal as the volume-weighted normals of the overlap volume segments.
// Evaluate level set values at query point
const Real lev1 = lsShape1->distance(pt1, true), lev2 = lsShape2->distance(pt2, true);
// Structure for output data
// Mabye working more with pointers would improve the code performance?
overlapRegionData overlap;
// Get the details of the current refinement layer
layerData curLayer = layers[layerId];
Real Rmax = curLayer.Rmax;
// NB: lev < 0 means we are inside the particle.
if ((lev1 > Rmax) || (lev2 > Rmax)) {
// END MESH REFINEMENT
// Entire region not part of the overlap volume
return overlap;
} else if ((lev1 < -Rmax) && (lev2 < -Rmax)) {
// END MESH REFINEMENT
// Entire region is part of the overlap volume, add entire cell volume to overlap volume.
// No normal to add because there is no surface.
Real volume = curLayer.cellVolume; // Not sure if copying the volume in a new variable is actually slower or faster.
overlap.volume = volume;
overlap.centroid1 = volume * pt1;
overlap.centroid2 = volume * pt2;
overlap.depth1 = volume * lev1;
overlap.depth2 = volume * lev2;
return overlap;
} else {
// Region has the potential to partly belong to the overlap volume
if (layerId < layers.size() - 1) { // I find using layers.size() ugly but I stuggled finding a more elegant end condition for the recursion.
// REFINE THE MESH
// Generate a new query points, dividing the region in 8 parts of equal size.
for (int i = 0; i < 8; i++) {
Vector3r newPt1 = pt1 + curLayer.refineStep1[i];
Vector3r newPt2 = pt2 + curLayer.refineStep2[i];
overlapRegionData overlapSub
= recursiveVolumeIntegration(lsShape1, lsShape2, newPt1, newPt2, layers, layerId + 1, smearCoeffOctree);
overlap.volume += overlapSub.volume;
overlap.normal1 += overlapSub.normal1;
overlap.normal2 += overlapSub.normal2;
overlap.centroid1 += overlapSub.centroid1;
overlap.centroid2 += overlapSub.centroid2;
overlap.depth1 += overlapSub.depth1;
overlap.depth2 += overlapSub.depth2;
overlap.area += overlapSub.area;
}
return overlap;
} else {
// END MESH REFINEMENT
// Maximum number of refinements reached, only add volume of the cell is the centre is within both particles.
// This assumption is reasonable because for randomly planes intersecting a rectangle, the expected volume
// fraction of the box that is overlap is >74% if both centres as inside the box and <14% otherwise.
// Setting epsilon larger than Rmax leads to errors because larger cells would also start
// to experience smearing, but smearing is only applied on the smallest cells.
Real phi = std::max(lev1, lev2);
Real phiRef(0.);
if (smearCoeffOctree != 0) phiRef = Rmax / smearCoeffOctree; //Mathr::EPSILON
if (abs(phi) < phiRef) {
// Compute the smeared Heaviside step function
Real volume = 0.5 * (1.0 - phi / phiRef + sin(-M_PI * phi / phiRef) / M_PI) * curLayer.cellVolume;
overlap.volume = volume;
overlap.centroid1 = volume * pt1;
overlap.centroid2 = volume * pt2;
overlap.depth1 = volume * lev1;
overlap.depth2 = volume * lev2;
Real surface = 0;
Real dS = pow(curLayer.cellVolume, 2.0 / 3.0);
if (abs(lev1) < phiRef) {
Real dS1 = 0.5 / phiRef * (1 + cos(M_PI * lev1 / phiRef)) * dS;
overlap.normal1 = dS1 * (lsShape1->normal(pt1, true));
surface = surface + dS1;
}
if (abs(lev2) < phiRef) {
Real dS2 = 0.5 / phiRef * (1 + cos(M_PI * lev2 / phiRef)) * dS;
overlap.normal2 = dS2 * (lsShape2->normal(pt2, true));
}
overlap.area = surface;
return overlap;
} else if (phi < 0) {
// No normal to add because there is no surface.
Real volume = curLayer.cellVolume;
overlap.volume = volume;
overlap.centroid1 = volume * pt1;
overlap.centroid2 = volume * pt2;
overlap.depth1 = volume * lev1;
overlap.depth2 = volume * lev2;
return overlap;
} else {
return overlap;
}
}
} // End mesh refinement check
}
/*************************
* WALL-PARTICLE *
**************************/
bool Ig2_Wall_LevelSet_VolumeGeom::go(
const shared_ptr<Shape>& shape1,
const shared_ptr<Shape>& shape2,
const State& state1,
const State& state2,
const Vector3r& shift2,
const bool& force,
const shared_ptr<Interaction>& c)
{
// NB: Can and will go wrong if the particle centre penetrates the wall.
// Particle and wall shapes and positions along axes perpendicular to the wall
shared_ptr<Wall> shapeWall = YADE_PTR_CAST<Wall>(shape1);
shared_ptr<LevelSet> shapeLS = YADE_PTR_CAST<LevelSet>(shape2);
Vector3r wallPos = state1.pos, lsPos = state2.pos + shift2;
Real lsPosAxis(lsPos[shapeWall->axis]), wallPosAxis(wallPos[shapeWall->axis]);
// Determine the AABB zone where the bodies' bounds overlap. TODO: possible use of Eigen AlignedBox?
std::array<Real, 6> overlapAABB; // Format: [xmin,xmax,ymin,ymax,zmin,zmax]
const shared_ptr<Bound> bound2 = Body::byId(c->id2, scene)->bound;
for (int axis = 0; axis < 3; axis++) {
if (axis == shapeWall->axis) {
if (wallPosAxis >= lsPosAxis) {
overlapAABB[2 * axis] = wallPosAxis;
overlapAABB[2 * axis + 1] = bound2->max[axis] + shift2[axis];
} else {
overlapAABB[2 * axis] = bound2->min[axis] + shift2[axis];
overlapAABB[2 * axis + 1] = wallPosAxis;
}
} else {
overlapAABB[2 * axis] = bound2->min[axis] + shift2[axis];
overlapAABB[2 * axis + 1] = bound2->max[axis] + shift2[axis];
}
if (overlapAABB[2 * axis + 1]
< overlapAABB[2 * axis]) { // Overlap AABB is empty. Possible when bodies' bounds themselves are parallel and overlapping.
if (c->isReal()) { // Check if the potential interaction is new in this step.
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
} else {
// Do not create new interaction.
return false;
}
}
}
Vector3r minBoOverlap = Vector3r(overlapAABB[0], overlapAABB[2], overlapAABB[4]),
maxBoOverlap = Vector3r(overlapAABB[1], overlapAABB[3], overlapAABB[5]);
Vector3r sizeBoOverlap = maxBoOverlap - minBoOverlap;
Real volBoOverlap = sizeBoOverlap.prod();
Vector3r cntrBoOverlap = minBoOverlap + sizeBoOverlap / 2;
// End of overlap AABB computations
// Positions and orientations of the particle and wall at start and end
Vector3r centrEndLS(lsPos);
// ori = rotation from reference configuration (local axes) to current one (global axes)
// ori.conjugate() from the current configuration (global axes) to the reference one (local axes)
Quaternionr rotLS(state2.ori), rotConjLS(state2.ori.conjugate());
// Wall normal, NB: Only orientations that align with one of the global axes are allowed.
Vector3r wallNormal(Vector3r::Zero());
if (shapeWall->axis == 0) wallNormal = Vector3r::UnitX();
else if (shapeWall->axis == 1)
wallNormal = Vector3r::UnitY();
else if (shapeWall->axis == 2)
wallNormal = Vector3r::UnitZ();
// Make sure that the wall normal points from the wall to the particle center
wallNormal = (wallPosAxis - lsPosAxis > 0 ? -1 : 1) * wallNormal;
// Get the plane equation for the wall in local coordinates
// The plane is equation is ax + by + cz + k = 0. The normal is (a,b,c).
Vector3r ptWallLoc = rotConjLS * (wallPos - centrEndLS);
Vector3r nWallLoc = rotConjLS * wallNormal;
Real kWallLoc = -(ptWallLoc[0] * ptWallLoc[0] + ptWallLoc[1] * ptWallLoc[1] + ptWallLoc[2] * ptWallLoc[2]);
// Not using the bounding ellipse sometimes causes the evaluation of a point outside of the LS grid.
// Is there a way we can avoid this? It is unavoidable with rectangle corners penetrating the wall.
// Using the 'unbound' variants of the normal and distance function fix this, but cost more time.
// Box reduction based on projection on ellipsoid slice.
Quaternionr rotGuess, rotGuessConj;
if (useAABE && shapeLS->hasAABE) {
// These properties should be added to the level set shape and retrieved here with something like
Vector3r prinAxes = shapeLS->axesAABE;
// Check if the bounding spheres overlap. If not, do not create an interaction.
Real ctwDist = abs(wallPosAxis - lsPosAxis);
if (!c->isReal() && !force && (ctwDist > prinAxes.maxCoeff())) {
return false;
} else if (ctwDist > prinAxes.maxCoeff()) {
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
}
// Get a sensible guess for the normal of the interaction between the particles.
// Normal, global coordinates, from wall to particle is wallNormal
// Normal, local coordinates, from wall to particle is nWallLoc
// Squared principal half axes
Vector3r axSq = Vector3r(prinAxes[0] * prinAxes[0], prinAxes[1] * prinAxes[1], prinAxes[2] * prinAxes[2]);
// To bound the potential overlap, find the farthest point on the ellipsoid in the direction of the guessed interaction normal
Vector3r farPtz = -ShopLSvolume::normalToPointOnEllipsoid(nWallLoc, axSq);
// We now proceed to make a bounding box for the overlap volume between wall and particle,
// based on the axis-aligned bounding ellipsoid. To do this, we will rotate the ellipsoid
// in local coordinates to align with the guessed interation normal. This allows us to
// easily slice the ellipsoid at the farthest point in the direction of the wall normal.
// Get the rotation that moves the local guessed interaction normal onto the local z axis (and back)
rotGuess = Quaternionr().setFromTwoVectors(nWallLoc, Vector3r::UnitZ());
rotGuessConj = rotGuess.conjugate();
// Rotate farthest points aling interaction normal onto the z axis
Vector3r farPtzRot = rotGuess * farPtz;
// Check if the ellipsoids can touch by using the farthest z coordinates of the ellipsoids
if ((ctwDist + farPtzRot[2]) < 0.0) {
// The matrix describing a general ellipsoid (not restricted to the axis-aligned case)
Matrix3r A = Vector3r(1.0 / axSq[0], 1.0 / axSq[1], 1.0 / axSq[2]).asDiagonal();
// Rotate the ellipsoids using the tensor relation: Anew = R*A*inv(R)
// The coordinate systems of the ellipsoids are now aliged but with a z offset of ctcDist
Matrix3r Arot = rotGuess * A * rotGuess.inverse();
// We now do a plane-ellipsoid intersection at the extreme coordinates as given by the
// farthest points on the ellipsoid in direction of the guessed interaction normal.
// The resulting extremes of the resulting ellipses will give us the x and y limits of
// the bounding box for the potential interaction.
// Should funtionalise this at some point.
// The full equation of the ellipse resulting from a sliced ellipsoid at z = h:
// axx x^2 + ayy y^2 + azz h^2 + 2 axy x y + 2 axz x h + 2 ayz y h = 1
// The h are the extreme z coordinates and locations to intersect the ellipsoids at
Real axx = Arot(0, 0), ayy = Arot(1, 1), azz = Arot(2, 2), axy = Arot(0, 1), axz = Arot(0, 2), ayz = Arot(1, 2);
// Location on z axis for the slicing plane, determined by extreme of the OTHER ellipsoid
// (because that is the one that penetrates).
// NB: For the rotated ellipsoids, particle 1 is always below particle 2!!
Real h = -ctwDist;
// Compute x limits of ellipse
Real xterm1 = 0.5 / (axx - axy * axy / ayy), xterm2 = 2 * axz * h - (2 * axy * ayz * h) / ayy,
xterm3 = sqrt(pow(-xterm2, 2) - 4 * (-axy * axy / ayy + axx) * (-1 - ayz * ayz * h * h / ayy + azz * h * h));
Real xlim11 = xterm1 * (xterm2 - xterm3), xlim12 = xterm1 * (xterm2 + xterm3);
Real xlim1neg, xlim1pos;
if (xlim11 > xlim12) {
xlim1pos = xlim11;
xlim1neg = xlim12;
} else {
xlim1pos = xlim12;
xlim1neg = xlim11;
}
// Compute y limits of ellipse
Real yterm1 = 0.5 / (ayy - axy * axy / axx), yterm2 = 2 * ayz * h - (2 * axy * axz * h) / axx,
yterm3 = sqrt(pow(-yterm2, 2) - 4 * (-axy * axy / axx + ayy) * (-1 - axz * axz * h * h / axx + azz * h * h));
Real ylim11 = yterm1 * (yterm2 + yterm3), ylim12 = yterm1 * (yterm2 - yterm3);
Real ylim1neg, ylim1pos;
if (ylim11 > ylim12) {
ylim1pos = ylim11;
ylim1neg = ylim12;
} else {
ylim1pos = ylim12;
ylim1neg = ylim11;
}
// Check if the slice we took is not actually smaller than the widest slice
// within the potential overlap volume. Check along x axis.
Vector3r nxGuessLoc = rotGuessConj * Vector3r::UnitX();
Vector3r farPtx = ShopLSvolume::normalToPointOnEllipsoid(nxGuessLoc, axSq);
Vector3r farPtxRot = rotGuess * farPtx;
if (farPtxRot[2] > h) { // Point is above slice, needs to be considered
if (farPtxRot[0] > 0) {
xlim1pos = std::max(xlim1pos, farPtxRot[0]);
} else {
xlim1neg = std::min(xlim1neg, farPtxRot[0]);
}
if (farPtxRot[1] > 0) {
ylim1pos = std::max(ylim1pos, farPtxRot[1]);
} else {
ylim1neg = std::min(ylim1neg, farPtxRot[1]);
}
}
// Same for the extreme point on the other side of the ellipse
// is -farPt1xrot due to inversion symmetry.
if (-farPtxRot[2] > h) { // Point is above slice, needs to be considered
if (-farPtxRot[0] > 0) {
xlim1pos = std::max(xlim1pos, -farPtxRot[0]);
} else {
xlim1neg = std::min(xlim1neg, -farPtxRot[0]);
}
if (-farPtxRot[1] > 0) {
ylim1pos = std::max(ylim1pos, -farPtxRot[1]);
} else {
ylim1neg = std::min(ylim1neg, -farPtxRot[1]);
}
}
// Now check along y axis.
Vector3r nyGuessLoc = rotGuessConj * Vector3r::UnitY();
Vector3r farPty = ShopLSvolume::normalToPointOnEllipsoid(nyGuessLoc, axSq);
Vector3r farPtyRot = rotGuess * farPty;
if (farPtyRot[2] > h) { // Point is above slice, needs to be considered
if (farPtyRot[0] > 0) {
xlim1pos = std::max(xlim1pos, farPtyRot[0]);
} else {
xlim1neg = std::min(xlim1neg, farPtyRot[0]);
}
if (farPtyRot[1] > 0) {
ylim1pos = std::max(ylim1pos, farPtyRot[1]);
} else {
ylim1neg = std::min(ylim1neg, farPtyRot[1]);
}
}
// Same for the extreme point on the other side of the ellipse
// is -farPt1xrot due to inversion symmetry.
if (-farPtyRot[2] > h) { // Point is above slice, needs to be considered
if (-farPtyRot[0] > 0) {
xlim1pos = std::max(xlim1pos, -farPtyRot[0]);
} else {
xlim1neg = std::min(xlim1neg, -farPtyRot[0]);
}
if (-farPtyRot[1] > 0) {
ylim1pos = std::max(ylim1pos, -farPtyRot[1]);
} else {
ylim1neg = std::min(ylim1neg, -farPtyRot[1]);
}
}
// Bounding box dimensions in local rotated frame of particle 1, intersecting the limits set by each ellipsoid
Vector3r minBoOverlapLS = Vector3r(xlim1neg, ylim1neg, farPtzRot[2]);
Vector3r maxBoOverlapLS = Vector3r(xlim1pos, ylim1pos, h);
// Initialise limits in global coordinates
Vector3r minBoOverlapOld = Vector3r(
std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity(), std::numeric_limits<double>::infinity());
Vector3r maxBoOverlapOld = Vector3r(
-std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity(), -std::numeric_limits<double>::infinity());
// Move the old global AABB to local coordinates
for (int i = 0; i < 2; i++) { // Go through all possible corners
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++) {
// Select one of the corners of the AABB
Vector3r cornerGlob = Vector3r(
minBoOverlap[0] + i * (sizeBoOverlap[0]),
minBoOverlap[1] + j * (sizeBoOverlap[1]),
minBoOverlap[2] + k * (sizeBoOverlap[2]));
// Move corner to local coordinates
Vector3r cornerLoc = rotGuess * rotConjLS * (cornerGlob - centrEndLS);
// Find maximum and minimum values of the corners
for (int m = 0; m < 3; m++) {
if (cornerLoc[m] > maxBoOverlapOld[m]) { maxBoOverlapOld[m] = cornerLoc[m]; }
if (cornerLoc[m] < minBoOverlapOld[m]) { minBoOverlapOld[m] = cornerLoc[m]; }
}
}
}
}
// Recompute the AABB by intersecting the individual bounding boxes
// All still local!
for (int i = 0; i < 3; i++) {
minBoOverlapLS[i] = math::max(minBoOverlapLS[i], minBoOverlapOld[i]);
maxBoOverlapLS[i] = math::min(maxBoOverlapLS[i], maxBoOverlapOld[i]);
}
// Compute the final bounding box (BB) parameters.
// Note: Depending on how tight the ellipsoid fits around the shape,
// the BB can be a tight fit as well. This means that a litte bit of volume that would
// be added because of smearing is not added. Currently, it seems that this works best.
Vector3r cntrBoOverlapLS = (minBoOverlapLS + maxBoOverlapLS) / 2;
cntrBoOverlap = rotLS * (rotGuessConj * cntrBoOverlapLS) + centrEndLS;
sizeBoOverlap = (maxBoOverlapLS - minBoOverlapLS);
volBoOverlap = sizeBoOverlap.prod();
} else {
volBoOverlap = 0.0;
}
// Test if there is any overlap at all. Otherwise, do not create an interaction.
if (!c->isReal() && !force && volBoOverlap < Mathr::EPSILON) {
return false;
} else if (volBoOverlap < Mathr::EPSILON) {
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
}
}
// End of overlap bounding box computations
// Determine the initial query point (center of the overlap AABB) for the volume intergration in local axes
// Doing this avoids that we have to do a rigid mapping for every new query point upon refining the intergration mesh
Vector3r ptLS = rotConjLS * (cntrBoOverlap - centrEndLS);
// Precompute a number of parameters that depend on the refinement (number of layers) of the integration mesh.
// Start at the most coarse layer and end at the finest layer. Note that the refinement step has to be rotated as the
// orientation of the overlap AABB is different in the respective local axes.
std::vector<ShopLSvolume::layerData> layers(nRefineOctree); //was layers
Real RmaxBoOverlap = 0.5 * sqrt(sizeBoOverlap[0] * sizeBoOverlap[0] + sizeBoOverlap[1] * sizeBoOverlap[1] + sizeBoOverlap[2] * sizeBoOverlap[2]);
if (useAABE) {
for (uint h = 0; h < nRefineOctree; h++) {
Real a = 1.0 / pow(2.0, h); // Is pow() the correct function to use or is there a high-precision variant?
Vector3r refineStep = 0.25 * a * sizeBoOverlap;
layers[h].cellVolume = volBoOverlap / pow(8, h); // Cell volume
layers[h].Rmax = a * RmaxBoOverlap; // Maximum center-to-edge distance
int q = 0; // Looping through all the octants
for (int i = -1; i < 2; i = i + 2) { // Ugly way to go through all possible sign combinations
for (int j = -1; j < 2; j = j + 2) {
for (int k = -1; k < 2; k = k + 2) {
Vector3r refStepPerm = Vector3r(i * refineStep[0], j * refineStep[1], k * refineStep[2]);
// Need a different rotation because the AABB is in local coordinates of particle 1
layers[h].refineStep1[q] = rotGuessConj * refStepPerm; // Mesh refinement step grid 1
q++;
}
}
}
}
} else {
for (uint h = 0; h < nRefineOctree; h++) {
Real a = 1.0 / pow(2, h); // Is pow() the correct function to use or is there a high-precision variant?
Vector3r refineStep = 0.25 * a * sizeBoOverlap;
layers[h].cellVolume = volBoOverlap / pow(8, h); // Cell volume
layers[h].Rmax = a * RmaxBoOverlap; // Maximum center-to-edge distance
int q = 0; // Looping through all the octants
for (int i = -1; i < 2; i = i + 2) { // Ugly way to go through all possible sign combinations
for (int j = -1; j < 2; j = j + 2) {
for (int k = -1; k < 2; k = k + 2) {
Vector3r refStepPerm = Vector3r(i * refineStep[0], j * refineStep[1], k * refineStep[2]) + cntrBoOverlap;
layers[h].refineStep1[q] = rotConjLS * (refStepPerm - centrEndLS) - ptLS; // Mesh refinement step grid 1
q++;
}
}
}
}
}
// Recursive volume integration
// NB: normals and centroids are not yet normalised by the total overlap volume. Also, centroids are still in local coordinates.
uint layerId = 0; // Starting layer, always zero. Needed for recursion.
ShopLSvolume::overlapRegionData overlap
= ShopLSvolume::recursiveVolumeIntegrationWall(shapeLS, ptLS, nWallLoc, kWallLoc, layers, layerId, smearCoeffOctree);
Real vn = overlap.volume;
// Test if there is any overlap at all. Otherwise, do not create an interaction.
if (!c->isReal() && !force && vn < Mathr::EPSILON) {
return false;
} else if (vn <= Mathr::EPSILON) {
// Mark current interaction for removal.
c->geom = ShopLSvolume::volGeomPtrForLaterRemoval(state1, state2, c);
return true;
}
// Centroids and normal vector pointing from wall to particle centre
Vector3r normal
= (wallNormal - (rotLS * overlap.normal1).normalized()).normalized(); // Normals need not be the same for the particles so we average them;
// The contact point is the centroid (or center of mass) of the overlap volume
// No averaging needed here, only one centroid was computed.
Vector3r contactPoint = rotLS * (overlap.centroid1 / vn) + centrEndLS;
// Compute a crude estimate of the overlap distance
Real overlapDistance = pow(vn, 1.0 / 3.0);
// Compute the center-to-contact distance for the torque computation.
// NB: Only works if the normal aligns with the center-to-contact vector. We add overlapDistance/2
// because it is later subtracted when using e.g. ElasticContactLaw (see Law2_VolumeGeom_FrictPhys_CundallStrack::go in .cpp file).
// This variable is now unused as the torque computation is fixed to use the proper center-to-contact vector.
Real radius = (contactPoint - centrEndLS).norm() + 0.5 * overlapDistance; // Maybe do a single ray-trace?
c->geom = ShopLSvolume::volGeomPtr(
contactPoint, // Middle of overlap volume, as usual
vn, // With node contact, this would be the overlap distance, but here it is the overlap volume.
0, // Because it is the wall
radius,
state1,
state2,
c,
normal,
shift2);
return true;
}
ShopLSvolume::overlapRegionData
ShopLSvolume::recursiveVolumeIntegrationWall( // Move to ShopLS.*pp or keep here? Maybe nice to have all relevant functions in this file.
const shared_ptr<LevelSet>& lsShape,
const Vector3r pt,
const Vector3r nWall,
const Real kWall,
const std::vector<layerData>& layers, // cell volume, Rmax, refinement steps for grid 1 and 2
const uint layerId,
const Real smearCoeffOctree)
{
// A recursive or hierarchical method for integrating the overlap volume of two intersecting level set shapes.
// The approach is similar to the Octree data structure or adaptive mesh refinement (AMR).
// NB: Because we allow for concave geometries, the level-set normal at the contact point need not be the correct normal
// for computing the forces, we thus compute the normal as the volume-weighted normals of the overlap volume segments.
// Evaluate level set values at query point
const Real lev = lsShape->distance(pt, true);
// Shortest distance to plane, i.e. the level set value for the infinite half space that is the wall.
const Real levWall = -math::fabs(nWall[0] * pt[0] + nWall[1] * pt[1] + nWall[2] * pt[2] + kWall);
// Structure for output data
// Mabye working more with pointers would improve the code performance?
overlapRegionData overlap;
// Get the details of the current refinement layer
layerData curLayer = layers[layerId];
Real Rmax = curLayer.Rmax;
// NB: lev < 0 means we are inside the particle.
// By previous definitions, the entire AABB is already inside the wall!!
if (lev > Rmax) {
// END MESH REFINEMENT
// Entire region not part of the overlap volume
return overlap;
} else if (lev < -Rmax) {
// END MESH REFINEMENT
// Entire region is part of the overlap volume, add entire cell volume to overlap volume.
// No normal to add because there is no surface.
Real volume = curLayer.cellVolume; // Not sure if copying the volume in a new variable is actually slower or faster.
overlap.volume = volume;
overlap.centroid1 = volume * pt;
overlap.depth1 = volume * lev;
overlap.depth2 = volume * levWall;
return overlap;
} else {
// Region has the potential to partly belong to the overlap volume
if (layerId < layers.size() - 1) { // I find using layers.size() ugly but I stuggled finding a more elegant end condition for the recursion.
// REFINE THE MESH
// Generate a new query points, dividing the region in 8 parts of equal size.
for (int i = 0; i < 8; i++) {
Vector3r newPt = pt + curLayer.refineStep1[i];
overlapRegionData overlapSub
= recursiveVolumeIntegrationWall(lsShape, newPt, nWall, kWall, layers, layerId + 1, smearCoeffOctree);
overlap.volume += overlapSub.volume;
overlap.normal1 += overlapSub.normal1;
overlap.centroid1 += overlapSub.centroid1;
overlap.depth1 += overlapSub.depth1;
overlap.depth2 += overlapSub.depth2;
}
return overlap;
} else {
// END MESH REFINEMENT
// Maximum number of refinements reached, only add volume of the cell is the centre is within both particles.
// This assumption is reasonable because for randomly planes intersecting a rectangle, the expected volume
// fraction of the box that is overlap is >74% if both centres as inside the box and <14% otherwise.
Real phi = std::max(lev, levWall);
Real phiRef(0.);
if (smearCoeffOctree != 0) phiRef = Rmax / smearCoeffOctree;
if (abs(phi) < phiRef) {
// Compute the smeared Heaviside step function
Real volume = 0.5 * (1.0 - phi / phiRef + sin(-M_PI * phi / phiRef) / M_PI) * curLayer.cellVolume;
overlap.volume = volume;
overlap.centroid1 = volume * pt;
overlap.depth1 = volume * lev;
overlap.depth2 = volume * levWall;
Real surface = 0.5 / phiRef * (1 + cos(M_PI * phi / phiRef)) * pow(curLayer.cellVolume, 2.0 / 3.0);
overlap.area = surface;
overlap.normal1 = surface * (lsShape->normal(pt, true));
return overlap;
} else if (phi < 0) {
// No normal to add because there is no surface.
Real volume = curLayer.cellVolume;
overlap.volume = volume;
overlap.centroid1 = volume * pt;
overlap.depth1 = volume * lev;
overlap.depth2 = volume * levWall;
return overlap;
} else {
return overlap;
}
}
} // End mesh refinement check
}
} // namespace yade
#endif //YADE_LS_DEM
|