File: ShopLS.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (539 lines) | stat: -rw-r--r-- 27,265 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*************************************************************************
*  2021 jerome.duriez@inrae.fr                                           *
*  This program is free software, see file LICENSE for details.          *
*************************************************************************/

#ifdef YADE_LS_DEM
#include <lib/high-precision/Constants.hpp>
#include <core/Scene.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/levelSet/FastMarchingMethod.hpp>
#include <pkg/levelSet/ShopLS.hpp>

namespace yade { // Cannot have #include directive inside.

CREATE_LOGGER(ShopLS);

// Reminder: we re dealing with static functions here, there would be no point to const-qualify functions themselves

Real ShopLS::biInterpolate(std::array<Real, 2> pt, std::array<Real, 2> xExtr, std::array<Real, 2> yExtr, std::array<std::array<Real, 2>, 2> knownVal)
{
	// Performs interpolation in a 2D space that is denoted (x,y) just for the purpose of the present function, with
	//- pt the point where we want to know the value through interpolation
	//- knownVal, known values at (x0,y0), (x1,y0), (x0,y1), (x1,y1) with eg knownVal[0][1] = value at (x0,y1)
	//- xExtr = (x0,x1) and yExtr = (y0,y1)
	Real x0(xExtr[0]), y0(yExtr[0]);
	Real gx(xExtr[1] - x0), gy(yExtr[1] - y0); // spacings (equal in current implementation of RegularGrid, but let's make things general here)
	Real f00(knownVal[0][0]), f01(knownVal[0][1]), f10(knownVal[1][0]), f11(knownVal[1][1]);
	Real bracket((pt[1] - y0) / gy * (f11 - f10 - f01 + f00) + f10 - f00);
	return (pt[0] - x0) / gx * bracket + (pt[1] - y0) / gy * (f01 - f00) + f00;
}

Vector3r ShopLS::rigidMapping(const Vector3r& ptToMap, const Vector3r& baryIni, const Vector3r& baryEnd, const Quaternionr& rotIniToEnd)
{
	// describes a rigid body transformation of ptToMap, with baryIni/End the initial/final position of the body's center
	// and rotIniToEnd describing the body's rotation from that initial to this final configuration
	return baryEnd + rotIniToEnd * (ptToMap - baryIni);
}

int ShopLS::nGPr(Real min, Real max, Real step) { return nGPv(Vector3r(min, min, min), Vector3r(max, max, max), step)[0]; }

vector<vector<vector<Real>>> ShopLS::phiIni(int usage, Vector3r radii, Vector2r epsilons, shared_ptr<Clump> clump, shared_ptr<RegularGrid> grid)
{
	//- usage = 0: calling a ioFn Python Function => phiIniCppPy
	//- usage = 1: superellipsoids from radii and epsilons => distIniSE
	//- usage = 2: clump => distIniClump
	vector<vector<vector<Real>>> phiField;
	int                          nGPx(grid->nGP[0]), nGPy(grid->nGP[1]), nGPz(grid->nGP[2]); // how many grid pts we re working with
	// reserving memory for phiField and ingredients:
	phiField.reserve(nGPx);
	vector<vector<Real>> distanceInPlane;
	distanceInPlane.reserve(nGPy);
	vector<Real> distanceAlongZaxis;
	distanceAlongZaxis.reserve(nGPz);
	Real                  io(NaN); // return value of the appropriate (Python, SE, Clump) inside outside function at some gridpoint
	boost::python::object main = boost::python::import("__main__"); // useful only if usage == 0 but need to be declared here
	Vector3r              gp;
	for (int xInd = 0; xInd < nGPx; xInd++) {
		distanceInPlane.clear(); // https://stackoverflow.com/questions/19189699/clearing-a-vector-or-defining-a-new-vector-which-one-is-faster
		for (int yInd = 0; yInd < nGPy; yInd++) {
			distanceAlongZaxis.clear();
			for (int zInd = 0; zInd < nGPz; zInd++) {
				gp = grid->gridPoint(xInd, yInd, zInd);
				if (usage == 0) {
					io = boost::python::extract<Real>(main.attr("ioFn")(gp[0], gp[1], gp[2]));
					LOG_DEBUG("Getting " << io << " as return value from Python ioFn");
				} else if (usage == 1)
					io = insideOutsideSE(gp, radii, epsilons);
				else if (usage == 2)
					io = (insideClump(gp, clump) ? -1 : 1);
				if (io > 0) // outside
					distanceAlongZaxis.push_back(std::numeric_limits<Real>::infinity());
				else if (io < 0) // inside
					distanceAlongZaxis.push_back(-std::numeric_limits<Real>::infinity());
				else // io = 0
					distanceAlongZaxis.push_back(0);
			}
			distanceInPlane.push_back(distanceAlongZaxis);
		}
		phiField.push_back(distanceInPlane);
	}
	Real otherVal; // will be a neighboring (or the same, in edge cases) phi value in the grid
	for (int exterior = 0; exterior < 2; exterior++) {
		for (int xInd = 0; xInd < nGPx; xInd++) {
			for (int yInd = 0; yInd < nGPy; yInd++) {
				for (int zInd = 0; zInd < nGPz; zInd++) {
					// let s first check whether we are on the expected (exterior?) side, and continue if not:
					if ((phiField[xInd][yInd][zInd] < 0 && exterior) || (phiField[xInd][yInd][zInd] > 0 && !exterior))
						continue; // lower precedence of && vs < OK
					// taking the distToClumpSpheres value as granted for the exterior (and we do not build a corresponding narrow band for that side):
					if (usage == 2 && exterior) {
						phiField[xInd][yInd][zInd] = distToClumpSpheres(grid->gridPoint(xInd, yInd, zInd), clump);
						continue; // nothing more to be done for that gp, moving directly to the next one
					}
					// comparing now with neighbors, to detect the initial narrow band:
					for (unsigned int neigh = 0; neigh < 6; neigh++) {
						switch (neigh) {
							case 0: // neighbor towards x-, if possible
								otherVal = (xInd == 0 ? phiField[xInd][yInd][zInd] : phiField[xInd - 1][yInd][zInd]);
								break;
							case 1: // neighbor towards x+, if possible
								otherVal = (xInd == nGPx - 1 ? phiField[xInd][yInd][zInd] : phiField[xInd + 1][yInd][zInd]);
								break;
							case 2: // towards y-
								otherVal = (yInd == 0 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd - 1][zInd]);
								break;
							case 3: // towards y+
								otherVal = (yInd == nGPy - 1 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd + 1][zInd]);
								break;
							case 4: // towards z-
								otherVal = (zInd == 0 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd][zInd - 1]);
								break;
							case 5: // towards z+
								otherVal = (zInd == nGPz - 1 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd][zInd + 1]);
								break;
							default: break;
						}
						if ((otherVal < 0 && exterior)
						    || (otherVal > 0
						        && !exterior)) { // we are next to an inside gridpoint, ie in the initial front serving as BC
							gp = grid->gridPoint(xInd, yInd, zInd);
							if (usage == 0) {
								phiField[xInd][yInd][zInd]
								        = boost::python::extract<Real>(main.attr("ioFn")(gp[0], gp[1], gp[2]));
							} else if (usage == 1)
								phiField[xInd][yInd][zInd] = distApproxSE(gp, radii, epsilons);
							else if (
							        usage == 2
							        && !exterior) // inner part of a clump. Outer was done systematically (not only in the narrow band) above
								phiField[xInd][yInd][zInd] = distToClumpSpheres(gp, clump);
							if ((phiField[xInd][yInd][zInd] < 0 && exterior) || (phiField[xInd][yInd][zInd] > 0 && !exterior))
								LOG_ERROR(
								        "Not on the good side ! At "
								        << xInd << " " << yInd << " " << zInd << " since phi = " << phiField[xInd][yInd][zInd]
								        << " while we re looking at the " << (exterior ? "exterior" : "interior"));
							break; // no need to look at other neighbours along other axes, let s move on to the next gp
						}
					}
				}
			}
		} // closing the gp loop
	}         // closing the side loop
	return phiField;
}

vector<vector<vector<Real>>> ShopLS::phiIniCppPy(shared_ptr<RegularGrid> grid)
{
	// will give phiIni from an existing ioFn Python function, calling phiIni(usage=0, ..)
	// clang-format off
	shared_ptr<Clump> clump(new Clump); // we still need to pass an useless clump below. We can not use default arguments because they need to be trailing ones in C++
	// clang-format on
	return phiIni(0, Vector3r::Zero(), Vector2r::Zero(), clump, grid);
}

Vector3i ShopLS::nGPv(const Vector3r& min, const Vector3r& max, const Real& step)
{
	bool problem = false;
	for (int i = 0; i < 3; i++) {
		if (min[i] >= max[i]) problem = (problem || true);
	}
	if (problem) LOG_ERROR("min wrongly defined as >= max");
	int nGPx(int(ceil((max[0] - min[0]) / step)) + 1) // this number of grid points along the x-axis
	        ,
	        nGPy(int(ceil((max[1] - min[1]) / step)) + 1), nGPz(int(ceil((max[2] - min[2]) / step)) + 1);
	return Vector3i(nGPx, nGPy, nGPz);
}

vector<vector<vector<Real>>> ShopLS::distIniClump(shared_ptr<Clump> clump, shared_ptr<RegularGrid> grid)
{
	// Measuring first clump boundaries (in local axes):
	AlignedBox3r aabb;
	int          Sph_Index = Sphere::getClassIndexStatic(); // get sphere index for checking if clump members are spheres
	for (const auto& mm : clump->members) {
		const shared_ptr<Body> subBody = Body::byId(mm.first);
		if (subBody->shape->getClassIndex() == Sph_Index) { //clump member should be a sphere
			const Sphere* sphere = YADE_CAST<Sphere*>(subBody->shape.get());
			aabb.extend(mm.second.position + Vector3r::Constant(sphere->radius));
			aabb.extend(mm.second.position - Vector3r::Constant(sphere->radius));
		} else
			LOG_ERROR("One clump member is not Sphere-shaped");
	}
	// Then the LS grid:
	const Vector3r gridMax(grid->max());
	const Vector3r clumpMin(aabb.min()), clumpMax(aabb.max());
	// Before checking whether both are indeed consistent:
	for (int axis = 0; axis < 3; axis++) {
		if ((clumpMin[axis] < grid->min[axis]) or (clumpMax[axis] > gridMax[axis]))
			LOG_ERROR(
			        "Mismatch on axis " << axis << " between the considered grid that extends between " << grid->min << " and " << gridMax
			                            << " versus the given clump that is between " << clumpMin << " and " << clumpMax);
	}
	// We can now safely compute the distance field:
	return phiIni(2, Vector3r::Zero(), Vector2r::Zero(), clump, grid);
}

vector<vector<vector<Real>>> ShopLS::distIniSE(const Vector3r& radii, const Vector2r& epsilons, shared_ptr<RegularGrid> grid)
{
	// clang-format off
	shared_ptr<Clump> clump(new Clump); // we still need to pass an useless clump below. We can not use default arguments because they need to be trailing ones in C++
	// clang-format on
	return phiIni(1, radii, epsilons, clump, grid);
}

shared_ptr<LevelSet>
ShopLS::lsSimpleShape(int shape, const AlignedBox3r& aabb, const Real& step, const Real& smearCoeff, const Vector2r& epsilons, shared_ptr<Clump> clump)
{
	// Reminder (as defined in utils.py): shape = 0 for disk; 1 for sphere; 2 for box; 3 for se; 4 for clump of Sphere
	// aabb is a tangent Axis-Aligned Bounding Box in local frame (vec 0 = center of mass)
	Vector3r minBod(aabb.min()), maxBod(aabb.max()), dimAabb(maxBod - minBod);
	if ((dimAabb[0] < 0) || (dimAabb[1] < 0) || (dimAabb[2] < 0)) LOG_ERROR("You specified negative extents for aabb, this is not expected.");

	shared_ptr<LevelSet> lsShape(new LevelSet);
	lsShape->smearCoeff = smearCoeff;
	Vector3r maxGrid,
	        minGrid; // [minGrid,maxGrid] will be LevelSet->lsGrid. It may be different (bigger) than [minBod,maxBod] for the grid to go a little beyond the surface
	                 // clang-format off
	// ***** 1. We first define the grid (and twoD) depending upon the shape chosen *******
	if (shape == 0) { // disk (in x,y plane)
		         // clang-format on
		maxGrid       = Vector3r(maxBod[0] + step, maxBod[0] + step, step / 2.); // maxBod is Vector3(radius,radius,radius)
		minGrid       = -maxGrid;
		lsShape->twoD = true;
	} else if (shape <= 4) { // sphere, box, superellipsoid, clump of spherical particles, all combined
		// NB: pay attention to the following lines, we want the origin to belong to the grid (on all 3 axes)
		// On the + side:
		Vector3r nInt(
		        ceil(maxBod[0] / step) + 1 // no need to try to make it a one-liner Vector3i
		        ,
		        ceil(maxBod[1] / step)
		                + 1 // it might require complex switching from Eigen::Array to Matrix such as Vector3i nInt(( (( (maxBod/step).array() ).ceil()).rint()).matrix() + Vector3i::Ones())
		        ,
		        ceil(maxBod[2] / step)
		                + 1); // but this will anyway be multiplied by a Real below and multiplying Real with Vector3i (logically) does not seem to exist
		maxGrid = step * nInt; //Vector3r(nIntX * step, nIntY * step, nIntZ * step);
		// On the - side:
		nInt          = Vector3r(ceil(math::abs(minBod[0]) / step) + 1, ceil(math::abs(minBod[1]) / step) + 1, ceil(math::abs(minBod[2]) / step) + 1);
		minGrid       = -nInt * step;
		lsShape->twoD = false;
	} else
		LOG_FATAL("You asked for some shape value=" << shape << " which is not supported");
	Vector3i gpPerAxis = nGPv(minGrid, maxGrid, step);
	if (lsShape->twoD && gpPerAxis[2] != 2) LOG_WARN("Ending with " << gpPerAxis[2] << " gridpoints along z axis, instead of 2. This is not optimal.");
	lsShape->lsGrid->min     = minGrid;
	lsShape->lsGrid->spacing = step;
	lsShape->lsGrid->nGP     = gpPerAxis;
	int nGP_x(gpPerAxis[0]), nGP_y(gpPerAxis[1]), nGP_z(gpPerAxis[2]);

	// ***** 2. We now work on the distance field itself *******
	vector<vector<vector<Real>>> distanceVal;
	vector<vector<Real>>         distanceInPlane;
	vector<Real>                 distanceAlongZaxis;
	Real                         dist(std::numeric_limits<Real>::infinity());
	Vector3r                     gridPt;
	if (shape < 3) { // looping on all gridpoints to apply appropriate distance function when having an analytical function
		for (int xInd = 0; xInd < nGP_x; xInd++) {
			distanceInPlane.clear(); // https://stackoverflow.com/questions/19189699/clearing-a-vector-or-defining-a-new-vector-which-one-is-faster
			for (int yInd = 0; yInd < nGP_y; yInd++) {
				distanceAlongZaxis.clear();
				for (int zInd = 0; zInd < nGP_z; zInd++) {
					gridPt = lsShape->lsGrid->gridPoint(xInd, yInd, zInd);
					switch (shape) {
						case 0: // circles
							dist = distToCircle(gridPt, maxBod[0]);
							break;
						case 1: // sphere
							dist = distToSph(gridPt, maxBod[0]);
							break;
						case 2: // box
							dist = distToRecParallelepiped(gridPt, (maxBod - minBod) / 2.);
							break;
						default: LOG_FATAL("You asked for some shape value=" << shape << " which is not supported");
					}
					distanceAlongZaxis.push_back(dist);
				}
				distanceInPlane.push_back(distanceAlongZaxis);
			}
			distanceVal.push_back(distanceInPlane);
		}
		lsShape->starLike = true;
	} else if (shape == 3) // FMM for se, with the whole distance field at once
	{
		FastMarchingMethod distFMM;
		distFMM.heapSort  = true;
		distFMM.grid      = lsShape->lsGrid;
		distFMM.phiIni    = distIniSE((maxBod - minBod) / 2., epsilons, lsShape->lsGrid);
		distanceVal       = distFMM.phi();
		lsShape->starLike = true; // we have a single valued function x(u,v) for se, whatever the epsilons
	} else if (shape == 4) {
		FastMarchingMethod distFMM;
		distFMM.grid   = lsShape->lsGrid;
		distFMM.phiIni = distIniClump(clump, lsShape->lsGrid);
		distanceVal    = distFMM.phi();
	}
	if (!distanceVal.size()) // eg because there was no level set grid
		LOG_ERROR("We computed an empty level set... This is not expected and may crash e.g. when exposed to Python.")
	lsShape->distField = distanceVal;
	return lsShape;
}

Real ShopLS::distToSph(const Vector3r& point, const Real& rad, Vector3r center /*=Vector3r::Zero()*/)
{
	Real x(point[0]), y(point[1]), z(point[2]);
	Real xC(center[0]), yC(center[1]), zC(center[2]);
	return sqrt(pow(x - xC, 2) + pow(y - yC, 2) + pow(z - zC, 2)) - rad;
}

Real ShopLS::distToCircle(const Vector3r& point, const Real& rad)
{
	// for a circle in (x,y) plane
	Real x(point[0]), y(point[1]);
	return sqrt(pow(x, 2) + pow(y, 2)) - rad;
}

Real ShopLS::distToRecParallelepiped(Vector3r point, Vector3r extents)
{
	// Computing true outside distances is complicated: the homothetic squares, suggested by Fig. 2b Kawamoto2016, have to be rounded at their corners for an exact consideration of distances. We will neglect this rounding here, which is not a big deal since positive values of level set functions are anyway transparent for the DEM
	// in this case, the distance between the cube surface and the point considered is just the maximum of the positive values of distances, ie the maximum and there is no difference with inside case...
	Real x(point[0]), y(point[1]), z(point[2]);
	Real distX(distToInterval(x, -extents[0], extents[0]));
	Real distY(distToInterval(y, -extents[1], extents[1]));
	Real distZ(distToInterval(z, -extents[2], extents[2]));
	return math::max(math::max(distX, distY), distZ);
}

Real ShopLS::distToInterval(Real val, Real left, Real right)
{
	Real dist(-1.);
	if (val > left and val < right) dist = math::max(left - val, val - right);
	else if (val == right)
		dist = 0;
	else if (val > right)
		dist = val - right; // > 0 we're indeed outside
	else if (val == left)
		dist = 0;
	else if (val < left)
		dist = left - val; // > 0 we're indeed outside
	return dist;
}

Real ShopLS::fioRose(Vector3r gp)
{
	gp = ShopLS::cart2spher(gp);
	Real r(gp[0]), theta(gp[1]), phi(gp[2]);
	return r - 3 - 1.5 * sin(5 * theta) * sin(4 * phi); // value of inside/outside function
}

Vector3r ShopLS::grad_fioRose(Vector3r gp)
{
	gp = ShopLS::cart2spher(gp);
	Real r(gp[0]), theta(gp[1]), phi(gp[2]);
	if (sin(theta) == 0) LOG_ERROR("theta = 0 [pi], gradient of rose fction not defined for its z component");
	Vector3r grad_fio(1, -7.5 / r * cos(5 * theta) * sin(4 * phi), -6 / r * sin(5 * theta) / sin(theta) * cos(4 * phi));
	return grad_fio;
}

void ShopLS::handleNonTouchingNodeForMulti(shared_ptr<MultiScGeom>& geomMulti, shared_ptr<MultiPhys>& physMulti, int nodeIdx)
{
	// For a surface node being detected not to be in contact, makes what is needed in a Multi* case, i.e. remove it from Multi*.contacts if it was contacting before
	// Implemented here to avoid code duplication in a number of Ig2_*_MultiScGeom
	const auto findIt(geomMulti->iteratorToNode(nodeIdx));
	if (findIt != geomMulti->nodesIds.end()) // we do need findIt below, so we can not use geomMulti->hasNode (unless computing twice the same iterator)
	{                                        // that node was contacting before, we need to remove it
		// we avoid the swap - pop_back method used in FastMarchingMethod since https://stackoverflow.com/a/4442529/9864634 mentions a not understood relation about order of elements (which is important here)
		// erase-remove idiom (https://stackoverflow.com/a/3385251/9864634) to test even though we do not want to remove by value ?
		const auto distanceInItera(std::distance(geomMulti->nodesIds.begin(), findIt));
		geomMulti->contacts.erase(geomMulti->contacts.begin() + distanceInItera);
		geomMulti->nodesIds.erase(findIt);
		physMulti->contacts.erase(physMulti->contacts.begin() + distanceInItera);
		physMulti->nodesIds.erase(physMulti->nodesIds.begin() + distanceInItera);
	}
}

void ShopLS::handleTouchingNodeForMulti(
        shared_ptr<MultiScGeom>&       geomMulti,
        shared_ptr<MultiPhys>&         physMulti,
        int                            nodeIdx,
        Vector3r                       ctctPt,
        Real                           un,
        Real                           rad1,
        Real                           rad2,
        const State&                   state1,
        const State&                   state2,
        const Scene*                   scene,
        const shared_ptr<Interaction>& c,
        const Vector3r&                currentNormal,
        const Vector3r&                shift2)
{
	const auto findIt(geomMulti->iteratorToNode(nodeIdx));
	if (findIt != geomMulti->nodesIds.end()) // that node was already contacting before (same approach as in handleNonTouchingNodeForMulti)
	{
		// we update the geom:
		geomMulti->contacts[std::distance(geomMulti->nodesIds.begin(), findIt)]->doIg2Work(
		        ctctPt, un, rad1, rad2, state1, state2, scene, c, currentNormal, shift2, false, false);
		// and have nothing to do for what concerns the phys
	} else { // that node was not contacting before
		// we store the information of contact for that node in Multi* geom and phys:
		physMulti->nodesIds.push_back(nodeIdx);
		geomMulti->nodesIds.push_back(nodeIdx);
		// we then create a new ScGeom shared_ptr:
		shared_ptr<ScGeom> scGeomPtr(new ScGeom);
		// filled with appropriate data:
		scGeomPtr->doIg2Work(ctctPt, un, rad1, rad2, state1, state2, scene, c, currentNormal, shift2, true, false);
		// that we store in MultiScGeom::contacts:
		geomMulti->contacts.push_back(scGeomPtr);
		// we also have to create a new shared_ptr<IPhys> to put into physMulti->contacts :
		shared_ptr<IPhys> physPtr(new IPhys()); // https://stackoverflow.com/a/620402 about IPhys() or IPhys..
		physMulti->contacts.push_back(physPtr);
	}
}

Real ShopLS::distApproxRose(Vector3r gp)
{
	Vector3r grad_fio(grad_fioRose(gp));
	Real     normGrad(grad_fio.norm());
	if (normGrad == 0) LOG_ERROR("Zero gradient, approximate distance will be infinite");
	return fioRose(gp) / normGrad;
}

Real ShopLS::distToClumpSpheres(Vector3r pt, shared_ptr<Clump> clump)
{
	// gives min(dist to clump members) for spherical members
	// This is the true distance when outside, and just an approximation when inside
	// It will serve in phiIni(usage==2) and has some duplicated code with insideClump, let it be (insideClump has a break we do not have here for instance)
	Real retVal(std::numeric_limits<Real>::infinity());
	for (const auto& memberInfos : clump->members) { // clump->members is a std::map
		const Body::id_t& memberId(memberInfos.first);
		Vector3r          centerMember(memberInfos.second.position);
		Real              radiusMember(YADE_PTR_CAST<Sphere>(Body::byId(memberId)->shape)->radius);
		Real              dist(distToSph(pt, radiusMember, centerMember));
		if (dist < retVal) retVal = dist;
	}
	return retVal;
}

bool ShopLS::insideClump(const Vector3r& pt, shared_ptr<Clump> clump)
{ // checking whether we are strictly inside a Clump. Could fit into core/Clump ?
	bool retVal(false);
	for (const auto& memberInfos : clump->members) { // clump->members is a std::map
		const Body::id_t& memberId(memberInfos.first);
		Vector3r          centerMember(memberInfos.second.position);
		Real              radiusMember(YADE_PTR_CAST<Sphere>(Body::byId(memberId)->shape)->radius);
		LOG_INFO(
		        "Looking at Body " << memberId << " as a clump member. It has a " << radiusMember
		                           << " radius and is centered (in clump local coordinates) at " << centerMember);
		Real dist(distToSph(pt, radiusMember, centerMember));
		LOG_DEBUG("dist = " << dist);
		if (dist
		    < 0) { // dist = 0 actually tells nothing about the clump surface (unless we check we are outside every other member), and can not be used
			retVal = true;
			break; // pt is inside at least one clump member => it's inside the clump
		}
	}
	return retVal;
}

Real ShopLS::insideOutsideSE(const Vector3r& point, const Vector3r& radii, const Vector2r& epsilons)
{
	Real x(point[0]), y(point[1]), z(point[2]), rx(radii[0]), ry(radii[1]), rz(radii[2]), epsE = epsilons[0], epsN = epsilons[1];
	if (rx < 0 || ry < 0 || rz < 0) LOG_ERROR("You passed negative radii for a superellipsoid, this is not expected.");
	return pow(pow(math::abs(x / rx), 2. / epsE) + pow(math::abs(y / ry), 2. / epsE), epsE / epsN) + pow(math::abs(z / rz), 2. / epsN) - 1;
}

Real ShopLS::distApproxSE(const Vector3r& point, const Vector3r& radii, const Vector2r& epsilons)
{
	// Approximated distance for a superellipsoid, using the inside/outside fxyz divided by the norm of its gradient, grad_f.norm()
	// with a special treatment of the origin because grad_f.norm() -> 0 towards the origin (where it's not defined ?), whereas fxyz -> -1 and our approximated distance would -> infinity
	Real x(point[0]), y(point[1]), z(point[2]), rx(radii[0]), ry(radii[1]), rz(radii[2]), epsE = epsilons[0], epsN = epsilons[1];
	Real returnVal, minExtents(math::min(math::min(rx, ry), rz));
	if (point.norm() < 0.05 * minExtents) {
		returnVal = -minExtents; // using (signed) minExtents as a constant distance-approximation in that whole domain close to origin
		LOG_WARN("We used a crude distance approximation at point " << point << "! That could be a problem e.g. when using FastMarchingMethod");
	} else {
		Real fxyz(insideOutsideSE(point, radii, epsilons));
		if (math::abs(fxyz) < Mathr::EPSILON) // it s like we were exactly on the surface
			returnVal = 0.;
		else {
			if (x == 0 and y == 0) // precedence OK
				return z > 0 ? z - rz : -z - rz;
			Real mult(
			        2. / epsN
			        * pow(pow(math::abs(x / rx), 2. / epsE) + pow(math::abs(y / ry), 2. / epsE),
			              epsE / epsN - 1.)); //some number useful for grad f.
			if (!math::isfinite(mult))        // for x=y=0 and epsE < epsN typically, but this should have been taken care of in the above
				LOG_ERROR("Infinite (or C++ NaN) mult in distance to a super ellipsoid");
			Vector3r grad_f(
			        mult * pow(math::abs(x / rx), 2. / epsE - 1.) * (x > 0 ? 1. / rx : -1. / rx),
			        mult * pow(math::abs(y / ry), 2. / epsE - 1.) * (y > 0 ? 1. / ry : -1. / ry),
			        2. / epsN * pow(math::abs(z / rz), 2. / epsN - 1) * (z > 0 ? 1. / rz : -1. / rz));
			// special cases where gradient is actually not defined:
			// if(x==0 && epsE>=2) grad_f[0] = 0; // like when epsE < 2, and normal for a sphere
			// if(y==0 && epsE>=2) grad_f[1] = 0; // ditto
			// if(z==0 && epsN>=2) grad_f[2] = 0; // same, but for epsN
			Real denom(0);
			if (grad_f.norm()
			    < minExtents * Mathr::EPSILON) { // checking whether the gradient is not too small, with respect to a characteristic length.
				LOG_ERROR("Unexpected zero gradient in point = " << point);
				denom = 1;
			} // no real reason for this 1
			else
				denom = grad_f.norm();
			returnVal = fxyz / denom;
			LOG_DEBUG(
			        "Here returnVal = " << returnVal << " because fxyz = " << fxyz << " and denom = " << denom << " because grad_f = " << grad_f
			                            << " because mult = " << mult);
		}
	}
	return returnVal;
}

// The 2 following cart2spher and spher2cart functions assume:
// theta = (ez,er) angle with er(theta = 0,phi)=ez, in [0;pi]
// phi measured from ex axis: er(theta=pi/2,phi=0) = ex, in [0;2pi]
// same convention as Bazant1986, Eq. (4)

Vector3r ShopLS::cart2spher(const Vector3r& vec)
{ //	vec is here (x,y,z), we return (r,theta,phi)
	Real r(vec.norm());
	if (r == 0) return Vector3r::Zero();
	Real     theta(acos(vec[2] / r));
	Vector3r vecProj(vec[0], vec[1], 0); // projection of vec in x,y plane
	Real     normProj(vecProj.norm());
	Real     phi;
	if (normProj == 0) // vec is along z axis, phi=0 will be as good as any other value
		phi = 0;
	else {
		Real cosVal(vecProj[0] / normProj);
		phi = vec[1] > 0 ? acos(cosVal) : 2 * Mathr::PI - acos(cosVal);
	}
	return Vector3r(r, theta, phi);
}

Vector3r ShopLS::spher2cart(const Vector3r& vec)
{ //	vec is here (r,theta,phi), and we return (x,y,z)
	if (vec[0] < 0) LOG_ERROR("A negative r (" << vec[0] << " passed here) for spherical coordinates is impossible");
	if (vec[1] < 0 || vec[1] > Mathr::PI) LOG_ERROR("Spherical theta has to be between 0 and pi, passing " << vec[1] << " is impossible")
	return vec[0] * Vector3r(sin(vec[1]) * cos(vec[2]), sin(vec[1]) * sin(vec[2]), cos(vec[1]));
}

} // namespace yade
#endif // YADE_LS_DEM