1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
/*************************************************************************
* 2021 jerome.duriez@inrae.fr *
* This program is free software, see file LICENSE for details. *
*************************************************************************/
#ifdef YADE_LS_DEM
#include <lib/high-precision/Constants.hpp>
#include <core/Scene.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/levelSet/FastMarchingMethod.hpp>
#include <pkg/levelSet/ShopLS.hpp>
namespace yade { // Cannot have #include directive inside.
CREATE_LOGGER(ShopLS);
// Reminder: we re dealing with static functions here, there would be no point to const-qualify functions themselves
Real ShopLS::biInterpolate(std::array<Real, 2> pt, std::array<Real, 2> xExtr, std::array<Real, 2> yExtr, std::array<std::array<Real, 2>, 2> knownVal)
{
// Performs interpolation in a 2D space that is denoted (x,y) just for the purpose of the present function, with
//- pt the point where we want to know the value through interpolation
//- knownVal, known values at (x0,y0), (x1,y0), (x0,y1), (x1,y1) with eg knownVal[0][1] = value at (x0,y1)
//- xExtr = (x0,x1) and yExtr = (y0,y1)
Real x0(xExtr[0]), y0(yExtr[0]);
Real gx(xExtr[1] - x0), gy(yExtr[1] - y0); // spacings (equal in current implementation of RegularGrid, but let's make things general here)
Real f00(knownVal[0][0]), f01(knownVal[0][1]), f10(knownVal[1][0]), f11(knownVal[1][1]);
Real bracket((pt[1] - y0) / gy * (f11 - f10 - f01 + f00) + f10 - f00);
return (pt[0] - x0) / gx * bracket + (pt[1] - y0) / gy * (f01 - f00) + f00;
}
Vector3r ShopLS::rigidMapping(const Vector3r& ptToMap, const Vector3r& baryIni, const Vector3r& baryEnd, const Quaternionr& rotIniToEnd)
{
// describes a rigid body transformation of ptToMap, with baryIni/End the initial/final position of the body's center
// and rotIniToEnd describing the body's rotation from that initial to this final configuration
return baryEnd + rotIniToEnd * (ptToMap - baryIni);
}
int ShopLS::nGPr(Real min, Real max, Real step) { return nGPv(Vector3r(min, min, min), Vector3r(max, max, max), step)[0]; }
vector<vector<vector<Real>>> ShopLS::phiIni(int usage, Vector3r radii, Vector2r epsilons, shared_ptr<Clump> clump, shared_ptr<RegularGrid> grid)
{
//- usage = 0: calling a ioFn Python Function => phiIniCppPy
//- usage = 1: superellipsoids from radii and epsilons => distIniSE
//- usage = 2: clump => distIniClump
vector<vector<vector<Real>>> phiField;
int nGPx(grid->nGP[0]), nGPy(grid->nGP[1]), nGPz(grid->nGP[2]); // how many grid pts we re working with
// reserving memory for phiField and ingredients:
phiField.reserve(nGPx);
vector<vector<Real>> distanceInPlane;
distanceInPlane.reserve(nGPy);
vector<Real> distanceAlongZaxis;
distanceAlongZaxis.reserve(nGPz);
Real io(NaN); // return value of the appropriate (Python, SE, Clump) inside outside function at some gridpoint
boost::python::object main = boost::python::import("__main__"); // useful only if usage == 0 but need to be declared here
Vector3r gp;
for (int xInd = 0; xInd < nGPx; xInd++) {
distanceInPlane.clear(); // https://stackoverflow.com/questions/19189699/clearing-a-vector-or-defining-a-new-vector-which-one-is-faster
for (int yInd = 0; yInd < nGPy; yInd++) {
distanceAlongZaxis.clear();
for (int zInd = 0; zInd < nGPz; zInd++) {
gp = grid->gridPoint(xInd, yInd, zInd);
if (usage == 0) {
io = boost::python::extract<Real>(main.attr("ioFn")(gp[0], gp[1], gp[2]));
LOG_DEBUG("Getting " << io << " as return value from Python ioFn");
} else if (usage == 1)
io = insideOutsideSE(gp, radii, epsilons);
else if (usage == 2)
io = (insideClump(gp, clump) ? -1 : 1);
if (io > 0) // outside
distanceAlongZaxis.push_back(std::numeric_limits<Real>::infinity());
else if (io < 0) // inside
distanceAlongZaxis.push_back(-std::numeric_limits<Real>::infinity());
else // io = 0
distanceAlongZaxis.push_back(0);
}
distanceInPlane.push_back(distanceAlongZaxis);
}
phiField.push_back(distanceInPlane);
}
Real otherVal; // will be a neighboring (or the same, in edge cases) phi value in the grid
for (int exterior = 0; exterior < 2; exterior++) {
for (int xInd = 0; xInd < nGPx; xInd++) {
for (int yInd = 0; yInd < nGPy; yInd++) {
for (int zInd = 0; zInd < nGPz; zInd++) {
// let s first check whether we are on the expected (exterior?) side, and continue if not:
if ((phiField[xInd][yInd][zInd] < 0 && exterior) || (phiField[xInd][yInd][zInd] > 0 && !exterior))
continue; // lower precedence of && vs < OK
// taking the distToClumpSpheres value as granted for the exterior (and we do not build a corresponding narrow band for that side):
if (usage == 2 && exterior) {
phiField[xInd][yInd][zInd] = distToClumpSpheres(grid->gridPoint(xInd, yInd, zInd), clump);
continue; // nothing more to be done for that gp, moving directly to the next one
}
// comparing now with neighbors, to detect the initial narrow band:
for (unsigned int neigh = 0; neigh < 6; neigh++) {
switch (neigh) {
case 0: // neighbor towards x-, if possible
otherVal = (xInd == 0 ? phiField[xInd][yInd][zInd] : phiField[xInd - 1][yInd][zInd]);
break;
case 1: // neighbor towards x+, if possible
otherVal = (xInd == nGPx - 1 ? phiField[xInd][yInd][zInd] : phiField[xInd + 1][yInd][zInd]);
break;
case 2: // towards y-
otherVal = (yInd == 0 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd - 1][zInd]);
break;
case 3: // towards y+
otherVal = (yInd == nGPy - 1 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd + 1][zInd]);
break;
case 4: // towards z-
otherVal = (zInd == 0 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd][zInd - 1]);
break;
case 5: // towards z+
otherVal = (zInd == nGPz - 1 ? phiField[xInd][yInd][zInd] : phiField[xInd][yInd][zInd + 1]);
break;
default: break;
}
if ((otherVal < 0 && exterior)
|| (otherVal > 0
&& !exterior)) { // we are next to an inside gridpoint, ie in the initial front serving as BC
gp = grid->gridPoint(xInd, yInd, zInd);
if (usage == 0) {
phiField[xInd][yInd][zInd]
= boost::python::extract<Real>(main.attr("ioFn")(gp[0], gp[1], gp[2]));
} else if (usage == 1)
phiField[xInd][yInd][zInd] = distApproxSE(gp, radii, epsilons);
else if (
usage == 2
&& !exterior) // inner part of a clump. Outer was done systematically (not only in the narrow band) above
phiField[xInd][yInd][zInd] = distToClumpSpheres(gp, clump);
if ((phiField[xInd][yInd][zInd] < 0 && exterior) || (phiField[xInd][yInd][zInd] > 0 && !exterior))
LOG_ERROR(
"Not on the good side ! At "
<< xInd << " " << yInd << " " << zInd << " since phi = " << phiField[xInd][yInd][zInd]
<< " while we re looking at the " << (exterior ? "exterior" : "interior"));
break; // no need to look at other neighbours along other axes, let s move on to the next gp
}
}
}
}
} // closing the gp loop
} // closing the side loop
return phiField;
}
vector<vector<vector<Real>>> ShopLS::phiIniCppPy(shared_ptr<RegularGrid> grid)
{
// will give phiIni from an existing ioFn Python function, calling phiIni(usage=0, ..)
// clang-format off
shared_ptr<Clump> clump(new Clump); // we still need to pass an useless clump below. We can not use default arguments because they need to be trailing ones in C++
// clang-format on
return phiIni(0, Vector3r::Zero(), Vector2r::Zero(), clump, grid);
}
Vector3i ShopLS::nGPv(const Vector3r& min, const Vector3r& max, const Real& step)
{
bool problem = false;
for (int i = 0; i < 3; i++) {
if (min[i] >= max[i]) problem = (problem || true);
}
if (problem) LOG_ERROR("min wrongly defined as >= max");
int nGPx(int(ceil((max[0] - min[0]) / step)) + 1) // this number of grid points along the x-axis
,
nGPy(int(ceil((max[1] - min[1]) / step)) + 1), nGPz(int(ceil((max[2] - min[2]) / step)) + 1);
return Vector3i(nGPx, nGPy, nGPz);
}
vector<vector<vector<Real>>> ShopLS::distIniClump(shared_ptr<Clump> clump, shared_ptr<RegularGrid> grid)
{
// Measuring first clump boundaries (in local axes):
AlignedBox3r aabb;
int Sph_Index = Sphere::getClassIndexStatic(); // get sphere index for checking if clump members are spheres
for (const auto& mm : clump->members) {
const shared_ptr<Body> subBody = Body::byId(mm.first);
if (subBody->shape->getClassIndex() == Sph_Index) { //clump member should be a sphere
const Sphere* sphere = YADE_CAST<Sphere*>(subBody->shape.get());
aabb.extend(mm.second.position + Vector3r::Constant(sphere->radius));
aabb.extend(mm.second.position - Vector3r::Constant(sphere->radius));
} else
LOG_ERROR("One clump member is not Sphere-shaped");
}
// Then the LS grid:
const Vector3r gridMax(grid->max());
const Vector3r clumpMin(aabb.min()), clumpMax(aabb.max());
// Before checking whether both are indeed consistent:
for (int axis = 0; axis < 3; axis++) {
if ((clumpMin[axis] < grid->min[axis]) or (clumpMax[axis] > gridMax[axis]))
LOG_ERROR(
"Mismatch on axis " << axis << " between the considered grid that extends between " << grid->min << " and " << gridMax
<< " versus the given clump that is between " << clumpMin << " and " << clumpMax);
}
// We can now safely compute the distance field:
return phiIni(2, Vector3r::Zero(), Vector2r::Zero(), clump, grid);
}
vector<vector<vector<Real>>> ShopLS::distIniSE(const Vector3r& radii, const Vector2r& epsilons, shared_ptr<RegularGrid> grid)
{
// clang-format off
shared_ptr<Clump> clump(new Clump); // we still need to pass an useless clump below. We can not use default arguments because they need to be trailing ones in C++
// clang-format on
return phiIni(1, radii, epsilons, clump, grid);
}
shared_ptr<LevelSet>
ShopLS::lsSimpleShape(int shape, const AlignedBox3r& aabb, const Real& step, const Real& smearCoeff, const Vector2r& epsilons, shared_ptr<Clump> clump)
{
// Reminder (as defined in utils.py): shape = 0 for disk; 1 for sphere; 2 for box; 3 for se; 4 for clump of Sphere
// aabb is a tangent Axis-Aligned Bounding Box in local frame (vec 0 = center of mass)
Vector3r minBod(aabb.min()), maxBod(aabb.max()), dimAabb(maxBod - minBod);
if ((dimAabb[0] < 0) || (dimAabb[1] < 0) || (dimAabb[2] < 0)) LOG_ERROR("You specified negative extents for aabb, this is not expected.");
shared_ptr<LevelSet> lsShape(new LevelSet);
lsShape->smearCoeff = smearCoeff;
Vector3r maxGrid,
minGrid; // [minGrid,maxGrid] will be LevelSet->lsGrid. It may be different (bigger) than [minBod,maxBod] for the grid to go a little beyond the surface
// clang-format off
// ***** 1. We first define the grid (and twoD) depending upon the shape chosen *******
if (shape == 0) { // disk (in x,y plane)
// clang-format on
maxGrid = Vector3r(maxBod[0] + step, maxBod[0] + step, step / 2.); // maxBod is Vector3(radius,radius,radius)
minGrid = -maxGrid;
lsShape->twoD = true;
} else if (shape <= 4) { // sphere, box, superellipsoid, clump of spherical particles, all combined
// NB: pay attention to the following lines, we want the origin to belong to the grid (on all 3 axes)
// On the + side:
Vector3r nInt(
ceil(maxBod[0] / step) + 1 // no need to try to make it a one-liner Vector3i
,
ceil(maxBod[1] / step)
+ 1 // it might require complex switching from Eigen::Array to Matrix such as Vector3i nInt(( (( (maxBod/step).array() ).ceil()).rint()).matrix() + Vector3i::Ones())
,
ceil(maxBod[2] / step)
+ 1); // but this will anyway be multiplied by a Real below and multiplying Real with Vector3i (logically) does not seem to exist
maxGrid = step * nInt; //Vector3r(nIntX * step, nIntY * step, nIntZ * step);
// On the - side:
nInt = Vector3r(ceil(math::abs(minBod[0]) / step) + 1, ceil(math::abs(minBod[1]) / step) + 1, ceil(math::abs(minBod[2]) / step) + 1);
minGrid = -nInt * step;
lsShape->twoD = false;
} else
LOG_FATAL("You asked for some shape value=" << shape << " which is not supported");
Vector3i gpPerAxis = nGPv(minGrid, maxGrid, step);
if (lsShape->twoD && gpPerAxis[2] != 2) LOG_WARN("Ending with " << gpPerAxis[2] << " gridpoints along z axis, instead of 2. This is not optimal.");
lsShape->lsGrid->min = minGrid;
lsShape->lsGrid->spacing = step;
lsShape->lsGrid->nGP = gpPerAxis;
int nGP_x(gpPerAxis[0]), nGP_y(gpPerAxis[1]), nGP_z(gpPerAxis[2]);
// ***** 2. We now work on the distance field itself *******
vector<vector<vector<Real>>> distanceVal;
vector<vector<Real>> distanceInPlane;
vector<Real> distanceAlongZaxis;
Real dist(std::numeric_limits<Real>::infinity());
Vector3r gridPt;
if (shape < 3) { // looping on all gridpoints to apply appropriate distance function when having an analytical function
for (int xInd = 0; xInd < nGP_x; xInd++) {
distanceInPlane.clear(); // https://stackoverflow.com/questions/19189699/clearing-a-vector-or-defining-a-new-vector-which-one-is-faster
for (int yInd = 0; yInd < nGP_y; yInd++) {
distanceAlongZaxis.clear();
for (int zInd = 0; zInd < nGP_z; zInd++) {
gridPt = lsShape->lsGrid->gridPoint(xInd, yInd, zInd);
switch (shape) {
case 0: // circles
dist = distToCircle(gridPt, maxBod[0]);
break;
case 1: // sphere
dist = distToSph(gridPt, maxBod[0]);
break;
case 2: // box
dist = distToRecParallelepiped(gridPt, (maxBod - minBod) / 2.);
break;
default: LOG_FATAL("You asked for some shape value=" << shape << " which is not supported");
}
distanceAlongZaxis.push_back(dist);
}
distanceInPlane.push_back(distanceAlongZaxis);
}
distanceVal.push_back(distanceInPlane);
}
lsShape->starLike = true;
} else if (shape == 3) // FMM for se, with the whole distance field at once
{
FastMarchingMethod distFMM;
distFMM.heapSort = true;
distFMM.grid = lsShape->lsGrid;
distFMM.phiIni = distIniSE((maxBod - minBod) / 2., epsilons, lsShape->lsGrid);
distanceVal = distFMM.phi();
lsShape->starLike = true; // we have a single valued function x(u,v) for se, whatever the epsilons
} else if (shape == 4) {
FastMarchingMethod distFMM;
distFMM.grid = lsShape->lsGrid;
distFMM.phiIni = distIniClump(clump, lsShape->lsGrid);
distanceVal = distFMM.phi();
}
if (!distanceVal.size()) // eg because there was no level set grid
LOG_ERROR("We computed an empty level set... This is not expected and may crash e.g. when exposed to Python.")
lsShape->distField = distanceVal;
return lsShape;
}
Real ShopLS::distToSph(const Vector3r& point, const Real& rad, Vector3r center /*=Vector3r::Zero()*/)
{
Real x(point[0]), y(point[1]), z(point[2]);
Real xC(center[0]), yC(center[1]), zC(center[2]);
return sqrt(pow(x - xC, 2) + pow(y - yC, 2) + pow(z - zC, 2)) - rad;
}
Real ShopLS::distToCircle(const Vector3r& point, const Real& rad)
{
// for a circle in (x,y) plane
Real x(point[0]), y(point[1]);
return sqrt(pow(x, 2) + pow(y, 2)) - rad;
}
Real ShopLS::distToRecParallelepiped(Vector3r point, Vector3r extents)
{
// Computing true outside distances is complicated: the homothetic squares, suggested by Fig. 2b Kawamoto2016, have to be rounded at their corners for an exact consideration of distances. We will neglect this rounding here, which is not a big deal since positive values of level set functions are anyway transparent for the DEM
// in this case, the distance between the cube surface and the point considered is just the maximum of the positive values of distances, ie the maximum and there is no difference with inside case...
Real x(point[0]), y(point[1]), z(point[2]);
Real distX(distToInterval(x, -extents[0], extents[0]));
Real distY(distToInterval(y, -extents[1], extents[1]));
Real distZ(distToInterval(z, -extents[2], extents[2]));
return math::max(math::max(distX, distY), distZ);
}
Real ShopLS::distToInterval(Real val, Real left, Real right)
{
Real dist(-1.);
if (val > left and val < right) dist = math::max(left - val, val - right);
else if (val == right)
dist = 0;
else if (val > right)
dist = val - right; // > 0 we're indeed outside
else if (val == left)
dist = 0;
else if (val < left)
dist = left - val; // > 0 we're indeed outside
return dist;
}
Real ShopLS::fioRose(Vector3r gp)
{
gp = ShopLS::cart2spher(gp);
Real r(gp[0]), theta(gp[1]), phi(gp[2]);
return r - 3 - 1.5 * sin(5 * theta) * sin(4 * phi); // value of inside/outside function
}
Vector3r ShopLS::grad_fioRose(Vector3r gp)
{
gp = ShopLS::cart2spher(gp);
Real r(gp[0]), theta(gp[1]), phi(gp[2]);
if (sin(theta) == 0) LOG_ERROR("theta = 0 [pi], gradient of rose fction not defined for its z component");
Vector3r grad_fio(1, -7.5 / r * cos(5 * theta) * sin(4 * phi), -6 / r * sin(5 * theta) / sin(theta) * cos(4 * phi));
return grad_fio;
}
void ShopLS::handleNonTouchingNodeForMulti(shared_ptr<MultiScGeom>& geomMulti, shared_ptr<MultiPhys>& physMulti, int nodeIdx)
{
// For a surface node being detected not to be in contact, makes what is needed in a Multi* case, i.e. remove it from Multi*.contacts if it was contacting before
// Implemented here to avoid code duplication in a number of Ig2_*_MultiScGeom
const auto findIt(geomMulti->iteratorToNode(nodeIdx));
if (findIt != geomMulti->nodesIds.end()) // we do need findIt below, so we can not use geomMulti->hasNode (unless computing twice the same iterator)
{ // that node was contacting before, we need to remove it
// we avoid the swap - pop_back method used in FastMarchingMethod since https://stackoverflow.com/a/4442529/9864634 mentions a not understood relation about order of elements (which is important here)
// erase-remove idiom (https://stackoverflow.com/a/3385251/9864634) to test even though we do not want to remove by value ?
const auto distanceInItera(std::distance(geomMulti->nodesIds.begin(), findIt));
geomMulti->contacts.erase(geomMulti->contacts.begin() + distanceInItera);
geomMulti->nodesIds.erase(findIt);
physMulti->contacts.erase(physMulti->contacts.begin() + distanceInItera);
physMulti->nodesIds.erase(physMulti->nodesIds.begin() + distanceInItera);
}
}
void ShopLS::handleTouchingNodeForMulti(
shared_ptr<MultiScGeom>& geomMulti,
shared_ptr<MultiPhys>& physMulti,
int nodeIdx,
Vector3r ctctPt,
Real un,
Real rad1,
Real rad2,
const State& state1,
const State& state2,
const Scene* scene,
const shared_ptr<Interaction>& c,
const Vector3r& currentNormal,
const Vector3r& shift2)
{
const auto findIt(geomMulti->iteratorToNode(nodeIdx));
if (findIt != geomMulti->nodesIds.end()) // that node was already contacting before (same approach as in handleNonTouchingNodeForMulti)
{
// we update the geom:
geomMulti->contacts[std::distance(geomMulti->nodesIds.begin(), findIt)]->doIg2Work(
ctctPt, un, rad1, rad2, state1, state2, scene, c, currentNormal, shift2, false, false);
// and have nothing to do for what concerns the phys
} else { // that node was not contacting before
// we store the information of contact for that node in Multi* geom and phys:
physMulti->nodesIds.push_back(nodeIdx);
geomMulti->nodesIds.push_back(nodeIdx);
// we then create a new ScGeom shared_ptr:
shared_ptr<ScGeom> scGeomPtr(new ScGeom);
// filled with appropriate data:
scGeomPtr->doIg2Work(ctctPt, un, rad1, rad2, state1, state2, scene, c, currentNormal, shift2, true, false);
// that we store in MultiScGeom::contacts:
geomMulti->contacts.push_back(scGeomPtr);
// we also have to create a new shared_ptr<IPhys> to put into physMulti->contacts :
shared_ptr<IPhys> physPtr(new IPhys()); // https://stackoverflow.com/a/620402 about IPhys() or IPhys..
physMulti->contacts.push_back(physPtr);
}
}
Real ShopLS::distApproxRose(Vector3r gp)
{
Vector3r grad_fio(grad_fioRose(gp));
Real normGrad(grad_fio.norm());
if (normGrad == 0) LOG_ERROR("Zero gradient, approximate distance will be infinite");
return fioRose(gp) / normGrad;
}
Real ShopLS::distToClumpSpheres(Vector3r pt, shared_ptr<Clump> clump)
{
// gives min(dist to clump members) for spherical members
// This is the true distance when outside, and just an approximation when inside
// It will serve in phiIni(usage==2) and has some duplicated code with insideClump, let it be (insideClump has a break we do not have here for instance)
Real retVal(std::numeric_limits<Real>::infinity());
for (const auto& memberInfos : clump->members) { // clump->members is a std::map
const Body::id_t& memberId(memberInfos.first);
Vector3r centerMember(memberInfos.second.position);
Real radiusMember(YADE_PTR_CAST<Sphere>(Body::byId(memberId)->shape)->radius);
Real dist(distToSph(pt, radiusMember, centerMember));
if (dist < retVal) retVal = dist;
}
return retVal;
}
bool ShopLS::insideClump(const Vector3r& pt, shared_ptr<Clump> clump)
{ // checking whether we are strictly inside a Clump. Could fit into core/Clump ?
bool retVal(false);
for (const auto& memberInfos : clump->members) { // clump->members is a std::map
const Body::id_t& memberId(memberInfos.first);
Vector3r centerMember(memberInfos.second.position);
Real radiusMember(YADE_PTR_CAST<Sphere>(Body::byId(memberId)->shape)->radius);
LOG_INFO(
"Looking at Body " << memberId << " as a clump member. It has a " << radiusMember
<< " radius and is centered (in clump local coordinates) at " << centerMember);
Real dist(distToSph(pt, radiusMember, centerMember));
LOG_DEBUG("dist = " << dist);
if (dist
< 0) { // dist = 0 actually tells nothing about the clump surface (unless we check we are outside every other member), and can not be used
retVal = true;
break; // pt is inside at least one clump member => it's inside the clump
}
}
return retVal;
}
Real ShopLS::insideOutsideSE(const Vector3r& point, const Vector3r& radii, const Vector2r& epsilons)
{
Real x(point[0]), y(point[1]), z(point[2]), rx(radii[0]), ry(radii[1]), rz(radii[2]), epsE = epsilons[0], epsN = epsilons[1];
if (rx < 0 || ry < 0 || rz < 0) LOG_ERROR("You passed negative radii for a superellipsoid, this is not expected.");
return pow(pow(math::abs(x / rx), 2. / epsE) + pow(math::abs(y / ry), 2. / epsE), epsE / epsN) + pow(math::abs(z / rz), 2. / epsN) - 1;
}
Real ShopLS::distApproxSE(const Vector3r& point, const Vector3r& radii, const Vector2r& epsilons)
{
// Approximated distance for a superellipsoid, using the inside/outside fxyz divided by the norm of its gradient, grad_f.norm()
// with a special treatment of the origin because grad_f.norm() -> 0 towards the origin (where it's not defined ?), whereas fxyz -> -1 and our approximated distance would -> infinity
Real x(point[0]), y(point[1]), z(point[2]), rx(radii[0]), ry(radii[1]), rz(radii[2]), epsE = epsilons[0], epsN = epsilons[1];
Real returnVal, minExtents(math::min(math::min(rx, ry), rz));
if (point.norm() < 0.05 * minExtents) {
returnVal = -minExtents; // using (signed) minExtents as a constant distance-approximation in that whole domain close to origin
LOG_WARN("We used a crude distance approximation at point " << point << "! That could be a problem e.g. when using FastMarchingMethod");
} else {
Real fxyz(insideOutsideSE(point, radii, epsilons));
if (math::abs(fxyz) < Mathr::EPSILON) // it s like we were exactly on the surface
returnVal = 0.;
else {
if (x == 0 and y == 0) // precedence OK
return z > 0 ? z - rz : -z - rz;
Real mult(
2. / epsN
* pow(pow(math::abs(x / rx), 2. / epsE) + pow(math::abs(y / ry), 2. / epsE),
epsE / epsN - 1.)); //some number useful for grad f.
if (!math::isfinite(mult)) // for x=y=0 and epsE < epsN typically, but this should have been taken care of in the above
LOG_ERROR("Infinite (or C++ NaN) mult in distance to a super ellipsoid");
Vector3r grad_f(
mult * pow(math::abs(x / rx), 2. / epsE - 1.) * (x > 0 ? 1. / rx : -1. / rx),
mult * pow(math::abs(y / ry), 2. / epsE - 1.) * (y > 0 ? 1. / ry : -1. / ry),
2. / epsN * pow(math::abs(z / rz), 2. / epsN - 1) * (z > 0 ? 1. / rz : -1. / rz));
// special cases where gradient is actually not defined:
// if(x==0 && epsE>=2) grad_f[0] = 0; // like when epsE < 2, and normal for a sphere
// if(y==0 && epsE>=2) grad_f[1] = 0; // ditto
// if(z==0 && epsN>=2) grad_f[2] = 0; // same, but for epsN
Real denom(0);
if (grad_f.norm()
< minExtents * Mathr::EPSILON) { // checking whether the gradient is not too small, with respect to a characteristic length.
LOG_ERROR("Unexpected zero gradient in point = " << point);
denom = 1;
} // no real reason for this 1
else
denom = grad_f.norm();
returnVal = fxyz / denom;
LOG_DEBUG(
"Here returnVal = " << returnVal << " because fxyz = " << fxyz << " and denom = " << denom << " because grad_f = " << grad_f
<< " because mult = " << mult);
}
}
return returnVal;
}
// The 2 following cart2spher and spher2cart functions assume:
// theta = (ez,er) angle with er(theta = 0,phi)=ez, in [0;pi]
// phi measured from ex axis: er(theta=pi/2,phi=0) = ex, in [0;2pi]
// same convention as Bazant1986, Eq. (4)
Vector3r ShopLS::cart2spher(const Vector3r& vec)
{ // vec is here (x,y,z), we return (r,theta,phi)
Real r(vec.norm());
if (r == 0) return Vector3r::Zero();
Real theta(acos(vec[2] / r));
Vector3r vecProj(vec[0], vec[1], 0); // projection of vec in x,y plane
Real normProj(vecProj.norm());
Real phi;
if (normProj == 0) // vec is along z axis, phi=0 will be as good as any other value
phi = 0;
else {
Real cosVal(vecProj[0] / normProj);
phi = vec[1] > 0 ? acos(cosVal) : 2 * Mathr::PI - acos(cosVal);
}
return Vector3r(r, theta, phi);
}
Vector3r ShopLS::spher2cart(const Vector3r& vec)
{ // vec is here (r,theta,phi), and we return (x,y,z)
if (vec[0] < 0) LOG_ERROR("A negative r (" << vec[0] << " passed here) for spherical coordinates is impossible");
if (vec[1] < 0 || vec[1] > Mathr::PI) LOG_ERROR("Spherical theta has to be between 0 and pi, passing " << vec[1] << " is impossible")
return vec[0] * Vector3r(sin(vec[1]) * cos(vec[2]), sin(vec[1]) * sin(vec[2]), cos(vec[1]));
}
} // namespace yade
#endif // YADE_LS_DEM
|