1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
/*************************************************************************
* Copyright (C) 2009 by Emanuele Catalano <catalano@grenoble-inp.fr> *
* Copyright (C) 2009 by Bruno Chareyre <bruno.chareyre@grenoble-inp.fr> *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#ifdef YADE_CGAL
#ifdef FLOW_ENGINE
#ifdef LINSOLV
#include <cholmod.h>
#endif
//For pyRunString
#include<lib/pyutil/gil.hpp>
#include<pkg/dem/JointedCohesiveFrictionalPM.hpp>
#include <boost/thread/thread.hpp>
#include <chrono>
namespace yade { // Cannot have #include directive inside.
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::~TemplateFlowEngine_@TEMPLATE_FLOW_NAME@() {}
// YADE_PLUGIN((TFlowEng));
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
unsigned int TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposePressure(Vector3r pos, Real p)
{
// if (!flow) LOG_ERROR("no flow defined yet, run at least one iter");
solver->imposedP.push_back( pair<CGT::Point,Real>(CGT::Point(pos[0],pos[1],pos[2]),p) );
//force immediate update of boundary conditions
updateTriangulation=true;
return solver->imposedP.size()-1;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
unsigned int TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposeCavity(Vector3r pos)
{
solver->imposedCavity.push_back( CGT::Point(pos[0],pos[1],pos[2]));
//force immediate update of boundary conditions
//updateTriangulation=true;
return solver->imposedCavity.size()-1;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
unsigned int TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposePressureFromId(unsigned long id, Real p)
{
return imposePressure(cellBarycenterFromId(id),p);
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::action()
{
if ( !isActivated ) return;
timingDeltas->start();
if (desiredPorosity != 0){
Real actualPorosity = Shop::getPorosityAlt();
volumeCorrection = desiredPorosity/actualPorosity;
}
setPositionsBuffer(true);
if (!first and alphaBound>=0) addAlphaToPositionsBuffer(true);
timingDeltas->checkpoint ( "Position buffer" );
if (first) {
buildTriangulation(pZero,*solver); // move before set positions since we need vertex locations for proper volume estimates
if (alphaBound>=0) addAlphaToPositionsBuffer(true);
if (multithread) setPositionsBuffer(false);
initializeVolumes(*solver);
if (phiZero>0) solver->adjustCavityCompressibility(pZero);
backgroundSolver=solver;
backgroundCompleted=true;
}
#ifdef YADE_OPENMP
solver->ompThreads = ompThreads>0? ompThreads : omp_get_max_threads();
#endif
timingDeltas->checkpoint ( "Triangulating" );
updateVolumes ( *solver );
timingDeltas->checkpoint ( "Update_Volumes" );
epsVolCumulative += epsVolMax;
retriangulationLastIter++;
if (!updateTriangulation) updateTriangulation = // If not already set true by another function of by the user, check conditions
(defTolerance>0 && epsVolCumulative > defTolerance) || (meshUpdateInterval>0 && retriangulationLastIter>=meshUpdateInterval);
// remesh everytime a bond break occurs (for DFNFlow-JCFPM coupling)
if (breakControlledRemesh) remeshForFreshlyBrokenBonds();
///compute flow and and forces here
if (pressureForce){
#ifdef LINSOLV
permUpdateIters++;
if (fixTriUpdatePermInt>0 && permUpdateIters >= fixTriUpdatePermInt) updateLinearSystem(*solver);
#endif
//
if (controlCavityPressure) solver->adjustCavityPressure(scene->dt,1,pZero);
if (controlCavityVolumeChange) solver->adjustCavityVolumeChange(scene->dt,1,pZero);
if (phiZero>0) solver->adjustCavityCompressibility(pZero);
cavityFluidDensity = getCavityDensity(); // keep this for carrying between remeshes
solver->gaussSeidel(scene->dt);
//if (phiZero>0) solver->adjustCavityCompressibility(pZero);
timingDeltas->checkpoint ( "Factorize + Solve" );
if (!decoupleForces){
solver->computeFacetForcesWithCache();
timingDeltas->checkpoint ( "compute_Forces" );
///Application of vicscous forces
scene->forces.sync();
timingDeltas->checkpoint ( "forces.sync()" );
computeViscousForces ( *solver );
timingDeltas->checkpoint ( "viscous forces" );
applyForces(*solver);
timingDeltas->checkpoint ( "Applying Forces" );
} else {solver->noCache = false;}
}
///End compute flow and forces
#ifdef LINSOLV
int sleeping = 0;
if (multithread && !first) {
while (updateTriangulation && !backgroundCompleted) { /*cout<<"sleeping..."<<sleeping++<<endl;*/
sleeping++;
boost::this_thread::sleep(boost::posix_time::microseconds(1000));}
if (debug && sleeping) cerr<<"sleeping..."<<sleeping<<endl;
if (updateTriangulation || ((meshUpdateInterval>0 && ellapsedIter>(0.5*meshUpdateInterval)) && backgroundCompleted)) {
if (debug) cerr<<"switch flow solver"<<endl;
if (useSolver==0) LOG_ERROR("background calculations not available for Gauss-Seidel");
if (!fluxChanged) {
if (fluidBulkModulus>0 || doInterpolate) {
solver->interpolate (solver->T[solver->currentTes], backgroundSolver->T[backgroundSolver->currentTes]);
}
//Copy imposed pressures/flow/cavity from the old solver
backgroundSolver->imposedP = vector<pair<CGT::Point,Real> >(solver->imposedP);
backgroundSolver->imposedF = vector<pair<CGT::Point,Real> >(solver->imposedF);
backgroundSolver->imposedCavity = vector<CGT::Point>(solver->imposedCavity);
solver=backgroundSolver;
} else {
fluxChanged=false;
}
backgroundSolver = shared_ptr<FlowSolver> (new FlowSolver);
if (metisForced) {backgroundSolver->eSolver.cholmod().nmethods=1; backgroundSolver->eSolver.cholmod().method[0].ordering=CHOLMOD_METIS;}
backgroundSolver->imposedP = vector<pair<CGT::Point,Real> >(solver->imposedP);
backgroundSolver->imposedF = vector<pair<CGT::Point,Real> >(solver->imposedF);
backgroundSolver->imposedCavity = vector<CGT::Point>(solver->imposedCavity);
//backgroundSolver->equivalentCompressibility = solver->equivalentCompressibility;
if (debug) cerr<<"switched"<<endl;
setPositionsBuffer(false);//set "parallel" buffer for background calculation
backgroundCompleted=false;
retriangulationLastIter=ellapsedIter;
if (!thermalEngine) updateTriangulation=false;// thermalEngine needs this flag for reynolds numbers updates, let thermalEngine flip this flag back to false
epsVolCumulative=0;
ellapsedIter=0;
boost::thread workerThread(&TemplateFlowEngine_@TEMPLATE_FLOW_NAME@::backgroundAction,this);
workerThread.detach();
if (debug) cerr<<"backgrounded"<<endl;
initializeVolumes(*solver);
computeViscousForces(*solver);
if (debug) cerr<<"volumes initialized"<<endl;
}
else {
if (debug && !backgroundCompleted) cerr<<"still computing solver in the background, ellapsedIter="<<ellapsedIter<<endl;
ellapsedIter++;
}
} else
#endif
{
if (updateTriangulation && !first) {
buildTriangulation (pZero, *solver);
if (alphaBound>=0) addAlphaToPositionsBuffer(true); //need to add the alpha vertices to the positions buffer
initializeVolumes(*solver);
computeViscousForces(*solver);
if (!thermalEngine) updateTriangulation = false; // thermalEngine needs this flag for reynolds numbers updates, let thermalEngine flip this flag back to false
epsVolCumulative=0;
retriangulationLastIter=0;
ReTrg++;}
}
first=false;
timingDeltas->checkpoint ( "triangulate + init volumes" );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::backgroundAction()
{
if (useSolver<1) {LOG_ERROR("background calculations not available for Gauss-Seidel"); return;}
buildTriangulation ( pZero,*backgroundSolver );
backgroundSolver->factorizeOnly = true;
backgroundSolver->gaussSeidel(scene->dt);
backgroundSolver->factorizeOnly = false;
//FIXME(2): and here we need only cached variables, not forces <- this appears to be fixed already inside computeFacetForcesWithCache
backgroundSolver->computeFacetForcesWithCache(/*onlyCache?*/ true);
backgroundCompleted = true;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::boundaryConditions ( Solver& flow )
{
for (int k=0;k<6;k++) {
flow.boundary (wallIds[k]).flowCondition=!bndCondIsPressure[k];
flow.boundary (wallIds[k]).value=bndCondValue[k];
flow.boundary (wallIds[k]).velocity = boundaryVelocity[k];//FIXME: needs correct implementation, maybe update the cached pos/vel?
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::thermalBoundaryConditions ( Solver& flow )
{
for (int k=0;k<6;k++) {
flow.thermalBoundary (wallIds[k]).fluxCondition=!bndCondIsTemperature[k];
flow.thermalBoundary (wallIds[k]).value=thermalBndCondValue[k];
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::setImposedPressure ( unsigned int cond, Real p)
{
if ( cond>=solver->imposedP.size() ) LOG_ERROR ( "Setting p with cond higher than imposedP size." );
solver->imposedP[cond].second=p;
//force immediate update of boundary conditions
solver->pressureChanged=true;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposeFlux ( Vector3r pos, Real flux){
solver->imposedF.push_back ( pair<CGT::Point,Real> ( CGT::Point ( pos[0],pos[1],pos[2] ), flux ) );
CellHandle cell=solver->T[solver->currentTes].Triangulation().locate(CGT::Sphere(pos[0],pos[1],pos[2]));
if (cell->info().isGhost) cerr<<"Imposing pressure in a ghost cell."<<endl;
for (unsigned int kk=0;kk<solver->IPCells.size();kk++){
if (cell==solver->IPCells[kk]) cerr<<"Both flux and pressure are imposed in the same cell."<<endl;
else if (cell->info().Pcondition) cerr<<"Imposed flux fall in a pressure boundary condition."<<endl;}
solver->IFCells.push_back(cell);
fluxChanged=true;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::clearImposedPressure () { solver->imposedP.clear(); solver->IPCells.clear();}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::clearImposedFlux () { solver->imposedF.clear(); solver->IFCells.clear();}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::getCellFlux ( unsigned int cond) const
{
if ( cond>=solver->imposedP.size() ) {LOG_ERROR ( "Getting flux with cond higher than imposedP size." ); return 0;}
Real flux=0;
typename Solver::CellHandle& cell= solver->IPCells[cond];
for ( int ngb=0;ngb<4;ngb++ ) {
/*if (!cell->neighbor(ngb)->info().Pcondition)*/
flux+= cell->info().kNorm() [ngb]* ( cell->info().p()-cell->neighbor ( ngb )->info().p() );
}
return flux+cell->info().dv();
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::getCellFluxFromId ( unsigned long id) const
{
if (id>=solver->T[solver->currentTes].cellHandles.size()) {LOG_ERROR("id out of range, max value is "<<solver->T[solver->currentTes].cellHandles.size()); return 0;}
Real flux=0;
typename Solver::CellHandle& cell= solver->T[solver->currentTes].cellHandles[id];
for ( int ngb=0;ngb<4;ngb++ ) {
flux+= cell->info().kNorm() [ngb]* ( cell->info().p()-cell->neighbor ( ngb )->info().p() );
}
return flux+cell->info().dv();
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::initSolver ( FlowSolver& flow )
{
flow.Vtotalissimo=0; flow.VSolidTot=0; flow.vPoral=0; flow.sSolidTot=0;
flow.slipBoundary=slipBoundary;
flow.kFactor = permeabilityFactor;
flow.cavityFactor = cavityFactor;
flow.debugOut = debug;
flow.useSolver = useSolver;
#ifdef LINSOLV
flow.numSolveThreads = numSolveThreads;
flow.numFactorizeThreads = numFactorizeThreads;
#endif
flow.factorizeOnly = false;
flow.meanKStat = meanKStat;
flow.viscosity = viscosity;
flow.tolerance=tolerance;
flow.relax=relax;
flow.clampKValues = clampKValues;
flow.maxKdivKmean = maxKdivKmean;
flow.minKdivKmean = minKdivKmean;
flow.meanKStat = meanKStat;
flow.permeabilityMap = permeabilityMap;
flow.fluidBulkModulus = fluidBulkModulus;
flow.fluidRho = fluidRho;
flow.fluidCp = fluidCp;
flow.thermalEngine = thermalEngine;
flow.phiZero = phiZero;
flow.cavityFlux = cavityFlux;
flow.multithread = multithread;
flow.controlCavityPressure=controlCavityPressure;
flow.averageCavityPressure = averageCavityPressure;
flow.controlCavityVolumeChange=controlCavityVolumeChange;
flow.cavityFluidDensity = cavityFluidDensity;
if (fluidBulkModulus>0) flow.equivalentCompressibility = phiZero/pZero + (1.-phiZero)*(1./fluidBulkModulus); // initial equiv compressibility.
flow.cavityDV = 0;
flow.thermalPorosity=thermalPorosity;
flow.getCHOLMODPerfTimings=getCHOLMODPerfTimings;
// flow.tesselation().Clear();
flow.tesselation().maxId=-1;
flow.blockedCells.clear();
flow.tempDependentViscosity = tempDependentViscosity;
flow.sphericalVertexAreaCalculated=false;
flow.xMin = 1000.0, flow.xMax = -10000.0, flow.yMin = 1000.0, flow.yMax = -10000.0, flow.zMin = 1000.0, flow.zMax = -10000.0;
flow.tesselation().vertexHandles.clear();
flow.tesselation().vertexHandles.resize(scene->bodies->size()+6,NULL);
flow.tesselation().vertexHandles.shrink_to_fit();
flow.alphaBound = alphaBound;
flow.alphaBoundValue = alphaBoundValue;
}
#ifdef LINSOLV
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::setForceMetis ( bool force )
{
if (force) {
metisForced=true;
solver->eSolver.cholmod().nmethods=1;
solver->eSolver.cholmod().method[0].ordering=CHOLMOD_METIS;
} else {cholmod_defaults(&(solver->eSolver.cholmod())); metisForced=false;}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
bool TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::getForceMetis () const {return (solver->eSolver.cholmod().nmethods==1);}
#endif
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::buildTriangulation ( Solver& flow )
{
buildTriangulation ( 0.f,flow );
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::buildTriangulation ( Real pZero2, Solver& flow )
{
if (first) flow.currentTes=0;
else { flow.currentTes=!flow.currentTes; if (debug) cout << "--------RETRIANGULATION-----------" << endl;}
flow.resetNetwork();
initSolver(flow);
if (alphaBound<0) addBoundary ( flow ); // these bounding planes are complicating things with alpha
triangulate ( flow );
if ( debug ) cout << endl << "Tesselating------" << endl << endl;
flow.tesselation().compute();
if (alphaBound<0) flow.defineFictiousCells(); // fictious cells only exist in cuboids
// For faster loops on cells define these vectors
flow.tesselation().cellHandles.clear();
flow.tesselation().cellHandles.reserve(flow.tesselation().Triangulation().number_of_finite_cells());
FiniteCellsIterator cell_end = flow.tesselation().Triangulation().finite_cells_end();
int k=0;
for ( FiniteCellsIterator cell = flow.tesselation().Triangulation().finite_cells_begin(); cell != cell_end; cell++ ){
flow.tesselation().cellHandles.push_back(cell);
cell->info().id=k++;}//define unique numbering now, corresponds to position in cellHandles
flow.tesselation().cellHandles.shrink_to_fit();
// for fast loop on facets ( useful in thermal engine only)
if (thermalEngine){
flow.tesselation().facetCells.clear();
flow.tesselation().facetCells.reserve(flow.tesselation().Triangulation().number_of_finite_facets());
for ( FiniteCellsIterator cell = flow.tesselation().Triangulation().finite_cells_begin(); cell != cell_end; cell++ ){
for(int i=0;i<4;i++){
if (cell->info().id<cell->neighbor(i)->info().id){
flow.tesselation().facetCells.push_back(std::pair<CellHandle,int>(cell,i));
}
}
}
flow.tesselation().facetCells.shrink_to_fit();
}
flow.displayStatistics ();
if(!blockHook.empty()){ LOG_INFO("Running blockHook: "<<blockHook); pyRunString(blockHook); }
if (multithread && fluidBulkModulus>0) initializeVolumes(flow); // needed for multithreaded compressible flow (old site, fixed bug https://bugs.launchpad.net/yade/+bug/1687355)
trickPermeability(&flow); //This virtual function does nothing yet, derived class may overload it to make permeability different (see DFN engine)
porosity = flow.vPoralPorosity/flow.vTotalPorosity;
if (alphaBound<0) boundaryConditions ( flow );
flow.initializePressure ( pZero2 );
flow.computePermeability();
if (thermalEngine) {
thermalBoundaryConditions ( flow );
flow.initializeTemperatures ( tZero );
flow.sphericalVertexAreaCalculated=false;
}
if ( !first && !multithread && (useSolver==0 || fluidBulkModulus>0 || doInterpolate || thermalEngine)){
flow.interpolate ( flow.T[!flow.currentTes], flow.tesselation() );
if (phiZero>0) flow.adjustCavityCompressibility(pZero2); // consider compressibility of air in cavity
}
if ( waveAction ) flow.applySinusoidalPressure ( flow.tesselation().Triangulation(), sineMagnitude, sineAverage, 30 );
else if (boundaryPressure.size()!=0) flow.applyUserDefinedPressure ( flow.tesselation().Triangulation(), boundaryXPos , boundaryPressure);
if (normalLubrication || shearLubrication || viscousShear) flow.computeEdgesSurfaces();
}
#pragma GCC diagnostic pop
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::setPositionsBuffer(bool current)
{
vector<posData>& buffer = current? positionBufferCurrent : positionBufferParallel;
buffer.clear();
buffer.resize(scene->bodies->size());
buffer.shrink_to_fit();
shared_ptr<Sphere> sph ( new Sphere );
const int Sph_Index = sph->getClassIndexStatic();
FOREACH ( const shared_ptr<Body>& b, *scene->bodies ) {
if (!b || (mask>0 and !b->maskCompatible(mask)) || (convertClumps && b->isClumpMember()) || (b->isClump() && !convertClumps)) continue;
posData& dat = buffer[b->getId()];
dat.id=b->getId();
dat.pos=b->state->pos;
dat.isSphere= (b->shape->getClassIndex() == Sph_Index);
dat.isClump = b->isClump();
if (dat.isSphere) dat.radius = YADE_CAST<Sphere*>(b->shape.get())->radius;
if (dat.isClump) {
const shared_ptr<Clump>& clump = YADE_PTR_CAST<Clump>(b->shape);
const shared_ptr<Body>& member = Body::byId(clump->members.begin()->first,scene);
dat.radius = pow( (3*b->state->mass)/(4*Mathr::PI*member->material->density) , 1.0/3.0); //use equivalent radius of clump (just valid for nearly spherical clumps)
}
dat.exists=true;
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::addAlphaToPositionsBuffer(bool current)
{
vector<posData>& buffer = current ? positionBufferCurrent : positionBufferParallel;
const int oldBufferSize = buffer.size();
buffer.resize(solver->T[solver->currentTes].maxId+1);
for (int i=oldBufferSize;i<=solver->T[solver->currentTes].maxId;i++) {
if (i<solver->alphaIdOffset) continue;
posData& dat = buffer[solver->T[solver->currentTes].vertexHandles[i]->info().id()];
// we dont care about any idices less than the alphavertices
dat.id = solver->T[solver->currentTes].vertexHandles[i]->info().id();
dat.pos=Vector3r(solver->T[solver->currentTes].vertexHandles[i]->point().x(),solver->T[solver->currentTes].vertexHandles[i]->point().y(),solver->T[solver->currentTes].vertexHandles[i]->point().z());
dat.radius = sqrt(solver->T[solver->currentTes].vertexHandles[i]->point().weight());
dat.exists=false; // during retriangulation with current position buffer, we dont want it to add these.
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::addBoundary ( Solver& flow )
{
using math::max; // when used inside function it does not leak - it is safe.
using math::min;
vector<posData>& buffer = multithread ? positionBufferParallel : positionBufferCurrent;
solver->xMin = Mathr::MAX_REAL, solver->xMax = -Mathr::MAX_REAL, solver->yMin = Mathr::MAX_REAL, solver->yMax = -Mathr::MAX_REAL, solver->zMin = Mathr::MAX_REAL, solver->zMax = -Mathr::MAX_REAL;
FOREACH ( const posData& b, buffer ) {
if ( !b.exists ) continue;
if ( b.isSphere || b.isClump ) {
const Real& rad = b.radius;
const Real& x = b.pos[0];
const Real& y = b.pos[1];
const Real& z = b.pos[2];
flow.xMin = min ( flow.xMin, x-rad );
flow.xMax = max ( flow.xMax, x+rad );
flow.yMin = min ( flow.yMin, y-rad );
flow.yMax = max ( flow.yMax, y+rad );
flow.zMin = min ( flow.zMin, z-rad );
flow.zMax = max ( flow.zMax, z+rad );
}
}
//set idOffset if<0, in that case overwrite wallIds and assign values out of range scene->bodies
if (idOffset<0) {
idOffset = scene->bodies->size();
for (int i=0; i<6; ++i){wallIds[i]=i+idOffset;}
}
flow.idOffset = idOffset;
flow.sectionArea = ( flow.xMax - flow.xMin ) * ( flow.zMax-flow.zMin );
flow.vTotal = ( flow.xMax-flow.xMin ) * ( flow.yMax-flow.yMin ) * ( flow.zMax-flow.zMin );
flow.yMinId=wallIds[ymin];
flow.yMaxId=wallIds[ymax];
flow.xMaxId=wallIds[xmax];
flow.xMinId=wallIds[xmin];
flow.zMinId=wallIds[zmin];
flow.zMaxId=wallIds[zmax];
//FIXME: Id's order in boundsIds is done according to the enumeration of boundaries from TXStressController.hpp, line 31. DON'T CHANGE IT!
flow.boundsIds[0]= &flow.xMinId;
flow.boundsIds[1]= &flow.xMaxId;
flow.boundsIds[2]= &flow.yMinId;
flow.boundsIds[3]= &flow.yMaxId;
flow.boundsIds[4]= &flow.zMinId;
flow.boundsIds[5]= &flow.zMaxId;
for (int k=0;k<6;k++) flow.boundary ( *flow.boundsIds[k] ).useMaxMin = boundaryUseMaxMin[k];
//for (int k=0;k<6;k++) flow.thermalBoundary ( *flow.boundsIds[k] ).useMaxMin = boundaryUseMaxMin[k];
flow.cornerMin = CGT::Point ( flow.xMin, flow.yMin, flow.zMin );
flow.cornerMax = CGT::Point ( flow.xMax, flow.yMax, flow.zMax );
//assign BCs types and values
boundaryConditions ( flow );
if (thermalEngine) thermalBoundaryConditions ( flow );
Real center[3];
for ( int i=0; i<6; i++ ) {
if ( *flow.boundsIds[i]<0 ) continue;
CGT::CVector Normal ( normal[i].x(), normal[i].y(), normal[i].z() );
if ( flow.boundary ( *flow.boundsIds[i] ).useMaxMin ) flow.addBoundingPlane(Normal, *flow.boundsIds[i] );
else {
for ( int h=0;h<3;h++ ) center[h] = buffer[*flow.boundsIds[i]].pos[h];
flow.addBoundingPlane (center, wallThickness, Normal,*flow.boundsIds[i] );
}
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::triangulate ( Solver& flow )
{
///Using Tesselation wrapper (faster)
// TesselationWrapper TW;
// if (TW.Tes) delete TW.Tes;
// TW.Tes = &(flow.tesselation());//point to the current Tes we have in Flowengine
// TW.insertSceneSpheres();//TW is now really inserting in TemplateFlowEngine_@TEMPLATE_FLOW_NAME@, using the faster insert(begin,end)
// TW.Tes = NULL;//otherwise, Tes would be deleted by ~TesselationWrapper() at the end of the function.
///Using one-by-one insertion
vector<posData>& buffer = multithread ? positionBufferParallel : positionBufferCurrent;
FOREACH ( const posData& b, buffer ) {
if ( !b.exists || b.id==ignoredBody ) continue;
if ( b.isSphere || b.isClump ) flow.tesselation().insert ( b.pos[0], b.pos[1], b.pos[2], b.radius, b.id );
}
if (alphaBound>=0) flow.setAlphaBoundary(alphaBound, fixedAlpha);
flow.shearLubricationForces.resize ( flow.tesselation().maxId+1 );
flow.shearLubricationTorques.resize ( flow.tesselation().maxId+1 );
flow.pumpLubricationTorques.resize ( flow.tesselation().maxId+1 );
flow.twistLubricationTorques.resize ( flow.tesselation().maxId+1 );
flow.shearLubricationBodyStress.resize ( flow.tesselation().maxId+1 );
flow.normalLubricationForce.resize ( flow.tesselation().maxId+1 );
flow.normalLubricationBodyStress.resize ( flow.tesselation().maxId+1 );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::initializeVolumes ( Solver& flow )
{
//typedef typename Solver::FiniteVerticesIterator FiniteVerticesIterator;
using math::abs; // when used inside function it does not leak - it is safe.
using math::max;
FiniteVerticesIterator vertices_end = flow.tesselation().Triangulation().finite_vertices_end();
CGT::CVector Zero(0,0,0);
for (FiniteVerticesIterator V_it = flow.tesselation().Triangulation().finite_vertices_begin(); V_it!= vertices_end; V_it++) V_it->info().forces=Zero;
FOREACH(CellHandle& cell, flow.tesselation().cellHandles)
{
switch ( cell->info().fictious() )
{
case ( 0 ) : cell->info().volume() = volumeCell ( cell ); break;
case ( 1 ) : cell->info().volume() = volumeCellSingleFictious ( cell ); break;
case ( 2 ) : cell->info().volume() = volumeCellDoubleFictious ( cell ); break;
case ( 3 ) : cell->info().volume() = volumeCellTripleFictious ( cell ); break;
default: break;
}
if (flatThreshold>=0 && cell->info().volume() <= flatThreshold) cell->info().blocked = true;
if ((flow.fluidBulkModulus>0 || thermalEngine) && desiredPorosity>0 && !cell->info().blocked) {
cell->info().invVoidVolume() = 1. / cell->info().volume();
} else if ((flow.fluidBulkModulus>0 || thermalEngine || iniVoidVolumes) && desiredPorosity == 0 && !cell->info().blocked) {
cell->info().invVoidVolume() = 1. / max(minimumPorosity*abs(cell->info().volume()),(abs(cell->info().volume()) - flow.volumeSolidPore(cell) ));
}
}
if (debug) cout << "Volumes initialised." << endl;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::averageRealCellVelocity()
{
solver->averageRelativeCellVelocity();
Vector3r Vel ( 0,0,0 );
//AVERAGE CELL VELOCITY
FiniteCellsIterator cell_end = solver->T[solver->currentTes].Triangulation().finite_cells_end();
for ( FiniteCellsIterator cell = solver->T[solver->currentTes].Triangulation().finite_cells_begin(); cell != cell_end; cell++ ) {
for ( int g=0;g<4;g++ ) {
if ( !cell->vertex ( g )->info().isFictious ) {
const shared_ptr<Body>& sph = Body::byId ( cell->vertex ( g )->info().id(), scene );
for ( int i=0;i<3;i++ ) Vel[i] = Vel[i] + sph->state->vel[i]/4;
}
}
RTriangulation& Tri = solver->T[solver->currentTes].Triangulation();
CGT::Point pos_av_facet;
Real volume_facet_translation = 0;
CGT::CVector Vel_av ( Vel[0], Vel[1], Vel[2] );
for ( int i=0; i<4; i++ ) {
volume_facet_translation = 0;
if ( !Tri.is_infinite ( cell->neighbor ( i ) ) ) {
CGT::CVector Surfk = cell->info()-cell->neighbor ( i )->info();
Real area = sqrt ( Surfk.squared_length() );
Surfk = Surfk/area;
CGT::CVector branch = cell->vertex ( facetVertices[i][0] )->point() - cell->info();
pos_av_facet = ( CGT::Point ) cell->info() + ( branch*Surfk ) *Surfk;
volume_facet_translation += Vel_av*cell->info().facetSurfaces[i];
cell->info().averageVelocity() = cell->info().averageVelocity() - volume_facet_translation/math::abs(cell->info().volume()) * ( pos_av_facet-CGAL::ORIGIN );
}
}
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::updateVolumes ( Solver& flow )
{
if ( debug ) cout << "Updating volumes.............." << endl;
Real invDeltaT = 1/scene->dt;
epsVolMax=0;
Real totVol=0; Real totDVol=0;
#ifdef YADE_OPENMP
const long size=flow.tesselation().cellHandles.size();
#pragma omp parallel for num_threads(ompThreads>0 ? ompThreads : 1)
for(long i=0; i<size; i++){
CellHandle& cell = flow.tesselation().cellHandles[i];
#else
FOREACH(CellHandle& cell, flow.tesselation().cellHandles){
#endif
Real newVol, dVol;
if (cell->info().isAlpha) continue;
switch ( cell->info().fictious() ) {
case ( 3 ) : newVol = volumeCellTripleFictious ( cell ); break;
case ( 2 ) : newVol = volumeCellDoubleFictious ( cell ); break;
case ( 1 ) : newVol = volumeCellSingleFictious ( cell ); break;
case ( 0 ) : newVol = volumeCell (cell ); break;
default: newVol = 0; break;}
dVol=cell->info().volumeSign* ( newVol - cell->info().volume() );
if (!thermalEngine) cell->info().dv() = dVol*invDeltaT;
else cell->info().dv() += dVol*invDeltaT; // thermalEngine resets dv() to zero and starts adding to it before this.
cell->info().volume() = newVol;
if (defTolerance>0) { //if the criterion is not used, then we skip these updates a save a LOT of time when Nthreads > 1
#ifdef YADE_OPENMP
#pragma omp atomic
#endif
totVol+=cell->info().volumeSign*newVol;
#ifdef YADE_OPENMP
#pragma omp atomic
#endif
totDVol+=dVol;}
}
if (defTolerance>0) epsVolMax = totDVol/totVol;
//FIXME: move this loop to FlowBoundingSphere
for (unsigned int n=0; n<flow.imposedF.size();n++) {
flow.IFCells[n]->info().dv()+=flow.imposedF[n].second;
flow.IFCells[n]->info().Pcondition=false;}
if ( debug ) cout << "Updated volumes, total =" <<totVol<<", dVol="<<totDVol<<endl;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCellSingleFictious ( Cellhandle cell )
{
Vector3r V[3];
int b=0;
int w=0;
cell->info().volumeSign=1;
Real Wall_coordinate=0;
for ( int y=0;y<4;y++ ) {
if ( ! ( cell->vertex ( y )->info().isFictious ) ) {
V[w]=positionBufferCurrent[cell->vertex ( y )->info().id()].pos;
w++;
} else {
b = cell->vertex ( y )->info().id();
const shared_ptr<Body>& wll = Body::byId ( b , scene );
if ( !solver->boundary ( b ).useMaxMin ) Wall_coordinate = wll->state->pos[solver->boundary ( b ).coordinate]+ ( solver->boundary ( b ).normal[solver->boundary ( b ).coordinate] ) *wallThickness/2.;
else Wall_coordinate = solver->boundary ( b ).p[solver->boundary ( b ).coordinate];
}
}
Real Volume = 0.5* ( ( V[0]-V[1] ).cross ( V[0]-V[2] ) ) [solver->boundary ( b ).coordinate] * ( 0.33333333333* ( V[0][solver->boundary ( b ).coordinate]+ V[1][solver->boundary ( b ).coordinate]+ V[2][solver->boundary ( b ).coordinate] ) - Wall_coordinate );
/* Real retVol;*/
/* if (cell->info().isCavity) retVol = Volume; // don't factor volume if it is a cavity cell*/
/* else retVol = Volume*volumeCorrection;*/
return math::abs ( Volume );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCellDoubleFictious ( Cellhandle cell )
{
Vector3r A=Vector3r::Zero(), AS=Vector3r::Zero(),B=Vector3r::Zero(), BS=Vector3r::Zero();
cell->info().volumeSign=1;
int b[2];
int coord[2];
Real Wall_coordinate[2];
int j=0;
bool first_sph=true;
for ( int g=0;g<4;g++ ) {
if ( cell->vertex ( g )->info().isFictious ) {
b[j] = cell->vertex ( g )->info().id();
coord[j]=solver->boundary ( b[j] ).coordinate;
if ( !solver->boundary ( b[j] ).useMaxMin ) Wall_coordinate[j] = positionBufferCurrent[b[j]].pos[coord[j]] + ( solver->boundary ( b[j] ).normal[coord[j]] ) *wallThickness/2.;
else Wall_coordinate[j] = solver->boundary ( b[j] ).p[coord[j]];
j++;
} else if ( first_sph ) {
A=AS=/*AT=*/ positionBufferCurrent[cell->vertex(g)->info().id()].pos;
first_sph=false;
} else {
B=BS=/*BT=*/ positionBufferCurrent[cell->vertex(g)->info().id()].pos;;
}
}
AS[coord[0]]=BS[coord[0]] = Wall_coordinate[0];
//first pyramid with triangular base (A,B,BS)
Real Vol1=0.5* ( ( A-BS ).cross ( B-BS ) ) [coord[1]]* ( 0.333333333* ( 2*B[coord[1]]+A[coord[1]] )-Wall_coordinate[1] );
//second pyramid with triangular base (A,AS,BS)
Real Vol2=0.5* ( ( AS-BS ).cross ( A-BS ) ) [coord[1]]* ( 0.333333333* ( B[coord[1]]+2*A[coord[1]] )-Wall_coordinate[1] );
/* Real retVol;*/
/* if (cell->info().isCavity) retVol = (Vol1+Vol2); // don't factor volume if it is a cavity cell*/
/* else retVol = (Vol1+Vol2)*volumeCorrection;*/
return math::abs ( (Vol1+Vol2) );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCellTripleFictious ( Cellhandle cell )
{
Vector3r A;
int b[3];
int coord[3];
Real Wall_coordinate[3];
int j=0;
cell->info().volumeSign=1;
for ( int g=0;g<4;g++ ) {
if ( cell->vertex ( g )->info().isFictious ) {
b[j] = cell->vertex ( g )->info().id();
coord[j]=solver->boundary ( b[j] ).coordinate;
const shared_ptr<Body>& wll = Body::byId ( b[j] , scene );
if ( !solver->boundary ( b[j] ).useMaxMin ) Wall_coordinate[j] = wll->state->pos[coord[j]] + ( solver->boundary ( b[j] ).normal[coord[j]] ) *wallThickness/2.;
else Wall_coordinate[j] = solver->boundary ( b[j] ).p[coord[j]];
j++;
} else { /* if (! cell->vertex(g)->info().isAlpha) { */
A = positionBufferCurrent[cell->vertex(g)->info().id()].pos; // can't we just use the positionbuffer here instead of below?
//const shared_ptr<Body>& sph = Body::byId ( cell->vertex ( g )->info().id(), scene );
//A= ( sph->state->pos );
}
}
Real Volume = ( A[coord[0]]-Wall_coordinate[0] ) * ( A[coord[1]]-Wall_coordinate[1] ) * ( A[coord[2]]-Wall_coordinate[2] );
/* Real retVol;*/
/* if (cell->info().isCavity) retVol = Volume; // don't factor volume if it is a cavity cell*/
/* else retVol = Volume*volumeCorrection;*/
return math::abs ( Volume );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCell ( Cellhandle cell )
{
static const Real inv6 = 1/6.;
const Vector3r& p0 = positionBufferCurrent[cell->vertex ( 0 )->info().id()].pos;
const Vector3r& p1 = positionBufferCurrent[cell->vertex ( 1 )->info().id()].pos;
const Vector3r& p2 = positionBufferCurrent[cell->vertex ( 2 )->info().id()].pos;
const Vector3r& p3 = positionBufferCurrent[cell->vertex ( 3 )->info().id()].pos;
Real volume = -inv6 * ((p0-p1).cross(p0-p2)).dot(p0-p3);
if ( ! ( cell->info().volumeSign ) ) cell->info().volumeSign= ( volume>0 ) ?1:-1;
Real retVol;
if (cell->info().isCavity) retVol = volume; // don't factor volume if it is a cavity cell
else retVol = volume*volumeCorrection;
return retVol;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::computeViscousForces ( Solver& flow )
{
using math::max; // when used inside function it does not leak - it is safe.
if (normalLubrication || shearLubrication || viscousShear){
if ( debug ) cout << "Application of viscous forces" << endl;
if ( debug ) cout << "Number of edges = " << flow.edgeIds.size() << endl;
for ( unsigned int k=0; k<flow.shearLubricationForces.size(); k++ ) flow.shearLubricationForces[k]=Vector3r::Zero();
for ( unsigned int k=0; k<flow.shearLubricationTorques.size(); k++ ) flow.shearLubricationTorques[k]=Vector3r::Zero();
for ( unsigned int k=0; k<flow.pumpLubricationTorques.size(); k++ ) flow.pumpLubricationTorques[k]=Vector3r::Zero();
for ( unsigned int k=0; k<flow.twistLubricationTorques.size(); k++ ) flow.twistLubricationTorques[k]=Vector3r::Zero();
for ( unsigned int k=0; k<flow.shearLubricationBodyStress.size(); k++) flow.shearLubricationBodyStress[k]=Matrix3r::Zero();
for ( unsigned int k=0; k<flow.normalLubricationForce.size(); k++ ) flow.normalLubricationForce[k]=Vector3r::Zero();
for ( unsigned int k=0; k<flow.normalLubricationBodyStress.size(); k++) flow.normalLubricationBodyStress[k]=Matrix3r::Zero();
//typedef typename Solver::Tesselation Tesselation;
const Tesselation& Tes = flow.tesselation();
flow.deltaShearVel.clear(); flow.normalV.clear(); flow.deltaNormVel.clear(); flow.surfaceDistance.clear(); flow.onlySpheresInteractions.clear(); flow.normalStressInteraction.clear(); flow.shearStressInteraction.clear();
for ( int i=0; i< ( int ) flow.edgeIds.size(); i++ ) {
const VertexInfo& vi1 = *flow.edgeIds[i].first;
const VertexInfo& vi2 = *flow.edgeIds[i].second;
const int& id1 = vi1.id();
const int& id2 = vi2.id();
int hasFictious= Tes.vertex ( id1 )->info().isFictious + Tes.vertex ( id2 )->info().isFictious;
if (hasFictious>0 or id1==id2) continue;
const shared_ptr<Body>& sph1 = Body::byId ( id1, scene );
const shared_ptr<Body>& sph2 = Body::byId ( id2, scene );
Sphere* s1=YADE_CAST<Sphere*> ( sph1->shape.get() );
Sphere* s2=YADE_CAST<Sphere*> ( sph2->shape.get() );
const Real& r1 = s1->radius;
const Real& r2 = s2->radius;
Vector3r deltaV = Vector3r::Zero();
Real deltaNormV = 0;
Vector3r deltaShearV = Vector3r::Zero();
Vector3r O1O2Vector = Vector3r::Zero();
Real O1O2 = 0;
Vector3r normal2 = Vector3r::Zero();
Real surfaceDist = 0;
Vector3r O1CVector = Vector3r::Zero();
Vector3r O2CVector = Vector3r::Zero();
Real meanRad = 0 ;
Real Rh = 0;
Vector3r deltaAngVel = Vector3r::Zero();
Vector3r deltaShearAngVel = Vector3r::Zero();
Vector3r shearLubF = Vector3r::Zero();
Vector3r normaLubF = Vector3r::Zero();
Vector3r pumpT = Vector3r::Zero();
Vector3r deltaAngNormVel = Vector3r::Zero();
Vector3r twistT = Vector3r::Zero();
Vector3r angVel1 = Vector3r::Zero();
Vector3r angVel2 = Vector3r::Zero();
//FIXME: if periodic and velGrad!=0, then deltaV should account for velGrad, not the case currently
if ( !hasFictious ){
O1O2Vector = sph2->state->pos + makeVector3r(vi2.ghostShift()) - sph1->state->pos - makeVector3r(vi1.ghostShift());
O1O2 = O1O2Vector.norm();
normal2= (O1O2Vector/O1O2);
surfaceDist = O1O2 - r2 - r1;
//FIXME: what is that?
O1CVector = (O1O2/2. + (pow(r1,2) - pow(r2,2)) / (2.*O1O2))*normal2;
O2CVector = -(O1O2Vector - O1CVector);
meanRad = (r2 + r1)/2.;
Rh = (r1 < r2)? surfaceDist + 0.45 * r1 : surfaceDist + 0.45 * r2;
deltaV = (sph2->state->vel + sph2->state->angVel.cross(-r2 * normal2)) - (sph1->state->vel+ sph1->state->angVel.cross(r1 * normal2));
angVel1 = sph1->state->angVel;
angVel2 = sph2->state->angVel;
deltaAngVel = sph2->state->angVel - sph1->state->angVel;
} else {
if ( hasFictious==1 ) {//for the fictious sphere, use velocity of the boundary, not of the body
bool v1fictious = Tes.vertex ( id1 )->info().isFictious;
int bnd = v1fictious? id1 : id2;
int coord = flow.boundary(bnd).coordinate;
O1O2 = v1fictious ? math::abs((sph2->state->pos + makeVector3r(Tes.vertex(id2)->info().ghostShift()))[coord] - flow.boundary(bnd).p[coord]) : math::abs((sph1->state->pos + makeVector3r(Tes.vertex(id1)->info().ghostShift()))[coord] - flow.boundary(bnd).p[coord]);
if(v1fictious)
normal2 = makeVector3r(flow.boundary(id1).normal);
else
normal2 = -makeVector3r(flow.boundary(id2).normal);
O1O2Vector = O1O2 * normal2;
meanRad = v1fictious ? r2:r1;
surfaceDist = O1O2 - meanRad;
if (v1fictious){
O1CVector = Vector3r::Zero();
O2CVector = - O1O2Vector;}
else{
O1CVector = O1O2Vector;
O2CVector = Vector3r::Zero();}
Rh = surfaceDist + 0.45 * meanRad;
Vector3r v1 = ( Tes.vertex ( id1 )->info().isFictious ) ? flow.boundary ( id1 ).velocity:sph1->state->vel + sph1->state->angVel.cross(r1 * normal2);
Vector3r v2 = ( Tes.vertex ( id2 )->info().isFictious ) ? flow.boundary ( id2 ).velocity:sph2->state->vel + sph2->state->angVel.cross(-r2 * (normal2));
deltaV = v2-v1;
angVel1 = ( Tes.vertex ( id1 )->info().isFictious ) ? Vector3r::Zero() : sph1->state->angVel;
angVel2 = ( Tes.vertex ( id2 )->info().isFictious ) ? Vector3r::Zero() : sph2->state->angVel;
deltaAngVel = angVel2 - angVel1;
}
}
deltaShearV = deltaV - ( normal2.dot ( deltaV ) ) *normal2;
deltaShearAngVel = deltaAngVel - ( normal2.dot ( deltaAngVel ) ) *normal2;
flow.deltaShearVel.push_back(deltaShearV);
flow.normalV.push_back(normal2);
flow.surfaceDistance.push_back(max(surfaceDist, 0.) + eps*meanRad);
/// Compute the shear Lubrication force and torque on each particle
if (shearLubrication)
shearLubF = flow.computeShearLubricationForce(deltaShearV,surfaceDist,i,eps,O1O2,meanRad);
else if (viscousShear)
shearLubF = flow.computeViscousShearForce ( deltaShearV, i , Rh);
if (viscousShear || shearLubrication){
flow.shearLubricationForces[id1]+=shearLubF;
flow.shearLubricationForces[id2]+=(-shearLubF);
flow.shearLubricationTorques[id1]+=O1CVector.cross(shearLubF);
flow.shearLubricationTorques[id2]+=O2CVector.cross(-shearLubF);
/// Compute the pump Lubrication torque on each particle
if (pumpTorque){
pumpT = flow.computePumpTorque(deltaShearAngVel, surfaceDist, i, eps, meanRad );
flow.pumpLubricationTorques[id1]+=(-pumpT);
flow.pumpLubricationTorques[id2]+=pumpT;}
/// Compute the twist Lubrication torque on each particle
if (twistTorque){
deltaAngNormVel = (normal2.dot(deltaAngVel))*normal2 ;
twistT = flow.computeTwistTorque(deltaAngNormVel, surfaceDist, i, eps, meanRad );
flow.twistLubricationTorques[id1]+=(-twistT);
flow.twistLubricationTorques[id2]+=twistT;
}
}
/// Compute the viscous shear stress on each particle
if (viscousShearBodyStress){
flow.shearLubricationBodyStress[id1] += shearLubF * O1CVector.transpose()/ (4.0/3.0 *3.14* pow(r1,3));
flow.shearLubricationBodyStress[id2] += (-shearLubF) * O2CVector.transpose()/ (4.0/3.0 *3.14* pow(r2,3));
flow.shearStressInteraction.push_back(shearLubF * O1O2Vector.transpose()/(4.0/3.0 *3.14* pow(r1,3)));
}
/// Compute the normal2 lubrication force applied on each particle
if (normalLubrication){
deltaNormV = normal2.dot(deltaV);
flow.deltaNormVel.push_back(deltaNormV * normal2);
normaLubF = flow.computeNormalLubricationForce (deltaNormV, surfaceDist, i,eps,stiffness,scene->dt,meanRad)*normal2;
flow.normalLubricationForce[id1]+=normaLubF;
flow.normalLubricationForce[id2]+=(-normaLubF);
/// Compute the normal2 lubrication stress on each particle
if (viscousNormalBodyStress){
flow.normalLubricationBodyStress[id1] += normaLubF * O1CVector.transpose()/ (4.0/3.0 *3.14* pow(r1,3));
flow.normalLubricationBodyStress[id2] += (-normaLubF) *O2CVector.transpose() / (4.0/3.0 *3.14* pow(r2,3));
flow.normalStressInteraction.push_back(normaLubF * O1O2Vector.transpose()/(4.0/3.0 *3.14* pow(r1,3)));
}
}
if (!hasFictious)
flow.onlySpheresInteractions.push_back(i);
}
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
Vector3r TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::averageVelocity()
{
solver->averageRelativeCellVelocity();
Vector3r meanVel ( 0,0,0 );
Real volume=0;
FiniteCellsIterator cell_end = solver->T[solver->currentTes].Triangulation().finite_cells_end();
for ( FiniteCellsIterator cell = solver->T[solver->currentTes].Triangulation().finite_cells_begin(); cell != cell_end; cell++ ) {
//We could also define velocity using cell's center
// if ( !cell->info().isReal() ) continue;
if ( cell->info().isGhost ) continue;
for ( int i=0;i<3;i++ )
meanVel[i]=meanVel[i]+ ( ( cell->info().averageVelocity() ) [i] * math::abs ( cell->info().volume() ) );
volume+=math::abs ( cell->info().volume() );
}
return ( meanVel/volume );
}
#ifdef LINSOLV
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::updateLinearSystem (Solver& flow)
{
trickPermeability(&flow);
flow.isLinearSystemSet = false;
flow.factorizedEigenSolver = false;
if (!first) flow.reuseOrdering = true;
meshUpdateInterval = -1;
defTolerance = -1;
permUpdateIters = 0;
}
#endif
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::remeshForFreshlyBrokenBonds ()
{
bool foundBreak = false;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
if (!I || !I->phys.get()) continue;
if (I->isReal() && JCFpmPhys::getClassIndexStatic()==I->phys->getClassIndex()) {
JCFpmPhys* jcfpmphys = YADE_CAST<JCFpmPhys*>(I->phys.get());
if (!jcfpmphys) continue;
if (jcfpmphys->breakOccurred && !foundBreak){
updateTriangulation = true;
jcfpmphys->breakOccurred = false;
foundBreak = true;
} else if (jcfpmphys->breakOccurred && foundBreak) jcfpmphys->breakOccurred = false;
}
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::applyForces(Solver& /*flow*/)
{
Vector3r force;
Vector3r torque;
FiniteVerticesIterator verticesEnd = solver->T[solver->currentTes].Triangulation().finite_vertices_end();
size_t bodiesLength = scene->bodies->size();
for ( FiniteVerticesIterator vIt = solver->T[solver->currentTes].Triangulation().finite_vertices_begin(); vIt != verticesEnd; vIt++ )
{
int vId = vIt->info().id();
force = pressureForce ? Vector3r ( vIt->info().forces[0],vIt->info().forces[1],vIt->info().forces[2] ): Vector3r(0,0,0);
torque = Vector3r(0,0,0);
if (shearLubrication || viscousShear){
force = force + solver->shearLubricationForces[vId];
torque = torque + solver->shearLubricationTorques[vId];
if (pumpTorque)
torque = torque + solver->pumpLubricationTorques[vId];
}
if (twistTorque) torque = torque + solver->twistLubricationTorques[vId];
if (normalLubrication) force = force + solver-> normalLubricationForce[vId];
if (vIt->info().id() < bodiesLength) {
scene->forces.addForce ( vId, force);
scene->forces.addTorque ( vId, torque);}
}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
bool TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::isCellNeighbor(unsigned int cell1, unsigned int cell2)
{
bool neighbor=false;
for (unsigned int i=0;i<4;i++) {
if (solver->T[solver->currentTes].cellHandles[cell1]->neighbor(i)->info().id==cell2)
{neighbor=true;break;}
}
return neighbor;
}
} // namespace yade
#endif //FLOW_ENGINE
#endif /* YADE_CGAL */
|