File: FlowEngine.ipp.in

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (1017 lines) | stat: -rw-r--r-- 51,340 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
/*************************************************************************
*  Copyright (C) 2009 by Emanuele Catalano <catalano@grenoble-inp.fr>    *
*  Copyright (C) 2009 by Bruno Chareyre <bruno.chareyre@grenoble-inp.fr>     *
*                                                                        *
*  This program is free software; it is licensed under the terms of the  *
*  GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#ifdef YADE_CGAL

#ifdef FLOW_ENGINE

#ifdef LINSOLV
#include <cholmod.h>
#endif
//For pyRunString
#include<lib/pyutil/gil.hpp>
#include<pkg/dem/JointedCohesiveFrictionalPM.hpp>
#include <boost/thread/thread.hpp>
#include <chrono>

namespace yade { // Cannot have #include directive inside.

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::~TemplateFlowEngine_@TEMPLATE_FLOW_NAME@() {}

// YADE_PLUGIN((TFlowEng));
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
unsigned int TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposePressure(Vector3r pos, Real p)
{
// 	if (!flow) LOG_ERROR("no flow defined yet, run at least one iter");
	solver->imposedP.push_back( pair<CGT::Point,Real>(CGT::Point(pos[0],pos[1],pos[2]),p) );
	//force immediate update of boundary conditions
	updateTriangulation=true;
	return solver->imposedP.size()-1;
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
unsigned int TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposeCavity(Vector3r pos)
{
	solver->imposedCavity.push_back( CGT::Point(pos[0],pos[1],pos[2]));
	//force immediate update of boundary conditions
	//updateTriangulation=true;
	return solver->imposedCavity.size()-1;
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
unsigned int TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposePressureFromId(unsigned long id, Real p)
{
	return imposePressure(cellBarycenterFromId(id),p);
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::action()
{
       if ( !isActivated ) return;
        timingDeltas->start();
        if (desiredPorosity != 0){
	    Real actualPorosity = Shop::getPorosityAlt();
	    volumeCorrection = desiredPorosity/actualPorosity;
        }
	setPositionsBuffer(true);
	if (!first and alphaBound>=0) addAlphaToPositionsBuffer(true);
	timingDeltas->checkpoint ( "Position buffer" );
        if (first) {
	  buildTriangulation(pZero,*solver);  // move before set positions since we need vertex locations for proper volume estimates
          if (alphaBound>=0) addAlphaToPositionsBuffer(true);
          if (multithread) setPositionsBuffer(false);
	  initializeVolumes(*solver);
	  if (phiZero>0) solver->adjustCavityCompressibility(pZero);
	  backgroundSolver=solver;
	  backgroundCompleted=true;
	}

	#ifdef YADE_OPENMP
	solver->ompThreads = ompThreads>0? ompThreads : omp_get_max_threads();
	#endif
        timingDeltas->checkpoint ( "Triangulating" );
	updateVolumes ( *solver );
        timingDeltas->checkpoint ( "Update_Volumes" );

        epsVolCumulative += epsVolMax;
	retriangulationLastIter++;
	if (!updateTriangulation) updateTriangulation = // If not already set true by another function of by the user, check conditions
		(defTolerance>0 && epsVolCumulative > defTolerance) || (meshUpdateInterval>0 && retriangulationLastIter>=meshUpdateInterval);

	// remesh everytime a bond break occurs (for DFNFlow-JCFPM coupling)
	if (breakControlledRemesh) remeshForFreshlyBrokenBonds();

        ///compute flow and and forces here
	if (pressureForce){
	#ifdef LINSOLV
		permUpdateIters++;
		if (fixTriUpdatePermInt>0 && permUpdateIters >= fixTriUpdatePermInt) updateLinearSystem(*solver);
	#endif
		//

		if (controlCavityPressure) solver->adjustCavityPressure(scene->dt,1,pZero);
		if (controlCavityVolumeChange) solver->adjustCavityVolumeChange(scene->dt,1,pZero);
		if (phiZero>0) solver->adjustCavityCompressibility(pZero);
		cavityFluidDensity = getCavityDensity(); // keep this for carrying between remeshes
		solver->gaussSeidel(scene->dt);

		//if (phiZero>0) solver->adjustCavityCompressibility(pZero);
		timingDeltas->checkpoint ( "Factorize + Solve" );
		if (!decoupleForces){
 			solver->computeFacetForcesWithCache();
	    	timingDeltas->checkpoint ( "compute_Forces" );
	    	///Application of vicscous forces
	    	scene->forces.sync();
			timingDeltas->checkpoint ( "forces.sync()" );
			computeViscousForces ( *solver );
			timingDeltas->checkpoint ( "viscous forces" );
			applyForces(*solver);
	    	timingDeltas->checkpoint ( "Applying Forces" );
		} else {solver->noCache = false;}
	}
	///End compute flow and forces
	#ifdef LINSOLV
	int sleeping = 0;
	if (multithread && !first) {
		while (updateTriangulation && !backgroundCompleted) { /*cout<<"sleeping..."<<sleeping++<<endl;*/
		  sleeping++;
		boost::this_thread::sleep(boost::posix_time::microseconds(1000));}
		if (debug && sleeping) cerr<<"sleeping..."<<sleeping<<endl;
		if (updateTriangulation || ((meshUpdateInterval>0  && ellapsedIter>(0.5*meshUpdateInterval)) && backgroundCompleted)) {
			if (debug) cerr<<"switch flow solver"<<endl;
			if (useSolver==0) LOG_ERROR("background calculations not available for Gauss-Seidel");
			if (!fluxChanged) {
				if (fluidBulkModulus>0 || doInterpolate) {
					solver->interpolate (solver->T[solver->currentTes], backgroundSolver->T[backgroundSolver->currentTes]);
				}
			//Copy imposed pressures/flow/cavity from the old solver
				backgroundSolver->imposedP = vector<pair<CGT::Point,Real> >(solver->imposedP);
				backgroundSolver->imposedF = vector<pair<CGT::Point,Real> >(solver->imposedF);
				backgroundSolver->imposedCavity = vector<CGT::Point>(solver->imposedCavity);
				solver=backgroundSolver;
			} else {

				fluxChanged=false;
			}

			backgroundSolver = shared_ptr<FlowSolver> (new FlowSolver);
			if (metisForced) {backgroundSolver->eSolver.cholmod().nmethods=1; backgroundSolver->eSolver.cholmod().method[0].ordering=CHOLMOD_METIS;}
			backgroundSolver->imposedP = vector<pair<CGT::Point,Real> >(solver->imposedP);
			backgroundSolver->imposedF = vector<pair<CGT::Point,Real> >(solver->imposedF);
			backgroundSolver->imposedCavity = vector<CGT::Point>(solver->imposedCavity);
			//backgroundSolver->equivalentCompressibility = solver->equivalentCompressibility;
			if (debug) cerr<<"switched"<<endl;
			setPositionsBuffer(false);//set "parallel" buffer for background calculation
			backgroundCompleted=false;
			retriangulationLastIter=ellapsedIter;
			if (!thermalEngine) updateTriangulation=false;// thermalEngine needs this flag for reynolds numbers updates, let thermalEngine flip this flag back to false
			epsVolCumulative=0;
			ellapsedIter=0;
			boost::thread workerThread(&TemplateFlowEngine_@TEMPLATE_FLOW_NAME@::backgroundAction,this);
			workerThread.detach();
			if (debug) cerr<<"backgrounded"<<endl;
			initializeVolumes(*solver);
			computeViscousForces(*solver);
			if (debug) cerr<<"volumes initialized"<<endl;
		}
		else {
			if (debug && !backgroundCompleted) cerr<<"still computing solver in the background, ellapsedIter="<<ellapsedIter<<endl;
			ellapsedIter++;
		}
	} else
	#endif
	 {
	        if (updateTriangulation && !first) {
			buildTriangulation (pZero, *solver);
			if (alphaBound>=0) addAlphaToPositionsBuffer(true); //need to add the alpha vertices to the positions buffer
			initializeVolumes(*solver);
			computeViscousForces(*solver);
               		if (!thermalEngine) updateTriangulation = false; // thermalEngine needs this flag for reynolds numbers updates, let thermalEngine flip this flag back to false
			epsVolCumulative=0;
			retriangulationLastIter=0;
			ReTrg++;}
        }
        first=false;
        timingDeltas->checkpoint ( "triangulate + init volumes" );
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::backgroundAction()
{
	if (useSolver<1) {LOG_ERROR("background calculations not available for Gauss-Seidel"); return;}
        buildTriangulation ( pZero,*backgroundSolver );
	backgroundSolver->factorizeOnly = true;
	backgroundSolver->gaussSeidel(scene->dt);
	backgroundSolver->factorizeOnly = false;
	//FIXME(2): and here we need only cached variables, not forces <- this appears to be fixed already inside computeFacetForcesWithCache
	backgroundSolver->computeFacetForcesWithCache(/*onlyCache?*/ true);
 	backgroundCompleted = true;
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::boundaryConditions ( Solver& flow )
{
	for (int k=0;k<6;k++)	{
		flow.boundary (wallIds[k]).flowCondition=!bndCondIsPressure[k];
                flow.boundary (wallIds[k]).value=bndCondValue[k];
                flow.boundary (wallIds[k]).velocity = boundaryVelocity[k];//FIXME: needs correct implementation, maybe update the cached pos/vel?
	}
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::thermalBoundaryConditions ( Solver& flow )
{
	for (int k=0;k<6;k++)	{
		flow.thermalBoundary (wallIds[k]).fluxCondition=!bndCondIsTemperature[k];
                flow.thermalBoundary (wallIds[k]).value=thermalBndCondValue[k];
	}
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::setImposedPressure ( unsigned int cond, Real p)
{
        if ( cond>=solver->imposedP.size() ) LOG_ERROR ( "Setting p with cond higher than imposedP size." );
        solver->imposedP[cond].second=p;
        //force immediate update of boundary conditions
	solver->pressureChanged=true;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::imposeFlux ( Vector3r pos, Real flux){
        solver->imposedF.push_back ( pair<CGT::Point,Real> ( CGT::Point ( pos[0],pos[1],pos[2] ), flux ) );
	CellHandle cell=solver->T[solver->currentTes].Triangulation().locate(CGT::Sphere(pos[0],pos[1],pos[2]));
	if (cell->info().isGhost) cerr<<"Imposing pressure in a ghost cell."<<endl;
	for (unsigned int kk=0;kk<solver->IPCells.size();kk++){
		if (cell==solver->IPCells[kk]) cerr<<"Both flux and pressure are imposed in the same cell."<<endl;
		else if  (cell->info().Pcondition) cerr<<"Imposed flux fall in a pressure boundary condition."<<endl;}
	solver->IFCells.push_back(cell);
	fluxChanged=true;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::clearImposedPressure () { solver->imposedP.clear(); solver->IPCells.clear();}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::clearImposedFlux () { solver->imposedF.clear(); solver->IFCells.clear();}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::getCellFlux ( unsigned int cond) const
{
	if ( cond>=solver->imposedP.size() ) {LOG_ERROR ( "Getting flux with cond higher than imposedP size." ); return 0;}
        Real flux=0;
        typename Solver::CellHandle& cell= solver->IPCells[cond];
        for ( int ngb=0;ngb<4;ngb++ ) {
                /*if (!cell->neighbor(ngb)->info().Pcondition)*/
                flux+= cell->info().kNorm() [ngb]* ( cell->info().p()-cell->neighbor ( ngb )->info().p() );
        }
        return flux+cell->info().dv();
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::getCellFluxFromId ( unsigned long id) const
{
        if (id>=solver->T[solver->currentTes].cellHandles.size()) {LOG_ERROR("id out of range, max value is "<<solver->T[solver->currentTes].cellHandles.size()); return 0;}
        Real flux=0;
        typename Solver::CellHandle& cell= solver->T[solver->currentTes].cellHandles[id];
        for ( int ngb=0;ngb<4;ngb++ ) {
                flux+= cell->info().kNorm() [ngb]* ( cell->info().p()-cell->neighbor ( ngb )->info().p() );
        }
        return flux+cell->info().dv();
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::initSolver ( FlowSolver& flow )
{
       	flow.Vtotalissimo=0; flow.VSolidTot=0; flow.vPoral=0; flow.sSolidTot=0;
        flow.slipBoundary=slipBoundary;
        flow.kFactor = permeabilityFactor;
	flow.cavityFactor = cavityFactor;
        flow.debugOut = debug;
        flow.useSolver = useSolver;
	#ifdef LINSOLV
	flow.numSolveThreads = numSolveThreads;
	flow.numFactorizeThreads = numFactorizeThreads;
	#endif
	flow.factorizeOnly = false;
	flow.meanKStat = meanKStat;
        flow.viscosity = viscosity;
        flow.tolerance=tolerance;
        flow.relax=relax;
        flow.clampKValues = clampKValues;
	flow.maxKdivKmean = maxKdivKmean;
	flow.minKdivKmean = minKdivKmean;
        flow.meanKStat = meanKStat;
        flow.permeabilityMap = permeabilityMap;
        flow.fluidBulkModulus = fluidBulkModulus;
	flow.fluidRho = fluidRho;
	flow.fluidCp = fluidCp;
	flow.thermalEngine = thermalEngine;
	flow.phiZero = phiZero;
	flow.cavityFlux = cavityFlux;
	flow.multithread = multithread;
	flow.controlCavityPressure=controlCavityPressure;
	flow.averageCavityPressure = averageCavityPressure;
	flow.controlCavityVolumeChange=controlCavityVolumeChange;
	flow.cavityFluidDensity = cavityFluidDensity;
	if (fluidBulkModulus>0) flow.equivalentCompressibility = phiZero/pZero + (1.-phiZero)*(1./fluidBulkModulus); // initial equiv compressibility.
	flow.cavityDV = 0;
	flow.thermalPorosity=thermalPorosity;
	flow.getCHOLMODPerfTimings=getCHOLMODPerfTimings;
//         flow.tesselation().Clear();
        flow.tesselation().maxId=-1;
	flow.blockedCells.clear();
	flow.tempDependentViscosity = tempDependentViscosity;
	flow.sphericalVertexAreaCalculated=false;
        flow.xMin = 1000.0, flow.xMax = -10000.0, flow.yMin = 1000.0, flow.yMax = -10000.0, flow.zMin = 1000.0, flow.zMax = -10000.0;
	flow.tesselation().vertexHandles.clear();
	flow.tesselation().vertexHandles.resize(scene->bodies->size()+6,NULL);
	flow.tesselation().vertexHandles.shrink_to_fit();
	flow.alphaBound = alphaBound;
	flow.alphaBoundValue = alphaBoundValue;
}

#ifdef LINSOLV
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::setForceMetis ( bool force )
{
        if (force) {
		metisForced=true;
		solver->eSolver.cholmod().nmethods=1;
		solver->eSolver.cholmod().method[0].ordering=CHOLMOD_METIS;
	} else {cholmod_defaults(&(solver->eSolver.cholmod())); metisForced=false;}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
bool TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::getForceMetis () const {return (solver->eSolver.cholmod().nmethods==1);}
#endif
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::buildTriangulation ( Solver& flow )
{
        buildTriangulation ( 0.f,flow );
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Woverloaded-virtual"
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::buildTriangulation ( Real pZero2, Solver& flow )
{
 	if (first) flow.currentTes=0;
        else {  flow.currentTes=!flow.currentTes; if (debug) cout << "--------RETRIANGULATION-----------" << endl;}
	flow.resetNetwork();
	initSolver(flow);
        if (alphaBound<0) addBoundary ( flow ); // these bounding planes are complicating things with alpha
        triangulate ( flow );
        if ( debug ) cout << endl << "Tesselating------" << endl << endl;
        flow.tesselation().compute();
        if (alphaBound<0) flow.defineFictiousCells(); // fictious cells only exist in cuboids
	// For faster loops on cells define these vectors
	flow.tesselation().cellHandles.clear();
	flow.tesselation().cellHandles.reserve(flow.tesselation().Triangulation().number_of_finite_cells());
	FiniteCellsIterator cell_end = flow.tesselation().Triangulation().finite_cells_end();
	int k=0;
	for ( FiniteCellsIterator cell = flow.tesselation().Triangulation().finite_cells_begin(); cell != cell_end; cell++ ){
		flow.tesselation().cellHandles.push_back(cell);
		cell->info().id=k++;}//define unique numbering now, corresponds to position in cellHandles
	flow.tesselation().cellHandles.shrink_to_fit();
	// for fast loop on facets ( useful in thermal engine only)
	if (thermalEngine){
		flow.tesselation().facetCells.clear();
		flow.tesselation().facetCells.reserve(flow.tesselation().Triangulation().number_of_finite_facets());
		for ( FiniteCellsIterator cell = flow.tesselation().Triangulation().finite_cells_begin(); cell != cell_end; cell++ ){
			for(int i=0;i<4;i++){
				if (cell->info().id<cell->neighbor(i)->info().id){
					flow.tesselation().facetCells.push_back(std::pair<CellHandle,int>(cell,i));
				}
			}
		}
		flow.tesselation().facetCells.shrink_to_fit();
	}


        flow.displayStatistics ();
	if(!blockHook.empty()){ LOG_INFO("Running blockHook: "<<blockHook); pyRunString(blockHook); }

	if (multithread && fluidBulkModulus>0) initializeVolumes(flow);  // needed for multithreaded compressible flow (old site, fixed bug https://bugs.launchpad.net/yade/+bug/1687355)
	trickPermeability(&flow); //This virtual function does nothing yet, derived class may overload it to make permeability different (see DFN engine)
        porosity = flow.vPoralPorosity/flow.vTotalPorosity;

        if (alphaBound<0) boundaryConditions ( flow );
        flow.initializePressure ( pZero2 );
	flow.computePermeability();
	if (thermalEngine) {
		thermalBoundaryConditions ( flow );
		flow.initializeTemperatures ( tZero );
		flow.sphericalVertexAreaCalculated=false;
	}


        if ( !first && !multithread && (useSolver==0 || fluidBulkModulus>0 || doInterpolate || thermalEngine)){
		flow.interpolate ( flow.T[!flow.currentTes], flow.tesselation() );
		if (phiZero>0) flow.adjustCavityCompressibility(pZero2); // consider compressibility of air in cavity
	}
        if ( waveAction ) flow.applySinusoidalPressure ( flow.tesselation().Triangulation(), sineMagnitude, sineAverage, 30 );
	else if (boundaryPressure.size()!=0) flow.applyUserDefinedPressure ( flow.tesselation().Triangulation(), boundaryXPos , boundaryPressure);
        if (normalLubrication || shearLubrication || viscousShear) flow.computeEdgesSurfaces();
}
#pragma GCC diagnostic pop
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::setPositionsBuffer(bool current)
{
	vector<posData>& buffer = current? positionBufferCurrent : positionBufferParallel;
	buffer.clear();
	buffer.resize(scene->bodies->size());
	buffer.shrink_to_fit();
	shared_ptr<Sphere> sph ( new Sphere );
	const int Sph_Index = sph->getClassIndexStatic();
	FOREACH ( const shared_ptr<Body>& b, *scene->bodies ) {
		if (!b || (mask>0 and !b->maskCompatible(mask)) || (convertClumps && b->isClumpMember()) || (b->isClump() && !convertClumps)) continue;
		posData& dat = buffer[b->getId()];
		dat.id=b->getId();
		dat.pos=b->state->pos;
		dat.isSphere= (b->shape->getClassIndex() ==  Sph_Index);
		dat.isClump = b->isClump();
		if (dat.isSphere) dat.radius = YADE_CAST<Sphere*>(b->shape.get())->radius;
		if (dat.isClump) {
			const shared_ptr<Clump>& clump = YADE_PTR_CAST<Clump>(b->shape);
			const shared_ptr<Body>& member = Body::byId(clump->members.begin()->first,scene);
			dat.radius = pow( (3*b->state->mass)/(4*Mathr::PI*member->material->density) , 1.0/3.0); //use equivalent radius of clump (just valid for nearly spherical clumps)
		}
		dat.exists=true;
	}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::addAlphaToPositionsBuffer(bool current)
{
	vector<posData>& buffer = current ? positionBufferCurrent : positionBufferParallel;
	const int oldBufferSize = buffer.size();
	buffer.resize(solver->T[solver->currentTes].maxId+1);
 	for (int i=oldBufferSize;i<=solver->T[solver->currentTes].maxId;i++) {
		if (i<solver->alphaIdOffset) continue;
		posData& dat = buffer[solver->T[solver->currentTes].vertexHandles[i]->info().id()];
 		 // we dont care about any idices less than the alphavertices
 		dat.id = solver->T[solver->currentTes].vertexHandles[i]->info().id();
 		dat.pos=Vector3r(solver->T[solver->currentTes].vertexHandles[i]->point().x(),solver->T[solver->currentTes].vertexHandles[i]->point().y(),solver->T[solver->currentTes].vertexHandles[i]->point().z());
 		dat.radius = sqrt(solver->T[solver->currentTes].vertexHandles[i]->point().weight());
		dat.exists=false; // during retriangulation with current position buffer, we dont want it to add these.
 	}
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::addBoundary ( Solver& flow )
{
	using math::max; // when used inside function it does not leak - it is safe.
	using math::min;
	vector<posData>& buffer = multithread ? positionBufferParallel : positionBufferCurrent;
        solver->xMin = Mathr::MAX_REAL, solver->xMax = -Mathr::MAX_REAL, solver->yMin = Mathr::MAX_REAL, solver->yMax = -Mathr::MAX_REAL, solver->zMin = Mathr::MAX_REAL, solver->zMax = -Mathr::MAX_REAL;
        FOREACH ( const posData& b, buffer ) {
                if ( !b.exists ) continue;
                if ( b.isSphere || b.isClump ) {
                        const Real& rad = b.radius;
                        const Real& x = b.pos[0];
                        const Real& y = b.pos[1];
                        const Real& z = b.pos[2];
                        flow.xMin = min ( flow.xMin, x-rad );
                        flow.xMax = max ( flow.xMax, x+rad );
                        flow.yMin = min ( flow.yMin, y-rad );
                        flow.yMax = max ( flow.yMax, y+rad );
                        flow.zMin = min ( flow.zMin, z-rad );
                        flow.zMax = max ( flow.zMax, z+rad );
                }
        }
	//set idOffset if<0, in that case overwrite wallIds and assign values out of range scene->bodies
        if (idOffset<0) {
	  idOffset = scene->bodies->size();
	  for (int i=0; i<6; ++i){wallIds[i]=i+idOffset;}
	}
        flow.idOffset = idOffset;
        flow.sectionArea = ( flow.xMax - flow.xMin ) * ( flow.zMax-flow.zMin );
        flow.vTotal = ( flow.xMax-flow.xMin ) * ( flow.yMax-flow.yMin ) * ( flow.zMax-flow.zMin );
        flow.yMinId=wallIds[ymin];
        flow.yMaxId=wallIds[ymax];
        flow.xMaxId=wallIds[xmax];
        flow.xMinId=wallIds[xmin];
        flow.zMinId=wallIds[zmin];
        flow.zMaxId=wallIds[zmax];

        //FIXME: Id's order in boundsIds is done according to the enumeration of boundaries from TXStressController.hpp, line 31. DON'T CHANGE IT!
        flow.boundsIds[0]= &flow.xMinId;
        flow.boundsIds[1]= &flow.xMaxId;
        flow.boundsIds[2]= &flow.yMinId;
        flow.boundsIds[3]= &flow.yMaxId;
        flow.boundsIds[4]= &flow.zMinId;
        flow.boundsIds[5]= &flow.zMaxId;

	for (int k=0;k<6;k++) flow.boundary ( *flow.boundsIds[k] ).useMaxMin = boundaryUseMaxMin[k];
	//for (int k=0;k<6;k++) flow.thermalBoundary ( *flow.boundsIds[k] ).useMaxMin = boundaryUseMaxMin[k];

        flow.cornerMin = CGT::Point ( flow.xMin, flow.yMin, flow.zMin );
        flow.cornerMax = CGT::Point ( flow.xMax, flow.yMax, flow.zMax );

        //assign BCs types and values
        boundaryConditions ( flow );
	if (thermalEngine) thermalBoundaryConditions ( flow );
        Real center[3];
        for ( int i=0; i<6; i++ ) {
                if ( *flow.boundsIds[i]<0 ) continue;
                CGT::CVector Normal ( normal[i].x(), normal[i].y(), normal[i].z() );
                if ( flow.boundary ( *flow.boundsIds[i] ).useMaxMin ) flow.addBoundingPlane(Normal, *flow.boundsIds[i] );
                else {
			for ( int h=0;h<3;h++ ) center[h] = buffer[*flow.boundsIds[i]].pos[h];
                        flow.addBoundingPlane (center, wallThickness, Normal,*flow.boundsIds[i] );
                }
        }
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::triangulate ( Solver& flow )
{
///Using Tesselation wrapper (faster)
// 	TesselationWrapper TW;
// 	if (TW.Tes) delete TW.Tes;
// 	TW.Tes = &(flow.tesselation());//point to the current Tes we have in Flowengine
// 	TW.insertSceneSpheres();//TW is now really inserting in TemplateFlowEngine_@TEMPLATE_FLOW_NAME@, using the faster insert(begin,end)
// 	TW.Tes = NULL;//otherwise, Tes would be deleted by ~TesselationWrapper() at the end of the function.
///Using one-by-one insertion
	vector<posData>& buffer = multithread ? positionBufferParallel : positionBufferCurrent;
	FOREACH ( const posData& b, buffer ) {
		if ( !b.exists || b.id==ignoredBody ) continue;
		if ( b.isSphere || b.isClump ) flow.tesselation().insert ( b.pos[0], b.pos[1], b.pos[2], b.radius, b.id );
	}

	if (alphaBound>=0) flow.setAlphaBoundary(alphaBound, fixedAlpha);

	flow.shearLubricationForces.resize ( flow.tesselation().maxId+1 );
	flow.shearLubricationTorques.resize ( flow.tesselation().maxId+1 );
	flow.pumpLubricationTorques.resize ( flow.tesselation().maxId+1 );
	flow.twistLubricationTorques.resize ( flow.tesselation().maxId+1 );
	flow.shearLubricationBodyStress.resize ( flow.tesselation().maxId+1 );
	flow.normalLubricationForce.resize ( flow.tesselation().maxId+1 );
	flow.normalLubricationBodyStress.resize ( flow.tesselation().maxId+1 );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::initializeVolumes ( Solver& flow )
{
	//typedef typename Solver::FiniteVerticesIterator FiniteVerticesIterator;
	using math::abs; // when used inside function it does not leak - it is safe.
	using math::max;

	FiniteVerticesIterator vertices_end = flow.tesselation().Triangulation().finite_vertices_end();
	CGT::CVector Zero(0,0,0);
	for (FiniteVerticesIterator V_it = flow.tesselation().Triangulation().finite_vertices_begin(); V_it!= vertices_end; V_it++) V_it->info().forces=Zero;

	FOREACH(CellHandle& cell, flow.tesselation().cellHandles)
	{
		switch ( cell->info().fictious() )
		{
			case ( 0 ) : cell->info().volume() = volumeCell ( cell ); break;
			case ( 1 ) : cell->info().volume() = volumeCellSingleFictious ( cell ); break;
			case ( 2 ) : cell->info().volume() = volumeCellDoubleFictious ( cell ); break;
			case ( 3 ) : cell->info().volume() = volumeCellTripleFictious ( cell ); break;
			default: break;
		}

	if (flatThreshold>=0 && cell->info().volume() <= flatThreshold) cell->info().blocked = true;
	if ((flow.fluidBulkModulus>0 || thermalEngine) && desiredPorosity>0 && !cell->info().blocked) {
		cell->info().invVoidVolume() = 1. / cell->info().volume();
	} else if ((flow.fluidBulkModulus>0 || thermalEngine || iniVoidVolumes) && desiredPorosity == 0 && !cell->info().blocked) {
		cell->info().invVoidVolume() = 1. / max(minimumPorosity*abs(cell->info().volume()),(abs(cell->info().volume()) - flow.volumeSolidPore(cell) ));
	}
	}
	if (debug) cout << "Volumes initialised." << endl;
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::averageRealCellVelocity()
{
        solver->averageRelativeCellVelocity();
        Vector3r Vel ( 0,0,0 );
        //AVERAGE CELL VELOCITY
        FiniteCellsIterator cell_end = solver->T[solver->currentTes].Triangulation().finite_cells_end();
        for ( FiniteCellsIterator cell = solver->T[solver->currentTes].Triangulation().finite_cells_begin(); cell != cell_end; cell++ ) {
                for ( int g=0;g<4;g++ ) {
                        if ( !cell->vertex ( g )->info().isFictious ) {
                                const shared_ptr<Body>& sph = Body::byId ( cell->vertex ( g )->info().id(), scene );
                                for ( int i=0;i<3;i++ ) Vel[i] = Vel[i] + sph->state->vel[i]/4;
                        }
                }
                RTriangulation& Tri = solver->T[solver->currentTes].Triangulation();
                CGT::Point pos_av_facet;
                Real volume_facet_translation = 0;
                CGT::CVector Vel_av ( Vel[0], Vel[1], Vel[2] );
                for ( int i=0; i<4; i++ ) {
                        volume_facet_translation = 0;
                        if ( !Tri.is_infinite ( cell->neighbor ( i ) ) ) {
                                CGT::CVector Surfk = cell->info()-cell->neighbor ( i )->info();
                                Real area = sqrt ( Surfk.squared_length() );
                                Surfk = Surfk/area;
                                CGT::CVector branch = cell->vertex ( facetVertices[i][0] )->point() - cell->info();
                                pos_av_facet = ( CGT::Point ) cell->info() + ( branch*Surfk ) *Surfk;
                                volume_facet_translation += Vel_av*cell->info().facetSurfaces[i];
                                cell->info().averageVelocity() = cell->info().averageVelocity() - volume_facet_translation/math::abs(cell->info().volume()) * ( pos_av_facet-CGAL::ORIGIN );
                        }
                }
        }
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::updateVolumes ( Solver& flow )
{
        if ( debug ) cout << "Updating volumes.............." << endl;
        Real invDeltaT = 1/scene->dt;
        epsVolMax=0;
        Real totVol=0; Real totDVol=0;
	#ifdef YADE_OPENMP
	const long size=flow.tesselation().cellHandles.size();
	#pragma omp parallel for num_threads(ompThreads>0 ? ompThreads : 1)
	for(long i=0; i<size; i++){
		CellHandle& cell = flow.tesselation().cellHandles[i];
	#else
	FOREACH(CellHandle& cell, flow.tesselation().cellHandles){
	#endif
		Real newVol, dVol;
		if (cell->info().isAlpha) continue;
                switch ( cell->info().fictious() ) {
                	case ( 3 ) : newVol = volumeCellTripleFictious ( cell ); break;
               		case ( 2 ) : newVol = volumeCellDoubleFictious ( cell ); break;
                	case ( 1 ) : newVol = volumeCellSingleFictious ( cell ); break;
			case ( 0 ) : newVol = volumeCell (cell ); break;
                	default: newVol = 0; break;}
                dVol=cell->info().volumeSign* ( newVol - cell->info().volume() );
		if (!thermalEngine) cell->info().dv() = dVol*invDeltaT;
		else cell->info().dv() += dVol*invDeltaT; // thermalEngine resets dv() to zero and starts adding to it before this.
                cell->info().volume() = newVol;
		if (defTolerance>0) { //if the criterion is not used, then we skip these updates a save a LOT of time when Nthreads > 1
			#ifdef YADE_OPENMP
			#pragma omp atomic
			#endif
			totVol+=cell->info().volumeSign*newVol;
			#ifdef YADE_OPENMP
			#pragma omp atomic
			#endif
                	totDVol+=dVol;}
        }
	if (defTolerance>0)  epsVolMax = totDVol/totVol;
	//FIXME: move this loop to FlowBoundingSphere
	for (unsigned int n=0; n<flow.imposedF.size();n++) {
		flow.IFCells[n]->info().dv()+=flow.imposedF[n].second;
		flow.IFCells[n]->info().Pcondition=false;}
        if ( debug ) cout << "Updated volumes, total =" <<totVol<<", dVol="<<totDVol<<endl;
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCellSingleFictious ( Cellhandle cell )
{
        Vector3r V[3];
        int b=0;
        int w=0;
        cell->info().volumeSign=1;
        Real Wall_coordinate=0;

        for ( int y=0;y<4;y++ ) {
                if ( ! ( cell->vertex ( y )->info().isFictious ) ) {
                        V[w]=positionBufferCurrent[cell->vertex ( y )->info().id()].pos;
			w++;
                } else {
                        b = cell->vertex ( y )->info().id();
                        const shared_ptr<Body>& wll = Body::byId ( b , scene );
                        if ( !solver->boundary ( b ).useMaxMin ) Wall_coordinate = wll->state->pos[solver->boundary ( b ).coordinate]+ ( solver->boundary ( b ).normal[solver->boundary ( b ).coordinate] ) *wallThickness/2.;
                        else Wall_coordinate = solver->boundary ( b ).p[solver->boundary ( b ).coordinate];
                }
        }
        Real Volume = 0.5* ( ( V[0]-V[1] ).cross ( V[0]-V[2] ) ) [solver->boundary ( b ).coordinate] * ( 0.33333333333* ( V[0][solver->boundary ( b ).coordinate]+ V[1][solver->boundary ( b ).coordinate]+ V[2][solver->boundary ( b ).coordinate] ) - Wall_coordinate );
/*	Real retVol;*/
/*	if (cell->info().isCavity) retVol = Volume; // don't factor volume if it is a cavity cell*/
/*	else retVol = Volume*volumeCorrection;*/
        return math::abs ( Volume );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCellDoubleFictious ( Cellhandle cell )
{
        Vector3r A=Vector3r::Zero(), AS=Vector3r::Zero(),B=Vector3r::Zero(), BS=Vector3r::Zero();

        cell->info().volumeSign=1;
        int b[2];
        int coord[2];
        Real Wall_coordinate[2];
        int j=0;
        bool first_sph=true;

        for ( int g=0;g<4;g++ ) {
                if ( cell->vertex ( g )->info().isFictious ) {
                        b[j] = cell->vertex ( g )->info().id();
                        coord[j]=solver->boundary ( b[j] ).coordinate;
                        if ( !solver->boundary ( b[j] ).useMaxMin ) Wall_coordinate[j] = positionBufferCurrent[b[j]].pos[coord[j]] + ( solver->boundary ( b[j] ).normal[coord[j]] ) *wallThickness/2.;
                        else Wall_coordinate[j] = solver->boundary ( b[j] ).p[coord[j]];
                        j++;
                } else if ( first_sph ) {
                        A=AS=/*AT=*/ positionBufferCurrent[cell->vertex(g)->info().id()].pos;
                        first_sph=false;
                } else {
                        B=BS=/*BT=*/ positionBufferCurrent[cell->vertex(g)->info().id()].pos;;
                }
        }
        AS[coord[0]]=BS[coord[0]] = Wall_coordinate[0];

        //first pyramid with triangular base (A,B,BS)
        Real Vol1=0.5* ( ( A-BS ).cross ( B-BS ) ) [coord[1]]* ( 0.333333333* ( 2*B[coord[1]]+A[coord[1]] )-Wall_coordinate[1] );
        //second pyramid with triangular base (A,AS,BS)
        Real Vol2=0.5* ( ( AS-BS ).cross ( A-BS ) ) [coord[1]]* ( 0.333333333* ( B[coord[1]]+2*A[coord[1]] )-Wall_coordinate[1] );
/*	Real retVol;*/
/*	if (cell->info().isCavity) retVol = (Vol1+Vol2); // don't factor volume if it is a cavity cell*/
/*	else retVol = (Vol1+Vol2)*volumeCorrection;*/
        return math::abs ( (Vol1+Vol2) );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCellTripleFictious ( Cellhandle cell )
{
        Vector3r A;

        int b[3];
        int coord[3];
        Real Wall_coordinate[3];
        int j=0;
        cell->info().volumeSign=1;

        for ( int g=0;g<4;g++ ) {
                if ( cell->vertex ( g )->info().isFictious ) {
                        b[j] = cell->vertex ( g )->info().id();
                        coord[j]=solver->boundary ( b[j] ).coordinate;
                        const shared_ptr<Body>& wll = Body::byId ( b[j] , scene );
                        if ( !solver->boundary ( b[j] ).useMaxMin ) Wall_coordinate[j] = wll->state->pos[coord[j]] + ( solver->boundary ( b[j] ).normal[coord[j]] ) *wallThickness/2.;
                        else Wall_coordinate[j] = solver->boundary ( b[j] ).p[coord[j]];
                        j++;
                } else { /* if (! cell->vertex(g)->info().isAlpha) { */
			A = positionBufferCurrent[cell->vertex(g)->info().id()].pos; // can't we just use the positionbuffer here instead of below?
                        //const shared_ptr<Body>& sph = Body::byId ( cell->vertex ( g )->info().id(), scene );
                        //A= ( sph->state->pos );
                }
        }
        Real Volume = ( A[coord[0]]-Wall_coordinate[0] ) * ( A[coord[1]]-Wall_coordinate[1] ) * ( A[coord[2]]-Wall_coordinate[2] );
/*	Real retVol;*/
/*	if (cell->info().isCavity) retVol = Volume; // don't factor volume if it is a cavity cell*/
/*	else retVol = Volume*volumeCorrection;*/
        return math::abs ( Volume );
}
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
template<class Cellhandle>
Real TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::volumeCell ( Cellhandle cell )
{
	static const Real inv6 = 1/6.;
	const Vector3r& p0 = positionBufferCurrent[cell->vertex ( 0 )->info().id()].pos;
	const Vector3r& p1 = positionBufferCurrent[cell->vertex ( 1 )->info().id()].pos;
	const Vector3r& p2 = positionBufferCurrent[cell->vertex ( 2 )->info().id()].pos;
	const Vector3r& p3 = positionBufferCurrent[cell->vertex ( 3 )->info().id()].pos;
	Real volume = -inv6 * ((p0-p1).cross(p0-p2)).dot(p0-p3);
        if ( ! ( cell->info().volumeSign ) ) cell->info().volumeSign= ( volume>0 ) ?1:-1;
	Real retVol;
	if (cell->info().isCavity) retVol = volume; // don't factor volume if it is a cavity cell
	else retVol = volume*volumeCorrection;
        return retVol;
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::computeViscousForces ( Solver& flow )
{
	using math::max; // when used inside function it does not leak - it is safe.
	if (normalLubrication || shearLubrication || viscousShear){
		if ( debug ) cout << "Application of viscous forces" << endl;
		if ( debug ) cout << "Number of edges = " << flow.edgeIds.size() << endl;
		for ( unsigned int k=0; k<flow.shearLubricationForces.size(); k++ ) flow.shearLubricationForces[k]=Vector3r::Zero();
		for ( unsigned int k=0; k<flow.shearLubricationTorques.size(); k++ ) flow.shearLubricationTorques[k]=Vector3r::Zero();
		for ( unsigned int k=0; k<flow.pumpLubricationTorques.size(); k++ ) flow.pumpLubricationTorques[k]=Vector3r::Zero();
		for ( unsigned int k=0; k<flow.twistLubricationTorques.size(); k++ ) flow.twistLubricationTorques[k]=Vector3r::Zero();
		for ( unsigned int k=0; k<flow.shearLubricationBodyStress.size(); k++) flow.shearLubricationBodyStress[k]=Matrix3r::Zero();
		for ( unsigned int k=0; k<flow.normalLubricationForce.size(); k++ ) flow.normalLubricationForce[k]=Vector3r::Zero();
		for ( unsigned int k=0; k<flow.normalLubricationBodyStress.size(); k++) flow.normalLubricationBodyStress[k]=Matrix3r::Zero();

		//typedef typename Solver::Tesselation Tesselation;
		const Tesselation& Tes = flow.tesselation();
		flow.deltaShearVel.clear(); flow.normalV.clear(); flow.deltaNormVel.clear(); flow.surfaceDistance.clear(); flow.onlySpheresInteractions.clear(); flow.normalStressInteraction.clear(); flow.shearStressInteraction.clear();


		for ( int i=0; i< ( int ) flow.edgeIds.size(); i++ ) {
			const VertexInfo& vi1 = *flow.edgeIds[i].first;
			const VertexInfo& vi2 = *flow.edgeIds[i].second;
			const int& id1 = vi1.id();
			const int& id2 = vi2.id();

			int hasFictious= Tes.vertex ( id1 )->info().isFictious +  Tes.vertex ( id2 )->info().isFictious;
			if (hasFictious>0 or id1==id2) continue;
			const shared_ptr<Body>& sph1 = Body::byId ( id1, scene );
			const shared_ptr<Body>& sph2 = Body::byId ( id2, scene );
			Sphere* s1=YADE_CAST<Sphere*> ( sph1->shape.get() );
			Sphere* s2=YADE_CAST<Sphere*> ( sph2->shape.get() );
			const Real& r1 = s1->radius;
			const Real& r2 = s2->radius;
			Vector3r deltaV = Vector3r::Zero();
			Real deltaNormV = 0;
			Vector3r deltaShearV = Vector3r::Zero();
			Vector3r O1O2Vector = Vector3r::Zero();

			Real O1O2 = 0;
			Vector3r normal2 = Vector3r::Zero();
			Real surfaceDist = 0;

			Vector3r O1CVector = Vector3r::Zero();
			Vector3r O2CVector = Vector3r::Zero();

			Real meanRad  = 0 ;
			Real Rh = 0;

			Vector3r deltaAngVel = Vector3r::Zero();
			Vector3r deltaShearAngVel = Vector3r::Zero();

			Vector3r shearLubF = Vector3r::Zero();
			Vector3r normaLubF = Vector3r::Zero();
			Vector3r pumpT = Vector3r::Zero();
			Vector3r deltaAngNormVel = Vector3r::Zero();
			Vector3r twistT = Vector3r::Zero();
			Vector3r angVel1 = Vector3r::Zero();
			Vector3r angVel2 = Vector3r::Zero();
					//FIXME: if periodic and velGrad!=0, then deltaV should account for velGrad, not the case currently
			if ( !hasFictious ){
				O1O2Vector = sph2->state->pos + makeVector3r(vi2.ghostShift()) - sph1->state->pos - makeVector3r(vi1.ghostShift());
				O1O2 = O1O2Vector.norm();
				normal2= (O1O2Vector/O1O2);
				surfaceDist = O1O2 - r2 - r1;
				//FIXME: what is that?
				O1CVector = (O1O2/2. + (pow(r1,2) - pow(r2,2)) / (2.*O1O2))*normal2;
				O2CVector = -(O1O2Vector - O1CVector);
				meanRad = (r2 + r1)/2.;
				Rh = (r1 < r2)? surfaceDist + 0.45 * r1 : surfaceDist + 0.45 * r2;

				deltaV = (sph2->state->vel + sph2->state->angVel.cross(-r2 * normal2)) - (sph1->state->vel+ sph1->state->angVel.cross(r1 * normal2));
				angVel1 = sph1->state->angVel;
				angVel2 = sph2->state->angVel;
				deltaAngVel = sph2->state->angVel - sph1->state->angVel;

			} else {
				if ( hasFictious==1 ) {//for the fictious sphere, use velocity of the boundary, not of the body
					bool v1fictious = Tes.vertex ( id1 )->info().isFictious;
					int bnd = v1fictious? id1 : id2;
					int coord = flow.boundary(bnd).coordinate;
					O1O2 = v1fictious ? math::abs((sph2->state->pos + makeVector3r(Tes.vertex(id2)->info().ghostShift()))[coord] - flow.boundary(bnd).p[coord]) : math::abs((sph1->state->pos + makeVector3r(Tes.vertex(id1)->info().ghostShift()))[coord] - flow.boundary(bnd).p[coord]);
					if(v1fictious)
						normal2 = makeVector3r(flow.boundary(id1).normal);
					else
						normal2 = -makeVector3r(flow.boundary(id2).normal);
					O1O2Vector = O1O2 * normal2;
					meanRad = v1fictious ? r2:r1;
					surfaceDist = O1O2 - meanRad;
					if (v1fictious){
						O1CVector = Vector3r::Zero();
						O2CVector = - O1O2Vector;}
					else{
						O1CVector =  O1O2Vector;
						O2CVector = Vector3r::Zero();}

					Rh = surfaceDist + 0.45 * meanRad;
					Vector3r v1 = ( Tes.vertex ( id1 )->info().isFictious ) ? flow.boundary ( id1 ).velocity:sph1->state->vel + sph1->state->angVel.cross(r1 * normal2);
					Vector3r v2 = ( Tes.vertex ( id2 )->info().isFictious ) ? flow.boundary ( id2 ).velocity:sph2->state->vel + sph2->state->angVel.cross(-r2 * (normal2));
					deltaV = v2-v1;
					angVel1 = ( Tes.vertex ( id1 )->info().isFictious ) ? Vector3r::Zero() : sph1->state->angVel;
					angVel2 = ( Tes.vertex ( id2 )->info().isFictious ) ? Vector3r::Zero() : sph2->state->angVel;
					deltaAngVel = angVel2 - angVel1;
				}
			}
			deltaShearV = deltaV - ( normal2.dot ( deltaV ) ) *normal2;
			deltaShearAngVel = deltaAngVel - ( normal2.dot ( deltaAngVel ) ) *normal2;
			flow.deltaShearVel.push_back(deltaShearV);
			flow.normalV.push_back(normal2);
			flow.surfaceDistance.push_back(max(surfaceDist, 0.) + eps*meanRad);

			/// Compute the  shear Lubrication force and torque on each particle

			if (shearLubrication)
				shearLubF = flow.computeShearLubricationForce(deltaShearV,surfaceDist,i,eps,O1O2,meanRad);
			else if (viscousShear)
				shearLubF = flow.computeViscousShearForce ( deltaShearV, i , Rh);

			if (viscousShear || shearLubrication){

				flow.shearLubricationForces[id1]+=shearLubF;
				flow.shearLubricationForces[id2]+=(-shearLubF);
				flow.shearLubricationTorques[id1]+=O1CVector.cross(shearLubF);
				flow.shearLubricationTorques[id2]+=O2CVector.cross(-shearLubF);

				/// Compute the  pump Lubrication torque on each particle

				if (pumpTorque){
					pumpT = flow.computePumpTorque(deltaShearAngVel, surfaceDist, i, eps, meanRad );
					flow.pumpLubricationTorques[id1]+=(-pumpT);
					flow.pumpLubricationTorques[id2]+=pumpT;}

				/// Compute the  twist Lubrication torque on each particle

				if (twistTorque){
					deltaAngNormVel = (normal2.dot(deltaAngVel))*normal2 ;
					twistT = flow.computeTwistTorque(deltaAngNormVel, surfaceDist, i, eps, meanRad );
					flow.twistLubricationTorques[id1]+=(-twistT);
					flow.twistLubricationTorques[id2]+=twistT;
				}
			}
			/// Compute the viscous shear stress on each particle

			if (viscousShearBodyStress){
				flow.shearLubricationBodyStress[id1] += shearLubF * O1CVector.transpose()/ (4.0/3.0 *3.14* pow(r1,3));
				flow.shearLubricationBodyStress[id2] += (-shearLubF) * O2CVector.transpose()/ (4.0/3.0 *3.14* pow(r2,3));
				flow.shearStressInteraction.push_back(shearLubF * O1O2Vector.transpose()/(4.0/3.0 *3.14* pow(r1,3)));
				}

			/// Compute the normal2 lubrication force applied on each particle

			if (normalLubrication){
				deltaNormV = normal2.dot(deltaV);
				flow.deltaNormVel.push_back(deltaNormV * normal2);
				normaLubF = flow.computeNormalLubricationForce (deltaNormV, surfaceDist, i,eps,stiffness,scene->dt,meanRad)*normal2;
				flow.normalLubricationForce[id1]+=normaLubF;
				flow.normalLubricationForce[id2]+=(-normaLubF);

				/// Compute the normal2 lubrication stress on each particle

				if (viscousNormalBodyStress){
					flow.normalLubricationBodyStress[id1] += normaLubF * O1CVector.transpose()/ (4.0/3.0 *3.14* pow(r1,3));
					flow.normalLubricationBodyStress[id2] += (-normaLubF) *O2CVector.transpose() / (4.0/3.0 *3.14* pow(r2,3));
					flow.normalStressInteraction.push_back(normaLubF * O1O2Vector.transpose()/(4.0/3.0 *3.14* pow(r1,3)));
				}
			}

			if (!hasFictious)
				flow.onlySpheresInteractions.push_back(i);

		}
	}
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
Vector3r TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::averageVelocity()
{
        solver->averageRelativeCellVelocity();
        Vector3r meanVel ( 0,0,0 );
        Real volume=0;
        FiniteCellsIterator cell_end = solver->T[solver->currentTes].Triangulation().finite_cells_end();
        for ( FiniteCellsIterator cell = solver->T[solver->currentTes].Triangulation().finite_cells_begin(); cell != cell_end; cell++ ) {
		//We could also define velocity using cell's center
//                 if ( !cell->info().isReal() ) continue;
                if ( cell->info().isGhost ) continue;
                for ( int i=0;i<3;i++ )
                        meanVel[i]=meanVel[i]+ ( ( cell->info().averageVelocity() ) [i] * math::abs ( cell->info().volume() ) );
                volume+=math::abs ( cell->info().volume() );
        }
        return ( meanVel/volume );
}

#ifdef LINSOLV
template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::updateLinearSystem (Solver& flow)
{
	trickPermeability(&flow);
        flow.isLinearSystemSet = false;
	flow.factorizedEigenSolver = false;
	if (!first) flow.reuseOrdering = true;
	meshUpdateInterval = -1;
	defTolerance = -1;
	permUpdateIters = 0;

}
#endif

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::remeshForFreshlyBrokenBonds ()
{
bool foundBreak = false;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if (!I || !I->phys.get()) continue;
		if (I->isReal() && JCFpmPhys::getClassIndexStatic()==I->phys->getClassIndex()) {
			JCFpmPhys* jcfpmphys = YADE_CAST<JCFpmPhys*>(I->phys.get());
			if (!jcfpmphys) continue;
			if (jcfpmphys->breakOccurred && !foundBreak){
				updateTriangulation = true;
				jcfpmphys->breakOccurred = false;
				foundBreak = true;
			} else if (jcfpmphys->breakOccurred && foundBreak) jcfpmphys->breakOccurred = false;
		}
	}
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
void TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::applyForces(Solver& /*flow*/)
{
	Vector3r force;
	Vector3r torque;
        FiniteVerticesIterator verticesEnd = solver->T[solver->currentTes].Triangulation().finite_vertices_end();
	size_t bodiesLength = scene->bodies->size();
        for ( FiniteVerticesIterator vIt = solver->T[solver->currentTes].Triangulation().finite_vertices_begin(); vIt !=  verticesEnd; vIt++ )
	{
		int vId = vIt->info().id();
		force = pressureForce ? Vector3r ( vIt->info().forces[0],vIt->info().forces[1],vIt->info().forces[2] ): Vector3r(0,0,0);
		torque = Vector3r(0,0,0);
                if (shearLubrication || viscousShear){
			force = force + solver->shearLubricationForces[vId];
			torque = torque + solver->shearLubricationTorques[vId];
			if (pumpTorque)
				torque = torque + solver->pumpLubricationTorques[vId];
		}
		if (twistTorque) torque = torque + solver->twistLubricationTorques[vId];
		if (normalLubrication) force = force + solver-> normalLubricationForce[vId];
		if (vIt->info().id() < bodiesLength) {
			scene->forces.addForce ( vId, force);
			scene->forces.addTorque ( vId, torque);}
        }
}

template< class _CellInfo, class _VertexInfo, class _Tesselation, class solverT >
bool TemplateFlowEngine_@TEMPLATE_FLOW_NAME@<_CellInfo,_VertexInfo,_Tesselation,solverT>::isCellNeighbor(unsigned int cell1, unsigned int cell2)
{
  bool neighbor=false;
  for (unsigned int i=0;i<4;i++) {
    if (solver->T[solver->currentTes].cellHandles[cell1]->neighbor(i)->info().id==cell2)
    {neighbor=true;break;}
  }
  return neighbor;
}

} // namespace yade

#endif //FLOW_ENGINE

#endif /* YADE_CGAL */