1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
/*************************************************************************
* Copyright (C) 2009 by Bruno Chareyre <bruno.chareyre@grenoble-inp.fr> *
* Copyright (C) 2012 by Donia Marzougui <donia.marzougui@grenoble-inp.fr>*
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#ifdef YADE_CGAL
#ifdef FLOW_ENGINE
/// The periodic variant of FlowEngine is defined here. It should become a template class for more flexibility.
/// It is a bit more complicated as for FlowEngine, though, because we need template inheriting from template, which breaks YADE_CLASS_XXX logic_error
/// See below the commented exemple, for a possible solution
#include "FlowEngine_FlowEngine_PeriodicInfo.hpp"
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min;
class PeriodicCellInfo : public FlowCellInfo_FlowEngine_PeriodicInfo {
public:
static CVector gradP;
//for real cell, baseIndex is the rank of the cell in cellHandles. For ghost cells, it is the baseIndex of the corresponding real cell.
//Unlike ordinary index, baseIndex is also indexing cells with imposed pressures
int baseIndex;
int period[3];
static CVector hSize[3];
static CVector deltaP;
int ghost;
Real* _pression;
PeriodicCellInfo(void)
{
_pression = &pression;
period[0] = period[1] = period[2] = 0;
baseIndex = -1;
volumeSign = 0;
}
~PeriodicCellInfo(void) { }
inline Real shiftedP(void) const { return isGhost ? (*_pression) + pShift() : (*_pression); }
inline Real pShift(void) const { return deltaP[0] * period[0] + deltaP[1] * period[1] + deltaP[2] * period[2]; }
// inline const Real p (void) {return shiftedP();}
inline void setP(const Real& p) { pression = p; }
bool isReal(void) { return !(isFictious || isGhost); }
};
class PeriodicVertexInfo : public FlowVertexInfo_FlowEngine_PeriodicInfo {
public:
PeriodicVertexInfo& operator=(const CVector& u)
{
CVector::operator=(u);
return *this;
}
PeriodicVertexInfo& operator=(const float& scalar)
{
s = scalar;
return *this;
}
PeriodicVertexInfo& operator=(const unsigned int& id)
{
i = id;
return *this;
}
int period[3];
//FIXME: the name is misleading, even non-ghost can be out of the period and therefore they need to be shifted as well
inline const CVector ghostShift(void) const
{
return period[0] * PeriodicCellInfo::hSize[0] + period[1] * PeriodicCellInfo::hSize[1] + period[2] * PeriodicCellInfo::hSize[2];
}
PeriodicVertexInfo(void)
{
isFictious = false;
s = 0;
i = 0;
period[0] = period[1] = period[2] = 0;
isGhost = false;
}
bool isReal(void) { return !(isFictious || isGhost); }
};
typedef CGT::TriangulationTypes<PeriodicVertexInfo, PeriodicCellInfo> PeriFlowTriangulationTypes;
typedef CGT::PeriodicTesselation<CGT::_Tesselation<PeriFlowTriangulationTypes>> PeriFlowTesselation;
#ifdef LINSOLV
#define _PeriFlowSolver CGT::PeriodicFlowLinSolv<PeriFlowTesselation>
#else
#define _PeriFlowSolver CGT::PeriodicFlow<PeriFlowTesselation>
#endif
typedef TemplateFlowEngine_FlowEngine_PeriodicInfo<
PeriodicCellInfo,
PeriodicVertexInfo,
CGT::PeriodicTesselation<CGT::_Tesselation<CGT::TriangulationTypes<PeriodicVertexInfo, PeriodicCellInfo>>>,
_PeriFlowSolver>
FlowEngine_PeriodicInfo;
REGISTER_SERIALIZABLE(FlowEngine_PeriodicInfo);
YADE_PLUGIN((FlowEngine_PeriodicInfo));
class PeriodicFlowEngine : public FlowEngine_PeriodicInfo {
public:
void triangulate(FlowSolver& flow);
void buildTriangulation(Real pzero, FlowSolver& flow) override;
void initializeVolumes(FlowSolver& flow);
void updateVolumes(FlowSolver& flow);
Real volumeCell(CellHandle cell);
Real volumeCellSingleFictious(CellHandle cell);
inline void locateCell(CellHandle baseCell, unsigned int& index, int& baseIndex, FlowSolver& flow, unsigned int count = 0);
virtual ~PeriodicFlowEngine();
void action() override;
//Cache precomputed values for pressure shifts, based on current hSize and pGrad
void preparePShifts();
// clang-format off
YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(PeriodicFlowEngine,FlowEngine_PeriodicInfo,"A variant of :yref:`FlowEngine` implementing periodic boundary conditions. The API is very similar.",
((Real,duplicateThreshold, 0.06,,"distance from cell borders that will triger periodic duplication in the triangulation |yupdate|"))
((Vector3r, gradP, Vector3r::Zero(),,"Macroscopic pressure gradient"))
,,
wallIds=vector<int>(6,-1);
solver = shared_ptr<FlowSolver> (new FlowSolver);
epsVolMax=epsVolCumulative=retriangulationLastIter=0;
ReTrg=1;
first=true;
,
//nothing special to define, we re-use FlowEngine methods
//.def("meanVelocity",&PeriodicFlowEngine::meanVelocity,"measure the mean velocity in the period")
)
// clang-format on
DECLARE_LOGGER;
};
REGISTER_SERIALIZABLE(PeriodicFlowEngine);
CVector PeriodicCellInfo::hSize[] = { CVector(), CVector(), CVector() };
CVector PeriodicCellInfo::deltaP = CVector();
CVector PeriodicCellInfo::gradP = CVector();
CREATE_LOGGER(PeriodicFlowEngine);
PeriodicFlowEngine::~PeriodicFlowEngine() { }
void PeriodicFlowEngine::action()
{
if (!isActivated) return;
timingDeltas->start();
preparePShifts();
setPositionsBuffer(true);
if (first) {
if (multithread) setPositionsBuffer(false);
cachedCell = Cell(*(scene->cell));
buildTriangulation(pZero, *solver);
if (solver->errorCode > 0) {
LOG_INFO("triangulation error, pausing");
Omega::instance().pause();
return;
}
initializeVolumes(*solver);
backgroundSolver = solver;
backgroundCompleted = true;
}
// if ( first ) {buildTriangulation ( pZero ); updateTriangulation = false; initializeVolumes();}
timingDeltas->checkpoint("Triangulating");
updateVolumes(*solver);
epsVolCumulative += epsVolMax;
retriangulationLastIter++;
if (!updateTriangulation)
updateTriangulation = // If not already set true by another function of by the user, check conditions
(defTolerance > 0 && epsVolCumulative > defTolerance) || (meshUpdateInterval > 0 && retriangulationLastIter >= meshUpdateInterval);
timingDeltas->checkpoint("Update_Volumes");
///compute flow and and forces here
if (pressureForce) {
solver->gaussSeidel(scene->dt);
timingDeltas->checkpoint("Gauss-Seidel");
solver->computeFacetForcesWithCache();
}
timingDeltas->checkpoint("compute_Pressure_Forces");
///compute vicscous forces
scene->forces.sync();
computeViscousForces(*solver);
timingDeltas->checkpoint("compute_Viscous_Forces");
Vector3r force;
Vector3r torque;
const Tesselation& Tes = solver->T[solver->currentTes];
for (int id = 0; id <= Tes.maxId; id++) {
assert(Tes.vertexHandles[id] != NULL);
const Tesselation::VertexInfo& v_info = Tes.vertexHandles[id]->info();
force = (pressureForce) ? Vector3r((v_info.forces)[0], v_info.forces[1], v_info.forces[2]) : Vector3r(0, 0, 0);
torque = Vector3r(0, 0, 0);
if (shearLubrication || viscousShear) {
force = force + solver->shearLubricationForces[v_info.id()];
torque = torque + solver->shearLubricationTorques[v_info.id()];
if (pumpTorque) torque = torque + solver->pumpLubricationTorques[v_info.id()];
if (twistTorque) torque = torque + solver->twistLubricationTorques[v_info.id()];
}
if (normalLubrication) force = force + solver->normalLubricationForce[v_info.id()];
scene->forces.addForce(v_info.id(), force);
scene->forces.addTorque(v_info.id(), torque);
}
///End Compute flow and forces
timingDeltas->checkpoint("Applying Forces");
if (multithread && !first) {
while (updateTriangulation && !backgroundCompleted) { /*cout<<"sleeping..."<<sleeping++<<endl;*/
boost::this_thread::sleep(boost::posix_time::microseconds(1000));
}
if (updateTriangulation || (meshUpdateInterval > 0 && ellapsedIter > (0.5 * meshUpdateInterval))) {
if (useSolver == 0) LOG_ERROR("background calculations not available for Gauss-Seidel");
if (fluidBulkModulus > 0 || doInterpolate)
solver->interpolate(solver->T[solver->currentTes], backgroundSolver->T[backgroundSolver->currentTes]);
solver = backgroundSolver;
backgroundSolver = shared_ptr<FlowSolver>(new FlowSolver);
//Copy imposed pressures/flow from the old solver
backgroundSolver->imposedP = vector<pair<CGT::Point, Real>>(solver->imposedP);
backgroundSolver->imposedF = vector<pair<CGT::Point, Real>>(solver->imposedF);
setPositionsBuffer(false);
cachedCell = Cell(*(scene->cell));
backgroundCompleted = false;
retriangulationLastIter = ellapsedIter;
ellapsedIter = 0;
epsVolCumulative = 0;
boost::thread workerThread(&PeriodicFlowEngine::backgroundAction, this);
workerThread.detach();
initializeVolumes(*solver);
computeViscousForces(*solver);
} else if (debug && !first) {
if (debug && !backgroundCompleted) cerr << "still computing solver in the background" << endl;
ellapsedIter++;
}
} else {
if (updateTriangulation && !first) {
cachedCell = Cell(*(scene->cell));
buildTriangulation(pZero, *solver);
initializeVolumes(*solver);
computeViscousForces(*solver);
updateTriangulation = false;
epsVolCumulative = 0;
retriangulationLastIter = 0;
ReTrg++;
}
}
first = false;
timingDeltas->checkpoint("Ending");
}
// void PeriodicFlowEngine::backgroundAction()
// {
// if (useSolver<1) {LOG_ERROR("background calculations not available for Gauss-Seidel"); return;}
// buildTriangulation (pZero,*backgroundSolver);
// //FIXME: GS is computing too much, we need only matrix factorization in fact
// backgroundSolver->gaussSeidel(scene->dt);
// backgroundSolver->computeFacetForcesWithCache(/*onlyCache?*/ true);
// // boost::this_thread::sleep(boost::posix_time::seconds(10));
// backgroundCompleted = true;
// }
void PeriodicFlowEngine::triangulate(FlowSolver& flow)
{
Tesselation& Tes = flow.tesselation();
vector<posData>& buffer = multithread ? positionBufferParallel : positionBufferCurrent;
FOREACH(const posData& b, buffer)
{
if (!b.exists || !b.isSphere || b.id == ignoredBody) continue;
Vector3i period;
Vector3r wpos;
// FIXME: use "sheared" variant if the cell is sheared
wpos = cachedCell.wrapPt(b.pos, period);
const Body::id_t& id = b.id;
const Real& rad = b.radius;
const Real& x = wpos[0];
const Real& y = wpos[1];
const Real& z = wpos[2];
VertexHandle vh0 = Tes.insert(x, y, z, rad, id);
// VertexHandle vh0=Tes.insert ( b.pos[0], b.pos[1], b.pos[2], b.radius, b.id );
if (vh0 == NULL) {
flow.errorCode = 2;
LOG_ERROR("Vh NULL in PeriodicFlowEngine::triangulate(), check input data");
continue;
}
for (int k = 0; k < 3; k++)
vh0->info().period[k] = -period[k];
const Vector3r cellSize(cachedCell.getSize());
//FIXME: if hasShear, comment in
// wpos=scene->cell->unshearPt ( wpos );
// traverse all periodic cells around the body, to see if any of them touches
Vector3r halfSize = (rad + duplicateThreshold) * Vector3r(1, 1, 1);
Vector3r pmin, pmax;
Vector3i i;
for (i[0] = -1; i[0] <= 1; i[0]++)
for (i[1] = -1; i[1] <= 1; i[1]++)
for (i[2] = -1; i[2] <= 1; i[2]++) {
if (i[0] != 0 || i[1] != 0 || i[2] != 0) { // middle; already rendered above
Vector3r pos2 = wpos
+ Vector3r(cellSize[0] * i[0], cellSize[1] * i[1], cellSize[2] * i[2]); // shift, but without shear!
pmin = pos2 - halfSize;
pmax = pos2 + halfSize;
if ((pmin[0] <= cellSize[0]) && (pmax[0] >= 0) && (pmin[1] <= cellSize[1]) && (pmax[1] >= 0)
&& (pmin[2] <= cellSize[2]) && (pmax[2] >= 0)) {
//with shear:
//Vector3r pt=scene->cell->shearPt ( pos2 );
//without shear:
const Vector3r& pt = pos2;
VertexHandle vh = Tes.insert(pt[0], pt[1], pt[2], rad, id, false, id);
for (int k = 0; k < 3; k++)
vh->info().period[k] = i[k] - period[k];
}
}
}
//re-assign the original vertex pointer since duplicates may have overwrite it
Tes.vertexHandles[id] = vh0;
}
flow.shearLubricationForces.resize(Tes.maxId + 1);
flow.shearLubricationTorques.resize(Tes.maxId + 1);
flow.pumpLubricationTorques.resize(Tes.maxId + 1);
flow.twistLubricationTorques.resize(Tes.maxId + 1);
flow.shearLubricationBodyStress.resize(Tes.maxId + 1);
flow.normalLubricationForce.resize(Tes.maxId + 1);
flow.normalLubricationBodyStress.resize(Tes.maxId + 1);
}
Real PeriodicFlowEngine::volumeCell(CellHandle cell)
{
static const Real inv6 = 1 / 6.;
const Vector3r p0 = positionBufferCurrent[cell->vertex(0)->info().id()].pos + makeVector3r(cell->vertex(0)->info().ghostShift());
const Vector3r p1 = positionBufferCurrent[cell->vertex(1)->info().id()].pos + makeVector3r(cell->vertex(1)->info().ghostShift());
const Vector3r p2 = positionBufferCurrent[cell->vertex(2)->info().id()].pos + makeVector3r(cell->vertex(2)->info().ghostShift());
const Vector3r p3 = positionBufferCurrent[cell->vertex(3)->info().id()].pos + makeVector3r(cell->vertex(3)->info().ghostShift());
Real volume = inv6 * ((p0 - p1).cross(p0 - p2)).dot(p0 - p3);
if (!(cell->info().volumeSign)) cell->info().volumeSign = (volume > 0) ? 1 : -1;
return volume;
}
Real PeriodicFlowEngine::volumeCellSingleFictious(CellHandle cell)
{
Vector3r V[3];
int b = 0;
int w = 0;
cell->info().volumeSign = 1;
Real Wall_coordinate = 0;
for (int y = 0; y < 4; y++) {
if (!(cell->vertex(y)->info().isFictious)) {
const shared_ptr<Body>& sph = Body::byId(cell->vertex(y)->info().id(), scene);
V[w] = sph->state->pos + makeVector3r(cell->vertex(y)->info().ghostShift());
w++;
} else {
b = cell->vertex(y)->info().id();
const shared_ptr<Body>& wll = Body::byId(b, scene);
if (!solver->boundary(b).useMaxMin)
Wall_coordinate = wll->state->pos[solver->boundary(b).coordinate]
+ (solver->boundary(b).normal[solver->boundary(b).coordinate]) * wallThickness / 2.;
else
Wall_coordinate = solver->boundary(b).p[solver->boundary(b).coordinate];
}
}
Real Volume = 0.5 * ((V[0] - V[1]).cross(V[0] - V[2]))[solver->boundary(b).coordinate]
* (0.33333333333 * (V[0][solver->boundary(b).coordinate] + V[1][solver->boundary(b).coordinate] + V[2][solver->boundary(b).coordinate])
- Wall_coordinate);
return math::abs(Volume);
}
void PeriodicFlowEngine::locateCell(CellHandle baseCell, unsigned int& index, int& baseIndex, FlowSolver& flow, unsigned int count)
{
if (count > 10) {
LOG_ERROR("More than 10 attempts to locate a cell, duplicateThreshold may be too small, resulting in periodicity inconsistencies.");
flow.errorCode = 1;
return;
}
PeriFlowTesselation::CellInfo& baseInfo = baseCell->info();
//already located, return FIXME: is inline working correctly? else move this test outside the function, just before the calls
if (baseInfo.index > 0 || baseInfo.isGhost) return;
RTriangulation& Tri = flow.tesselation().Triangulation();
Vector3r center(0, 0, 0);
Vector3i period;
if (baseCell->info().fictious() == 0)
for (int k = 0; k < 4; k++)
center += 0.25 * makeVector3r(baseCell->vertex(k)->point().point());
else {
Real boundPos = 0;
int coord = 0;
for (int k = 0; k < 4; k++) {
if (!baseCell->vertex(k)->info().isFictious) center += 0.3333333333 * makeVector3r(baseCell->vertex(k)->point().point());
else {
coord = flow.boundary(baseCell->vertex(k)->info().id()).coordinate;
boundPos = flow.boundary(baseCell->vertex(k)->info().id()).p[coord];
}
}
center[coord] = boundPos;
}
Vector3r wdCenter = cachedCell.wrapPt(center, period);
if (period[0] != 0 || period[1] != 0 || period[2] != 0) {
if (baseCell->info().index > 0) {
cout << "indexed cell is found ghost!" << baseInfo.index << endl;
baseInfo.isGhost = false;
return;
}
CellHandle ch = Tri.locate(CGT::Sphere(wdCenter[0], wdCenter[1], wdCenter[2]));
baseInfo.period[0] = period[0];
baseInfo.period[1] = period[1];
baseInfo.period[2] = period[2];
//call recursively, since the returned cell could be also a ghost (especially if baseCell is a non-periodic type from the external contour
locateCell(ch, index, baseIndex, flow, ++count);
if (ch == baseCell) cerr << "WTF!!" << endl;
//check consistency
bool checkC = false;
for (int kk = 0; kk < 4; kk++)
if ((!baseCell->vertex(kk)->info().isGhost) && ((!baseCell->vertex(kk)->info().isFictious))) checkC = true;
if (checkC) {
bool checkV = true;
for (int kk = 0; kk < 4; kk++) {
checkV = false;
for (int jj = 0; jj < 4; jj++)
if (baseCell->vertex(kk)->info().id() == ch->vertex(jj)->info().id()) checkV = true;
if (!checkV) {
cerr << "periodicity is broken" << endl;
for (int jj = 0; jj < 4; jj++)
cerr << baseCell->vertex(jj)->info().id() << " ";
cerr << " vs. ";
for (int jj = 0; jj < 4; jj++)
cerr << ch->vertex(jj)->info().id() << " ";
cerr << endl;
}
}
} else {
// bool checkV=true;
// for (int kk=0; kk<4;kk++) {
// checkV=false;
// for (int jj=0; jj<4;jj++)
// if (baseCell->vertex(kk)->info().id() == ch->vertex(jj)->info().id()) checkV = true;
// if (!checkV) {cerr <<"periodicity is broken (that's ok probably)"<<endl;
// for (int jj=0; jj<4;jj++) cerr<<baseCell->vertex(jj)->info().id()<<" ";
// cerr<<" vs. ";
// for (int jj=0; jj<4;jj++) cerr<<ch->vertex(jj)->info().id()<<" ";
// cerr<<endl;}
// }
}
baseInfo.isGhost = true;
baseInfo._pression = &(ch->info().p());
baseInfo.index = ch->info().index;
baseInfo.baseIndex = ch->info().baseIndex;
baseInfo.Pcondition = ch->info().Pcondition;
} else {
baseInfo.isGhost = false;
//index is 1-based, if it is zero it is not initialized, we define it here
if (baseInfo.baseIndex < 0) {
baseInfo.baseIndex = ++baseIndex;
if (!baseInfo.Pcondition) baseInfo.index = ++index;
}
}
}
void PeriodicFlowEngine::updateVolumes(FlowSolver& flow)
{ //FIXME: replace by the non-periodic version
if (debug) cout << "Updating volumes.............." << endl;
Real invDeltaT = 1 / scene->dt;
Real newVol, dVol;
epsVolMax = 0;
Real totVol = 0;
Real totDVol = 0;
Real totVol0 = 0;
Real totVol1 = 0;
FOREACH(CellHandle & cell, flow.tesselation().cellHandles)
{
switch (cell->info().fictious()) {
case (1):
newVol = volumeCellSingleFictious(cell);
totVol1 += newVol;
break;
case (0):
newVol = volumeCell(cell);
totVol0 += newVol;
break;
default: newVol = 0; break;
}
totVol += newVol;
dVol = cell->info().volumeSign * (newVol - cell->info().volume());
totDVol += dVol;
if (newVol != 0) { epsVolMax = max(epsVolMax, math::abs(dVol / newVol)); }
cell->info().dv() = dVol * invDeltaT;
cell->info().volume() = newVol;
}
for (unsigned int n = 0; n < flow.imposedF.size(); n++) {
flow.IFCells[n]->info().dv() += flow.imposedF[n].second;
flow.IFCells[n]->info().Pcondition = false;
}
if (debug) cout << "Updated volumes, total =" << totVol << ", dVol=" << totDVol << " " << totVol0 << " " << totVol1 << endl;
}
void PeriodicFlowEngine::initializeVolumes(FlowSolver& flow)
{
FiniteVerticesIterator vertices_end = flow.tesselation().Triangulation().finite_vertices_end();
CGT::CVector Zero(0, 0, 0);
for (FiniteVerticesIterator V_it = flow.tesselation().Triangulation().finite_vertices_begin(); V_it != vertices_end; V_it++)
V_it->info().forces = Zero;
FOREACH(CellHandle & cell, flow.tesselation().cellHandles)
{
switch (cell->info().fictious()) {
case (0): cell->info().volume() = volumeCell(cell); break;
case (1): cell->info().volume() = volumeCellSingleFictious(cell); break;
default: cell->info().volume() = 0; break;
}
//FIXME: the void volume is negative sometimes, hence crashing...
if (flow.fluidBulkModulus > 0 || iniVoidVolumes) {
cell->info().invVoidVolume()
= 1. / (max(minimumPorosity * cell->info().volume(), math::abs(cell->info().volume()) - flow.volumeSolidPore(cell)));
}
}
if (debug) cout << "Volumes initialised." << endl;
}
void PeriodicFlowEngine::buildTriangulation(Real pZero2, FlowSolver& flow)
{
if (first) flow.currentTes = 0;
else {
flow.currentTes = !flow.currentTes;
if (debug) cout << "--------RETRIANGULATION-----------" << endl;
}
flow.resetNetwork();
initSolver(flow);
addBoundary(flow);
if (debug) cout << endl << "Added boundaries------" << endl << endl;
triangulate(flow);
if (debug) cout << endl << "Tesselating------" << endl << endl;
flow.tesselation().compute();
flow.defineFictiousCells();
//FIXME: this is already done in addBoundary(?)
boundaryConditions(flow);
if (debug) cout << endl << "boundaryConditions------" << endl << endl;
flow.initializePressure(pZero2);
if (debug) cout << endl << "initializePressure------" << endl << endl;
// Define the ghost cells and add indexes to the cells inside the period (the ones that will contain the pressure unknowns)
//This must be done after boundary conditions and initialize pressure, else the indexes are not good (not accounting imposedP): FIXME
unsigned int index = 0;
int baseIndex = -1;
FlowSolver::Tesselation& Tes = flow.tesselation();
Tes.cellHandles.resize(Tes.Triangulation().number_of_finite_cells());
const FiniteCellsIterator cellend = Tes.Triangulation().finite_cells_end();
for (FiniteCellsIterator cell = Tes.Triangulation().finite_cells_begin(); cell != cellend; cell++) {
locateCell(cell, index, baseIndex, flow);
if (flow.errorCode > 0) {
LOG_ERROR("problem here, flow.errorCode>0");
return;
}
//Fill this vector than can be later used to speedup loops
if (!cell->info().isGhost) Tes.cellHandles[cell->info().baseIndex] = cell;
cell->info().id = cell->info().baseIndex;
}
Tes.cellHandles.resize(baseIndex + 1);
/// Call blockHook here if defined, valid indices and ghost status are available
if (!blockHook.empty()) {
LOG_INFO("Running blockHook: " << blockHook);
pyRunString(blockHook);
}
if (debug) cout << endl << "locateCell------" << endl << endl;
flow.computePermeability();
porosity = flow.vPoralPorosity / flow.vTotalPorosity;
flow.tolerance = tolerance;
flow.relax = relax;
flow.displayStatistics();
//FIXME: check interpolate() for the periodic case, at least use the mean pressure from previous step.
if (!first && !multithread && (useSolver == 0 || fluidBulkModulus > 0 || doInterpolate)) flow.interpolate(flow.T[!flow.currentTes], Tes);
// if ( !first && (useSolver==0 || fluidBulkModulus>0)) flow.interpolate ( flow.T[!flow.currentTes], flow.tesselation() );
if (waveAction) flow.applySinusoidalPressure(Tes.Triangulation(), sineMagnitude, sineAverage, 30);
if (normalLubrication || shearLubrication || viscousShear) flow.computeEdgesSurfaces();
if (debug) cout << endl << "end buildTri------" << endl << endl;
}
void PeriodicFlowEngine::preparePShifts()
{
CellInfo::gradP = makeCgVect(gradP);
CellInfo::hSize[0] = makeCgVect(scene->cell->hSize.col(0));
CellInfo::hSize[1] = makeCgVect(scene->cell->hSize.col(1));
CellInfo::hSize[2] = makeCgVect(scene->cell->hSize.col(2));
CellInfo::deltaP = CGT::CVector(CellInfo::hSize[0] * CellInfo::gradP, CellInfo::hSize[1] * CellInfo::gradP, CellInfo::hSize[2] * CellInfo::gradP);
}
YADE_PLUGIN((PeriodicFlowEngine));
} // namespace yade
#endif //FLOW_ENGINE
#endif /* YADE_CGAL */
|