File: PeriodicFlowEngine.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (605 lines) | stat: -rw-r--r-- 23,705 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*************************************************************************
*  Copyright (C) 2009 by Bruno Chareyre <bruno.chareyre@grenoble-inp.fr>     *
*  Copyright (C) 2012 by Donia Marzougui <donia.marzougui@grenoble-inp.fr>*
*                                                                        *
*  This program is free software; it is licensed under the terms of the  *
*  GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/

#ifdef YADE_CGAL
#ifdef FLOW_ENGINE

/// The periodic variant of FlowEngine is defined here. It should become a template class for more flexibility.
/// It is a bit more complicated as for FlowEngine, though, because we need template inheriting from template, which breaks YADE_CLASS_XXX logic_error
/// See below the commented exemple, for a possible solution

#include "FlowEngine_FlowEngine_PeriodicInfo.hpp"

namespace yade { // Cannot have #include directive inside.

using math::max;
using math::min;

class PeriodicCellInfo : public FlowCellInfo_FlowEngine_PeriodicInfo {
public:
	static CVector gradP;
	//for real cell, baseIndex is the rank of the cell in cellHandles. For ghost cells, it is the baseIndex of the corresponding real cell.
	//Unlike ordinary index, baseIndex is also indexing cells with imposed pressures
	int            baseIndex;
	int            period[3];
	static CVector hSize[3];
	static CVector deltaP;
	int            ghost;
	Real*          _pression;
	PeriodicCellInfo(void)
	{
		_pression = &pression;
		period[0] = period[1] = period[2] = 0;
		baseIndex = -1;
		volumeSign = 0;
	}
	~PeriodicCellInfo(void) { }

	inline Real shiftedP(void) const { return isGhost ? (*_pression) + pShift() : (*_pression); }
	inline Real pShift(void) const { return deltaP[0] * period[0] + deltaP[1] * period[1] + deltaP[2] * period[2]; }
	// 	inline const Real p (void) {return shiftedP();}
	inline void setP(const Real& p) { pression = p; }
	bool        isReal(void) { return !(isFictious || isGhost); }
};


class PeriodicVertexInfo : public FlowVertexInfo_FlowEngine_PeriodicInfo {
public:
	PeriodicVertexInfo& operator=(const CVector& u)
	{
		CVector::operator=(u);
		return *this;
	}
	PeriodicVertexInfo& operator=(const float& scalar)
	{
		s = scalar;
		return *this;
	}
	PeriodicVertexInfo& operator=(const unsigned int& id)
	{
		i = id;
		return *this;
	}
	int period[3];
	//FIXME: the name is misleading, even non-ghost can be out of the period and therefore they need to be shifted as well
	inline const CVector ghostShift(void) const
	{
		return period[0] * PeriodicCellInfo::hSize[0] + period[1] * PeriodicCellInfo::hSize[1] + period[2] * PeriodicCellInfo::hSize[2];
	}
	PeriodicVertexInfo(void)
	{
		isFictious = false;
		s = 0;
		i = 0;
		period[0] = period[1] = period[2] = 0;
		isGhost = false;
	}
	bool isReal(void) { return !(isFictious || isGhost); }
};

typedef CGT::TriangulationTypes<PeriodicVertexInfo, PeriodicCellInfo>           PeriFlowTriangulationTypes;
typedef CGT::PeriodicTesselation<CGT::_Tesselation<PeriFlowTriangulationTypes>> PeriFlowTesselation;
#ifdef LINSOLV
#define _PeriFlowSolver CGT::PeriodicFlowLinSolv<PeriFlowTesselation>
#else
#define _PeriFlowSolver CGT::PeriodicFlow<PeriFlowTesselation>
#endif

typedef TemplateFlowEngine_FlowEngine_PeriodicInfo<
        PeriodicCellInfo,
        PeriodicVertexInfo,
        CGT::PeriodicTesselation<CGT::_Tesselation<CGT::TriangulationTypes<PeriodicVertexInfo, PeriodicCellInfo>>>,
        _PeriFlowSolver>
        FlowEngine_PeriodicInfo;

REGISTER_SERIALIZABLE(FlowEngine_PeriodicInfo);
YADE_PLUGIN((FlowEngine_PeriodicInfo));


class PeriodicFlowEngine : public FlowEngine_PeriodicInfo {
public:
	void triangulate(FlowSolver& flow);
	void buildTriangulation(Real pzero, FlowSolver& flow) override;
	void initializeVolumes(FlowSolver& flow);
	void updateVolumes(FlowSolver& flow);
	Real volumeCell(CellHandle cell);

	Real        volumeCellSingleFictious(CellHandle cell);
	inline void locateCell(CellHandle baseCell, unsigned int& index, int& baseIndex, FlowSolver& flow, unsigned int count = 0);

	virtual ~PeriodicFlowEngine();

	void action() override;
	//Cache precomputed values for pressure shifts, based on current hSize and pGrad
	void preparePShifts();

	// clang-format off
		YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(PeriodicFlowEngine,FlowEngine_PeriodicInfo,"A variant of :yref:`FlowEngine` implementing periodic boundary conditions. The API is very similar.",
		((Real,duplicateThreshold, 0.06,,"distance from cell borders that will triger periodic duplication in the triangulation |yupdate|"))
		((Vector3r, gradP, Vector3r::Zero(),,"Macroscopic pressure gradient"))
		,,
		wallIds=vector<int>(6,-1);
		solver = shared_ptr<FlowSolver> (new FlowSolver);
		epsVolMax=epsVolCumulative=retriangulationLastIter=0;
		ReTrg=1;
		first=true;
		,
		//nothing special to define, we re-use FlowEngine methods
		//.def("meanVelocity",&PeriodicFlowEngine::meanVelocity,"measure the mean velocity in the period")
		)
	// clang-format on
	DECLARE_LOGGER;
};
REGISTER_SERIALIZABLE(PeriodicFlowEngine);


CVector PeriodicCellInfo::hSize[] = { CVector(), CVector(), CVector() };
CVector PeriodicCellInfo::deltaP = CVector();
CVector PeriodicCellInfo::gradP = CVector();

CREATE_LOGGER(PeriodicFlowEngine);

PeriodicFlowEngine::~PeriodicFlowEngine() { }

void PeriodicFlowEngine::action()
{
	if (!isActivated) return;
	timingDeltas->start();
	preparePShifts();
	setPositionsBuffer(true);
	if (first) {
		if (multithread) setPositionsBuffer(false);
		cachedCell = Cell(*(scene->cell));
		buildTriangulation(pZero, *solver);
		if (solver->errorCode > 0) {
			LOG_INFO("triangulation error, pausing");
			Omega::instance().pause();
			return;
		}
		initializeVolumes(*solver);
		backgroundSolver = solver;
		backgroundCompleted = true;
	}
	//         if ( first ) {buildTriangulation ( pZero ); updateTriangulation = false; initializeVolumes();}

	timingDeltas->checkpoint("Triangulating");
	updateVolumes(*solver);
	epsVolCumulative += epsVolMax;
	retriangulationLastIter++;
	if (!updateTriangulation)
		updateTriangulation = // If not already set true by another function of by the user, check conditions
		        (defTolerance > 0 && epsVolCumulative > defTolerance) || (meshUpdateInterval > 0 && retriangulationLastIter >= meshUpdateInterval);

	timingDeltas->checkpoint("Update_Volumes");

	///compute flow and and forces here
	if (pressureForce) {
		solver->gaussSeidel(scene->dt);
		timingDeltas->checkpoint("Gauss-Seidel");
		solver->computeFacetForcesWithCache();
	}
	timingDeltas->checkpoint("compute_Pressure_Forces");

	///compute vicscous forces
	scene->forces.sync();
	computeViscousForces(*solver);
	timingDeltas->checkpoint("compute_Viscous_Forces");
	Vector3r           force;
	Vector3r           torque;
	const Tesselation& Tes = solver->T[solver->currentTes];
	for (int id = 0; id <= Tes.maxId; id++) {
		assert(Tes.vertexHandles[id] != NULL);
		const Tesselation::VertexInfo& v_info = Tes.vertexHandles[id]->info();
		force = (pressureForce) ? Vector3r((v_info.forces)[0], v_info.forces[1], v_info.forces[2]) : Vector3r(0, 0, 0);
		torque = Vector3r(0, 0, 0);
		if (shearLubrication || viscousShear) {
			force = force + solver->shearLubricationForces[v_info.id()];
			torque = torque + solver->shearLubricationTorques[v_info.id()];
			if (pumpTorque) torque = torque + solver->pumpLubricationTorques[v_info.id()];
			if (twistTorque) torque = torque + solver->twistLubricationTorques[v_info.id()];
		}

		if (normalLubrication) force = force + solver->normalLubricationForce[v_info.id()];
		scene->forces.addForce(v_info.id(), force);
		scene->forces.addTorque(v_info.id(), torque);
	}
	///End Compute flow and forces
	timingDeltas->checkpoint("Applying Forces");
	if (multithread && !first) {
		while (updateTriangulation && !backgroundCompleted) { /*cout<<"sleeping..."<<sleeping++<<endl;*/
			boost::this_thread::sleep(boost::posix_time::microseconds(1000));
		}
		if (updateTriangulation || (meshUpdateInterval > 0 && ellapsedIter > (0.5 * meshUpdateInterval))) {
			if (useSolver == 0) LOG_ERROR("background calculations not available for Gauss-Seidel");
			if (fluidBulkModulus > 0 || doInterpolate)
				solver->interpolate(solver->T[solver->currentTes], backgroundSolver->T[backgroundSolver->currentTes]);
			solver = backgroundSolver;
			backgroundSolver = shared_ptr<FlowSolver>(new FlowSolver);
			//Copy imposed pressures/flow from the old solver
			backgroundSolver->imposedP = vector<pair<CGT::Point, Real>>(solver->imposedP);
			backgroundSolver->imposedF = vector<pair<CGT::Point, Real>>(solver->imposedF);
			setPositionsBuffer(false);
			cachedCell = Cell(*(scene->cell));
			backgroundCompleted = false;
			retriangulationLastIter = ellapsedIter;
			ellapsedIter = 0;
			epsVolCumulative = 0;
			boost::thread workerThread(&PeriodicFlowEngine::backgroundAction, this);
			workerThread.detach();
			initializeVolumes(*solver);
			computeViscousForces(*solver);
		} else if (debug && !first) {
			if (debug && !backgroundCompleted) cerr << "still computing solver in the background" << endl;
			ellapsedIter++;
		}
	} else {
		if (updateTriangulation && !first) {
			cachedCell = Cell(*(scene->cell));
			buildTriangulation(pZero, *solver);
			initializeVolumes(*solver);
			computeViscousForces(*solver);
			updateTriangulation = false;
			epsVolCumulative = 0;
			retriangulationLastIter = 0;
			ReTrg++;
		}
	}
	first = false;
	timingDeltas->checkpoint("Ending");
}


// void PeriodicFlowEngine::backgroundAction()
// {
// 	if (useSolver<1) {LOG_ERROR("background calculations not available for Gauss-Seidel"); return;}
//         buildTriangulation (pZero,*backgroundSolver);
// 	//FIXME: GS is computing too much, we need only matrix factorization in fact
// 	backgroundSolver->gaussSeidel(scene->dt);
// 	backgroundSolver->computeFacetForcesWithCache(/*onlyCache?*/ true);
// // 	boost::this_thread::sleep(boost::posix_time::seconds(10));
// 	backgroundCompleted = true;
// }

void PeriodicFlowEngine::triangulate(FlowSolver& flow)
{
	Tesselation&     Tes = flow.tesselation();
	vector<posData>& buffer = multithread ? positionBufferParallel : positionBufferCurrent;
	FOREACH(const posData& b, buffer)
	{
		if (!b.exists || !b.isSphere || b.id == ignoredBody) continue;
		Vector3i period;
		Vector3r wpos;
		// FIXME: use "sheared" variant if the cell is sheared
		wpos = cachedCell.wrapPt(b.pos, period);
		const Body::id_t& id = b.id;
		const Real&       rad = b.radius;
		const Real&       x = wpos[0];
		const Real&       y = wpos[1];
		const Real&       z = wpos[2];
		VertexHandle      vh0 = Tes.insert(x, y, z, rad, id);
		//                 VertexHandle vh0=Tes.insert ( b.pos[0], b.pos[1], b.pos[2], b.radius, b.id );
		if (vh0 == NULL) {
			flow.errorCode = 2;
			LOG_ERROR("Vh NULL in PeriodicFlowEngine::triangulate(), check input data");
			continue;
		}
		for (int k = 0; k < 3; k++)
			vh0->info().period[k] = -period[k];
		const Vector3r cellSize(cachedCell.getSize());
		//FIXME: if hasShear, comment in
		//                 wpos=scene->cell->unshearPt ( wpos );
		// traverse all periodic cells around the body, to see if any of them touches
		Vector3r halfSize = (rad + duplicateThreshold) * Vector3r(1, 1, 1);
		Vector3r pmin, pmax;
		Vector3i i;
		for (i[0] = -1; i[0] <= 1; i[0]++)
			for (i[1] = -1; i[1] <= 1; i[1]++)
				for (i[2] = -1; i[2] <= 1; i[2]++) {
					if (i[0] != 0 || i[1] != 0 || i[2] != 0) { // middle; already rendered above
						Vector3r pos2 = wpos
						        + Vector3r(cellSize[0] * i[0], cellSize[1] * i[1], cellSize[2] * i[2]); // shift, but without shear!
						pmin = pos2 - halfSize;
						pmax = pos2 + halfSize;
						if ((pmin[0] <= cellSize[0]) && (pmax[0] >= 0) && (pmin[1] <= cellSize[1]) && (pmax[1] >= 0)
						    && (pmin[2] <= cellSize[2]) && (pmax[2] >= 0)) {
							//with shear:
							//Vector3r pt=scene->cell->shearPt ( pos2 );
							//without shear:
							const Vector3r& pt = pos2;
							VertexHandle    vh = Tes.insert(pt[0], pt[1], pt[2], rad, id, false, id);
							for (int k = 0; k < 3; k++)
								vh->info().period[k] = i[k] - period[k];
						}
					}
				}
		//re-assign the original vertex pointer since duplicates may have overwrite it
		Tes.vertexHandles[id] = vh0;
	}
	flow.shearLubricationForces.resize(Tes.maxId + 1);
	flow.shearLubricationTorques.resize(Tes.maxId + 1);
	flow.pumpLubricationTorques.resize(Tes.maxId + 1);
	flow.twistLubricationTorques.resize(Tes.maxId + 1);
	flow.shearLubricationBodyStress.resize(Tes.maxId + 1);
	flow.normalLubricationForce.resize(Tes.maxId + 1);
	flow.normalLubricationBodyStress.resize(Tes.maxId + 1);
}


Real PeriodicFlowEngine::volumeCell(CellHandle cell)
{
	static const Real inv6 = 1 / 6.;
	const Vector3r    p0 = positionBufferCurrent[cell->vertex(0)->info().id()].pos + makeVector3r(cell->vertex(0)->info().ghostShift());
	const Vector3r    p1 = positionBufferCurrent[cell->vertex(1)->info().id()].pos + makeVector3r(cell->vertex(1)->info().ghostShift());
	const Vector3r    p2 = positionBufferCurrent[cell->vertex(2)->info().id()].pos + makeVector3r(cell->vertex(2)->info().ghostShift());
	const Vector3r    p3 = positionBufferCurrent[cell->vertex(3)->info().id()].pos + makeVector3r(cell->vertex(3)->info().ghostShift());
	Real              volume = inv6 * ((p0 - p1).cross(p0 - p2)).dot(p0 - p3);
	if (!(cell->info().volumeSign)) cell->info().volumeSign = (volume > 0) ? 1 : -1;
	return volume;
}

Real PeriodicFlowEngine::volumeCellSingleFictious(CellHandle cell)
{
	Vector3r V[3];
	int      b = 0;
	int      w = 0;
	cell->info().volumeSign = 1;
	Real Wall_coordinate = 0;

	for (int y = 0; y < 4; y++) {
		if (!(cell->vertex(y)->info().isFictious)) {
			const shared_ptr<Body>& sph = Body::byId(cell->vertex(y)->info().id(), scene);
			V[w] = sph->state->pos + makeVector3r(cell->vertex(y)->info().ghostShift());
			w++;
		} else {
			b = cell->vertex(y)->info().id();
			const shared_ptr<Body>& wll = Body::byId(b, scene);
			if (!solver->boundary(b).useMaxMin)
				Wall_coordinate = wll->state->pos[solver->boundary(b).coordinate]
				        + (solver->boundary(b).normal[solver->boundary(b).coordinate]) * wallThickness / 2.;
			else
				Wall_coordinate = solver->boundary(b).p[solver->boundary(b).coordinate];
		}
	}
	Real Volume = 0.5 * ((V[0] - V[1]).cross(V[0] - V[2]))[solver->boundary(b).coordinate]
	        * (0.33333333333 * (V[0][solver->boundary(b).coordinate] + V[1][solver->boundary(b).coordinate] + V[2][solver->boundary(b).coordinate])
	           - Wall_coordinate);
	return math::abs(Volume);
}


void PeriodicFlowEngine::locateCell(CellHandle baseCell, unsigned int& index, int& baseIndex, FlowSolver& flow, unsigned int count)
{
	if (count > 10) {
		LOG_ERROR("More than 10 attempts to locate a cell, duplicateThreshold may be too small, resulting in periodicity inconsistencies.");
		flow.errorCode = 1;
		return;
	}
	PeriFlowTesselation::CellInfo& baseInfo = baseCell->info();
	//already located, return FIXME: is inline working correctly? else move this test outside the function, just before the calls
	if (baseInfo.index > 0 || baseInfo.isGhost) return;
	RTriangulation& Tri = flow.tesselation().Triangulation();
	Vector3r        center(0, 0, 0);
	Vector3i        period;

	if (baseCell->info().fictious() == 0)
		for (int k = 0; k < 4; k++)
			center += 0.25 * makeVector3r(baseCell->vertex(k)->point().point());
	else {
		Real boundPos = 0;
		int  coord = 0;
		for (int k = 0; k < 4; k++) {
			if (!baseCell->vertex(k)->info().isFictious) center += 0.3333333333 * makeVector3r(baseCell->vertex(k)->point().point());
			else {
				coord = flow.boundary(baseCell->vertex(k)->info().id()).coordinate;
				boundPos = flow.boundary(baseCell->vertex(k)->info().id()).p[coord];
			}
		}
		center[coord] = boundPos;
	}
	Vector3r wdCenter = cachedCell.wrapPt(center, period);
	if (period[0] != 0 || period[1] != 0 || period[2] != 0) {
		if (baseCell->info().index > 0) {
			cout << "indexed cell is found ghost!" << baseInfo.index << endl;
			baseInfo.isGhost = false;
			return;
		}
		CellHandle ch = Tri.locate(CGT::Sphere(wdCenter[0], wdCenter[1], wdCenter[2]));
		baseInfo.period[0] = period[0];
		baseInfo.period[1] = period[1];
		baseInfo.period[2] = period[2];
		//call recursively, since the returned cell could be also a ghost (especially if baseCell is a non-periodic type from the external contour
		locateCell(ch, index, baseIndex, flow, ++count);
		if (ch == baseCell) cerr << "WTF!!" << endl;
		//check consistency
		bool checkC = false;
		for (int kk = 0; kk < 4; kk++)
			if ((!baseCell->vertex(kk)->info().isGhost) && ((!baseCell->vertex(kk)->info().isFictious))) checkC = true;
		if (checkC) {
			bool checkV = true;
			for (int kk = 0; kk < 4; kk++) {
				checkV = false;
				for (int jj = 0; jj < 4; jj++)
					if (baseCell->vertex(kk)->info().id() == ch->vertex(jj)->info().id()) checkV = true;
				if (!checkV) {
					cerr << "periodicity is broken" << endl;
					for (int jj = 0; jj < 4; jj++)
						cerr << baseCell->vertex(jj)->info().id() << " ";
					cerr << " vs. ";
					for (int jj = 0; jj < 4; jj++)
						cerr << ch->vertex(jj)->info().id() << " ";
					cerr << endl;
				}
			}
		} else {
			// 			bool checkV=true;
			// 			for (int kk=0; kk<4;kk++) {
			// 				checkV=false;
			// 				for (int jj=0; jj<4;jj++)
			// 					if (baseCell->vertex(kk)->info().id() == ch->vertex(jj)->info().id()) checkV = true;
			// 				if (!checkV) {cerr <<"periodicity is broken (that's ok probably)"<<endl;
			// 				for (int jj=0; jj<4;jj++) cerr<<baseCell->vertex(jj)->info().id()<<" ";
			// 				cerr<<" vs. ";
			// 				for (int jj=0; jj<4;jj++) cerr<<ch->vertex(jj)->info().id()<<" ";
			// 				cerr<<endl;}
			// 			}
		}

		baseInfo.isGhost = true;
		baseInfo._pression = &(ch->info().p());
		baseInfo.index = ch->info().index;
		baseInfo.baseIndex = ch->info().baseIndex;
		baseInfo.Pcondition = ch->info().Pcondition;
	} else {
		baseInfo.isGhost = false;
		//index is 1-based, if it is zero it is not initialized, we define it here
		if (baseInfo.baseIndex < 0) {
			baseInfo.baseIndex = ++baseIndex;
			if (!baseInfo.Pcondition) baseInfo.index = ++index;
		}
	}
}

void PeriodicFlowEngine::updateVolumes(FlowSolver& flow)
{ //FIXME: replace by the non-periodic version
	if (debug) cout << "Updating volumes.............." << endl;
	Real invDeltaT = 1 / scene->dt;
	Real newVol, dVol;
	epsVolMax = 0;
	Real totVol = 0;
	Real totDVol = 0;
	Real totVol0 = 0;
	Real totVol1 = 0;

	FOREACH(CellHandle & cell, flow.tesselation().cellHandles)
	{
		switch (cell->info().fictious()) {
			case (1):
				newVol = volumeCellSingleFictious(cell);
				totVol1 += newVol;
				break;
			case (0):
				newVol = volumeCell(cell);
				totVol0 += newVol;
				break;
			default: newVol = 0; break;
		}
		totVol += newVol;
		dVol = cell->info().volumeSign * (newVol - cell->info().volume());
		totDVol += dVol;
		if (newVol != 0) { epsVolMax = max(epsVolMax, math::abs(dVol / newVol)); }
		cell->info().dv() = dVol * invDeltaT;
		cell->info().volume() = newVol;
	}
	for (unsigned int n = 0; n < flow.imposedF.size(); n++) {
		flow.IFCells[n]->info().dv() += flow.imposedF[n].second;
		flow.IFCells[n]->info().Pcondition = false;
	}
	if (debug) cout << "Updated volumes, total =" << totVol << ", dVol=" << totDVol << " " << totVol0 << " " << totVol1 << endl;
}


void PeriodicFlowEngine::initializeVolumes(FlowSolver& flow)
{
	FiniteVerticesIterator vertices_end = flow.tesselation().Triangulation().finite_vertices_end();
	CGT::CVector           Zero(0, 0, 0);
	for (FiniteVerticesIterator V_it = flow.tesselation().Triangulation().finite_vertices_begin(); V_it != vertices_end; V_it++)
		V_it->info().forces = Zero;

	FOREACH(CellHandle & cell, flow.tesselation().cellHandles)
	{
		switch (cell->info().fictious()) {
			case (0): cell->info().volume() = volumeCell(cell); break;
			case (1): cell->info().volume() = volumeCellSingleFictious(cell); break;
			default: cell->info().volume() = 0; break;
		}
		//FIXME: the void volume is negative sometimes, hence crashing...
		if (flow.fluidBulkModulus > 0 || iniVoidVolumes) {
			cell->info().invVoidVolume()
			        = 1. / (max(minimumPorosity * cell->info().volume(), math::abs(cell->info().volume()) - flow.volumeSolidPore(cell)));
		}
	}
	if (debug) cout << "Volumes initialised." << endl;
}

void PeriodicFlowEngine::buildTriangulation(Real pZero2, FlowSolver& flow)
{
	if (first) flow.currentTes = 0;
	else {
		flow.currentTes = !flow.currentTes;
		if (debug) cout << "--------RETRIANGULATION-----------" << endl;
	}
	flow.resetNetwork();
	initSolver(flow);
	addBoundary(flow);
	if (debug) cout << endl << "Added boundaries------" << endl << endl;
	triangulate(flow);
	if (debug) cout << endl << "Tesselating------" << endl << endl;
	flow.tesselation().compute();
	flow.defineFictiousCells();
	//FIXME: this is already done in addBoundary(?)
	boundaryConditions(flow);
	if (debug) cout << endl << "boundaryConditions------" << endl << endl;
	flow.initializePressure(pZero2);
	if (debug) cout << endl << "initializePressure------" << endl << endl;
	// Define the ghost cells and add indexes to the cells inside the period (the ones that will contain the pressure unknowns)
	//This must be done after boundary conditions and initialize pressure, else the indexes are not good (not accounting imposedP): FIXME
	unsigned int             index = 0;
	int                      baseIndex = -1;
	FlowSolver::Tesselation& Tes = flow.tesselation();
	Tes.cellHandles.resize(Tes.Triangulation().number_of_finite_cells());
	const FiniteCellsIterator cellend = Tes.Triangulation().finite_cells_end();
	for (FiniteCellsIterator cell = Tes.Triangulation().finite_cells_begin(); cell != cellend; cell++) {
		locateCell(cell, index, baseIndex, flow);
		if (flow.errorCode > 0) {
			LOG_ERROR("problem here, flow.errorCode>0");
			return;
		}
		//Fill this vector than can be later used to speedup loops
		if (!cell->info().isGhost) Tes.cellHandles[cell->info().baseIndex] = cell;
		cell->info().id = cell->info().baseIndex;
	}
	Tes.cellHandles.resize(baseIndex + 1);
	/// Call blockHook here if defined, valid indices and ghost status are available
	if (!blockHook.empty()) {
		LOG_INFO("Running blockHook: " << blockHook);
		pyRunString(blockHook);
	}
	if (debug) cout << endl << "locateCell------" << endl << endl;
	flow.computePermeability();
	porosity = flow.vPoralPorosity / flow.vTotalPorosity;
	flow.tolerance = tolerance;
	flow.relax = relax;

	flow.displayStatistics();
	//FIXME: check interpolate() for the periodic case, at least use the mean pressure from previous step.
	if (!first && !multithread && (useSolver == 0 || fluidBulkModulus > 0 || doInterpolate)) flow.interpolate(flow.T[!flow.currentTes], Tes);
	// 	if ( !first && (useSolver==0 || fluidBulkModulus>0)) flow.interpolate ( flow.T[!flow.currentTes], flow.tesselation() );

	if (waveAction) flow.applySinusoidalPressure(Tes.Triangulation(), sineMagnitude, sineAverage, 30);

	if (normalLubrication || shearLubrication || viscousShear) flow.computeEdgesSurfaces();
	if (debug) cout << endl << "end buildTri------" << endl << endl;
}

void PeriodicFlowEngine::preparePShifts()
{
	CellInfo::gradP = makeCgVect(gradP);
	CellInfo::hSize[0] = makeCgVect(scene->cell->hSize.col(0));
	CellInfo::hSize[1] = makeCgVect(scene->cell->hSize.col(1));
	CellInfo::hSize[2] = makeCgVect(scene->cell->hSize.col(2));
	CellInfo::deltaP = CGT::CVector(CellInfo::hSize[0] * CellInfo::gradP, CellInfo::hSize[1] * CellInfo::gradP, CellInfo::hSize[2] * CellInfo::gradP);
}


YADE_PLUGIN((PeriodicFlowEngine));

} // namespace yade

#endif //FLOW_ENGINE

#endif /* YADE_CGAL */