1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*************************************************************************
* Copyright (C) 2013 by T. Sweijen (T.sweijen@uu.nl) *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
#ifdef YADE_CGAL
#ifdef FLOW_ENGINE
// #define SOLUTE_FLOW
#ifdef SOLUTE_FLOW
#include "FlowEngine_SoluteFlowEngineT.hpp"
#include <Eigen/Sparse>
namespace yade { // Cannot have #include directive inside.
class SoluteCellInfo : public FlowCellInfo_SoluteFlowEngineT {
public:
Real solute_concentration;
SoluteCellInfo(void)
: FlowCellInfo_SoluteFlowEngineT()
{
solute_concentration = 0;
}
inline Real& solute(void) { return solute_concentration; }
inline const Real& solute(void) const { return solute_concentration; }
inline void getInfo(const SoluteCellInfo& otherCellInfo)
{
FlowCellInfo_SoluteFlowEngineT::getInfo(otherCellInfo);
solute() = otherCellInfo.solute();
}
};
typedef TemplateFlowEngine_SoluteFlowEngineT<SoluteCellInfo, FlowVertexInfo_SoluteFlowEngineT> SoluteFlowEngineT;
REGISTER_SERIALIZABLE(SoluteFlowEngineT);
YADE_PLUGIN((SoluteFlowEngineT));
class SoluteFlowEngine : public SoluteFlowEngineT {
public:
void initializeSoluteTransport();
void soluteTransport();
double getConcentration(unsigned int id) { return solver->T[solver->currentTes].cellHandles[id]->info().solute(); }
double insertConcentration(unsigned int id, double conc)
{
solver->T[solver->currentTes].cellHandles[id]->info().solute() = conc;
return conc;
}
void soluteBC(unsigned int bc_id1, unsigned int bc_id2, double bc_concentration1, double bc_concentration2, unsigned int s);
double getConcentrationPlane(double Yobs, double Yr, int xyz);
double getAverageConcentration();
///Elaborate the description as you wish
// clang-format off
YADE_CLASS_BASE_DOC_ATTRS_INIT_CTOR_PY(SoluteFlowEngine,SoluteFlowEngineT,"A variant of :yref:`FlowEngine` with solute transport).",
///No additional variable yet, else input here
// ((Vector3r, gradP, Vector3r::Zero(),,"Macroscopic pressure gradient"))
((double,DiffusionCoefficient,0,,"Diffusion coefficient for molecular diffusion"))
,,,
.def("soluteTransport",&SoluteFlowEngine::soluteTransport,"Solute transport (advection and diffusion) engine for diffusion use a diffusion coefficient (D) other than 0.")
.def("getConcentration",&SoluteFlowEngine::getConcentration,(boost::python::arg("id")),"get concentration of pore with ID")
.def("insertConcentration",&SoluteFlowEngine::insertConcentration,(boost::python::arg("id"),boost::python::arg("conc")),"Insert Concentration (ID, Concentration)")
.def("solute_BC",&SoluteFlowEngine::soluteBC,(boost::python::arg("bc_id1"),boost::python::arg("bc_id2"),boost::python::arg("bc_concentration1"),boost::python::arg("bc_concentration2"),boost::python::arg("s")),"Enter X,Y,Z for concentration observation'.")
.def("initializeSoluteTransport",&SoluteFlowEngine::initializeSoluteTransport,"Initialize Solute Transport")
.def("getConcentrationPlane",&SoluteFlowEngine::getConcentrationPlane,(boost::python::arg("Yobs"),boost::python::arg("Yr"),boost::python::arg("xyz")),"get concentration of pore with ID")
.def("getAverageConcentration",&SoluteFlowEngine::getAverageConcentration,"The the volume averaged concentration")
)
// clang-format on
};
REGISTER_SERIALIZABLE(SoluteFlowEngine);
// PeriodicFlowEngine::~PeriodicFlowEngine(){}
void SoluteFlowEngine::initializeSoluteTransport()
{
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles) { cell->info().solute() = 0.0; }
}
void SoluteFlowEngine::soluteTransport()
{
double deltatime = scene->dt;
//soluteTransport is a function to solve transport of solutes for advection (+diffusion).
//Call this function with a pyRunner in the python script, implement a diffusion coefficient and a dt.
//Optimalization has to be done such that the coefficient matrix is not solved for each time step,only after triangulation.
//Extensive testing has to be done to check its ability to simulate a deforming porous media.
double coeff = 0.00; //Ratio of dt and void volume
double coeff1 = 0.00; //Coefficient for off-diagonal element
double coeff2 = 0.00; //Coefficient for diagonal element
double qin = 0.00; //Flux into the pore per pore throat
double Qout = 0.0; //Total Flux out of the pore
double dt = 1e9;
double invdistance = 0.0; //Fluid facet area divided by pore throat length for each pore throat
double invdistancelocal = 0.0; //Sum of invdistance
//Set vectors & matrix
int ncells = solver->T[solver->currentTes].cellHandles.size();
Eigen::SparseMatrix<double, Eigen::ColMajor> Aconc(ncells, ncells);
typedef Eigen::Triplet<double> ETriplet2;
std::vector<ETriplet2> tripletList2;
Eigen::SparseLU<Eigen::SparseMatrix<double, Eigen::ColMajor>, Eigen::COLAMDOrdering<int>> eSolver2;
// Prepare (copy) concentration vector
VectorXr eb2(ncells);
VectorXr ex2(ncells);
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles) { eb2[cell->info().id] = cell->info().solute(); }
// Fill coefficient matrix
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles)
{
cell->info().invVoidVolume() = 1.0 / (std::abs(cell->info().volume()) - std::abs(solver->volumeSolidPore(cell)));
for (unsigned int ngb = 0; ngb < 4; ngb++) {
CGT::Point& p2 = cell->neighbor(ngb)->info();
CGT::Point& p1 = cell->info();
CGT::CVector l = p1 - p2;
CGT::Real fluidSurf = sqrt(cell->info().facetSurfaces[ngb].squared_length()) * cell->info().facetFluidSurfacesRatio[ngb];
invdistancelocal = (fluidSurf / sqrt(l.squared_length()));
invdistance += (fluidSurf / sqrt(l.squared_length()));
coeff = deltatime * cell->info().invVoidVolume();
qin = std::abs(cell->info().kNorm()[ngb]) * (cell->neighbor(ngb)->info().p() - cell->info().p());
dt = std::min((std::abs(cell->info().volume()) - std::abs(solver->volumeSolidPore(cell))) / std::abs(qin), dt);
Qout = Qout + qin; //max(qin,0.0);
coeff1 = -1 * coeff
* (qin
+ DiffusionCoefficient
* invdistancelocal); //(std::abs(max(qin,0.0))-(DiffusionCoefficient*invdistancelocal)); //off-diagonal
if (coeff1 != 0.0) { tripletList2.push_back(ETriplet2(cell->info().id, cell->neighbor(ngb)->info().id, coeff1)); }
}
coeff2 = 1.0 + (coeff * Qout) + (coeff * DiffusionCoefficient * invdistance); //diagonal
tripletList2.push_back(ETriplet2(cell->info().id, cell->info().id, coeff2));
Qout = 0.0;
invdistancelocal = 0.0;
invdistance = 0.0;
}
//Solve Matrix
Aconc.setFromTriplets(tripletList2.begin(), tripletList2.end());
//if (eSolver2.signDeterminant() < 1){cerr << "determinant is negative!!!!!!! " << eSolver2.signDeterminant()<<endl;}
//eSolver2.setPivotThreshold(10e-8);
eSolver2.analyzePattern(Aconc);
eSolver2.factorize(Aconc);
eSolver2.compute(Aconc);
ex2 = eSolver2.solve(eb2);
//Copy data to concentration array
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles) { cell->info().solute() = ex2[cell->info().id]; }
tripletList2.clear();
if (dt != 1e9) { scene->dt = dt; }
}
void SoluteFlowEngine::soluteBC(unsigned int bcid1, unsigned int bcid2, double bcconcentration1, double bcconcentration2, unsigned int s)
{
//Boundary conditions according to soluteTransport.
//It simply assigns boundary concentrations to cells with a common vertices (e.g. infinite large sphere which makes up the boundary condition in flowEngine)
//s is a switch, if 0 only bc_id1 is used (advection only). If >0 than both bc_id1 and bc_id2 are used.
//NOTE (bruno): cell cirulators can be use to get all cells having bcid2 has a vertex more efficiently (see e.g. FlowBoundingSphere.ipp:721)
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles)
{
for (unsigned int ngb = 0; ngb < 4; ngb++) {
if (cell->vertex(ngb)->info().id() == bcid1) { cell->info().solute() = bcconcentration1; }
if (s > 0) {
if (cell->vertex(ngb)->info().id() == bcid2) { cell->info().solute() = bcconcentration2; }
}
}
}
}
double SoluteFlowEngine::getConcentrationPlane(double Yobs, double Yr, int xyz)
{
//Get the concentration within a certain plane (Y_obs), whilst the cells are located in a small volume around this plane
//The concentration in cells are weighed for their distance to the observation point
//for a point on the x-axis (xyz=0), point on the y-axis (xyz=1), point on the z-axis (xyz=2)
double sumConcentration = 0.0;
double sumFraction = 0.0;
double concentration = 0.0;
//Find cells within designated volume
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles)
{
CGT::Point& p1 = cell->info();
if (std::abs(p1[xyz]) < std::abs(std::abs(Yobs) + std::abs(Yr))) {
if (std::abs(p1[xyz]) > std::abs(std::abs(Yobs) - std::abs(Yr))) {
sumConcentration += cell->info().solute() * (1 - (std::abs(p1[xyz]) - std::abs(Yobs)) / std::abs(Yr));
sumFraction += (1 - (std::abs(p1[xyz]) - std::abs(Yobs)) / std::abs(Yr));
}
}
}
concentration = sumConcentration / sumFraction;
return concentration;
}
double SoluteFlowEngine::getAverageConcentration()
{
//Get volume-averaged concentration
double summConc = 0.0, summVol = 0.0;
FOREACH(CellHandle & cell, solver->T[solver->currentTes].cellHandles)
{
if (!cell->info().isFictious) {
summConc += cell->info().solute() * (std::abs(cell->info().volume()) - std::abs(solver->volumeSolidPore(cell)));
summVol += (std::abs(cell->info().volume()) - std::abs(solver->volumeSolidPore(cell)));
}
}
return (summConc / summVol);
}
YADE_PLUGIN((SoluteFlowEngine));
} // namespace yade
#endif //SOLUTE_FLOW
#endif //FLOW_ENGINE
#endif /* YADE_CGAL */
|