1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
|
/*************************************************************************
* Copyright (C) 2018 by Robert Caulk <rob.caulk@gmail.com> *
* Copyright (C) 2018 by Bruno Chareyre <bruno.chareyre@grenoble-inp.fr> *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
/* This engine is under active development. Experimental only */
/* Thermal Engine was developed with funding provided by the Chateaubriand Fellowship and Laboratoire 3SR */
/* Theoretical framework and experimental validation presented in:
Caulk, R., Scholtès, L., Krzaczek, M., & Chareyre, B. (2020). A pore-scale thermo–hydro-mechanical model for particulate systems. Computer Methods in Applied Mechanics and Engineering, 372, 113292.
Caulk, R. and Chareyre, B. (2019) An open framework for the simulation of thermal-hydraulic-mechanical processes in discrete element systems. Thermal Process Engineering: Proceedings of DEM8, Enschede Netherlands, July 2019.
*/
//#define THERMAL
#ifdef FLOW_ENGINE
#ifdef THERMAL
#ifdef YADE_OPENMP
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/dem/FrictPhys.hpp>
#include <pkg/pfv/Thermal.hpp>
#include <preprocessing/dem/Shop.hpp>
namespace yade { // Cannot have #include directive inside.
CREATE_LOGGER(ThermalEngine);
YADE_PLUGIN((ThermalEngine));
ThermalEngine::~ThermalEngine() { } // destructor
void ThermalEngine::action()
{
scene = Omega::instance().getScene().get();
// NOTE: below, for efficiency, thermal states are re-checked only after an obvious change in scene->bodies size.
// This logic may fail if the same number of bodies are deleted/inserted, and maybe in a few other corner cases
if ((scene->bodies->size() != lenBodies) and not checkThermal()) makeThermal();
if (debug) cout << "set initial values" << endl;
if (first) setInitialValues();
if (debug) cout << "initial values set" << endl;
if (not flow)
for (const auto& e : Omega::instance().getScene()->engines) {
if (e->getClassName() == "FlowEngine") { flow = dynamic_cast<FlowEngineT*>(e.get()); }
}
// some initialization stuff for timestep and efficiency.
elapsedTime += scene->dt;
if (elapsedIters >= conductionIterPeriod || first) {
runConduction = true;
timeStepEstimated = false;
if (first) thermalDT = scene->dt;
else
thermalDT = elapsedTime;
if (advection && first) {
Pr = flow->fluidCp * flow->viscosity / fluidK;
setReynoldsNumbers();
}
first = false;
} else if (tsSafetyFactor <= 0 && thermalFreq <= 1) {
thermalDT = scene->dt;
}
if (flow->updateTriangulation) {
setReynoldsNumbers();
flow->updateTriangulation = false; // thermalFlipping this back for FlowEngine
}
if (thermoMech && letThermalRunFlowForceUpdates) flow->decoupleForces = true; // let thermal engine handle force estimates
// if ((elapsedIters == conductionIterPeriod) && tsSafetyFactor>0) flow->decoupleForces=true; // don't let flow handle forces during next step, since thermal will be adjusting pressures and handling forces // CURRENTLY NOT USEFUL
resetBoundaryFluxSums();
//resetStepFluxSums();
if (!boundarySet) setConductionBoundary();
if (!flowTempBoundarySet) resetFlowBoundaryTemps();
if (debug) cout << "boundaries set" << endl;
if (!conduction) thermoMech = false; //don't allow thermoMech if conduction is not activated
if (advection) {
flow->solver->initializeInternalEnergy(); // internal energy of cells
flow->solver->augmentConductivityMatrix(scene->dt);
}
if (debug) cout << "advection done" << endl;
if (conduction && runConduction) {
computeSolidSolidFluxes();
if (advection) computeSolidFluidFluxes();
}
if (unboundCavityBodies) unboundCavityParticles();
if (advection && fluidConduction) { // need to avoid duplicating energy, so reinitializing pore energy before conduction
flow->solver->setNewCellTemps(false);
flow->solver->initializeInternalEnergy();
computeFluidFluidConduction();
}
if (debug) cout << "conduction done" << endl;
if (conduction && runConduction) computeNewParticleTemperatures();
if (advection) flow->solver->setNewCellTemps(fluidConduction); // in case of fluid conduction, the delta temps are added to, not replaced
if (debug) cout << "temps set" << endl;
if (delT > 0 && runConduction) applyTempDeltaToSolids(delT);
if (thermoMech && runConduction) {
thermalExpansion();
// if (tsSafetyFactor>0){
if (letThermalRunFlowForceUpdates)
updateForces(); // currently not working. thermal must be run each step to see delp reflected
// flow->decoupleForces=false; // let flow take control back of forces
}
if (!timeStepEstimated && (tsSafetyFactor > 0 || thermalFreq > 1)) timeStepEstimate();
if (debug) cout << "timeStepEstimated " << timeStepEstimated << endl;
if (tsSafetyFactor > 0 || thermalFreq > 1) elapsedIters += 1;
}
void ThermalEngine::setReynoldsNumbers()
{
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
const long size = Tes.cellHandles.size();
if (uniformReynolds != -1) { // gain efficiency if we know the flow is creep (assigning uniform low reynolds to all cells)
Real NussfluidK = (2. + 0.6 * pow(uniformReynolds, 0.5) * pow(Pr, 0.33333)) * fluidK;
#pragma omp parallel for
for (long i = 0; i < size; i++) {
CellHandle& cell = Tes.cellHandles[i];
cell->info().Reynolds = uniformReynolds;
cell->info().NutimesFluidK = NussfluidK;
}
return;
}
// else get fluid velocity, compute reynolds, compute proper nusselt
flow->solver->averageRelativeCellVelocity();
// #ifdef YADE_OPENMP
const Real poro = Shop::getPorosityAlt();
#pragma omp parallel for
for (long i = 0; i < size; i++) {
CellHandle& cell = Tes.cellHandles[i];
CVector l;
Real charLength = 0.000001;
//Real NutimesFluidK = 2*fluidK;
Real Nusselt = 2.;
for (int j = 0; j < 4; j++) {
if (!cell->neighbor(j)->info().isFictious) {
l = cell->info() - cell->neighbor(j)->info();
charLength = sqrt(l.squared_length());
}
}
const Real avgCellFluidVel = sqrt(cell->info().averageVelocity().squared_length());
double Reynolds = flow->solver->fluidRho * avgCellFluidVel * charLength / flow->viscosity;
if (Reynolds < 0 || math::isnan(Reynolds)) {
cerr << "Reynolds is negative or nan" << endl;
Reynolds = 0;
}
if (Reynolds > 1000 || poro < 0.35) {
Nusselt = 2. + 0.6 * pow(Reynolds, 0.5) * pow(Pr, 0.33333);
cell->info().Reynolds = Reynolds;
} else if (
(0 <= Reynolds)
&& (Reynolds
<= 1000)) { //Tavassoli, H., Peters, E.A.J.F., and Kuipers, J.A.M. (2015) Direct numerical simulation of fluid–particle heat transfer in fixed random arrays of non‐spherical particles. Chemical Engineering Science, 129, 42–48
Nusselt = (7. - 10. * poro + 5. * poro * poro) * (1. + 0.1 * pow(Reynolds, 0.2) * pow(Pr, 0.333))
+ (1.33 - 2.19 * poro + 1.15 * poro * poro) * pow(Reynolds, 0.7) * pow(Pr, 0.333);
NutimesFluidK = Nu * fluidK;
cell->info().Reynolds = Reynolds;
}
cell->info().NutimesFluidK = Nusselt * fluidK;
}
return;
}
void ThermalEngine::setInitialValues()
{
if (not checkThermal()) makeThermal();
// scene = Omega::instance().getScene().get(); //already assigned in checkThermal()
// Check for periodic boundary conditions
if (scene->isPeriodic) {
if (advection)
throw std::runtime_error("ThermalEngine with periodic conditions does not yet support advection, please set thermal.advection=False.");
else if (fluidBeta != 0.0)
throw std::runtime_error(
"ThermalEngine with periodic conditions does not yet support fluid thermal expansion, please set thermal.fluidBeta=0.");
else { // Adjust other flags to enable using a non-triangulated periodic domain
boundarySet = true;
flowTempBoundarySet = true;
letThermalRunFlowForceUpdates = false;
if (flow) flow->updateTriangulation = false;
}
}
// Set particle properties
std::atomic<bool> hasExpansion(false);
YADE_PARALLEL_FOREACH_BODY_BEGIN(const shared_ptr<Body>& b, scene->bodies)
{
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* state = static_cast<ThermalState*>(b->state.get());
if (!math::isnan(particleT0)) state->temp = particleT0;
if (!math::isnan(particleK)) state->k = particleK;
if (!math::isnan(particleCp)) state->Cp = particleCp;
if (!math::isnan(particleAlpha)) state->alpha = particleAlpha;
if (state->alpha != 0.0) hasExpansion.store(true, std::memory_order_relaxed);
if (advection) state->isCavity = true; // easiest to start by assuming cavity and flip if touching non-cavity
// Set particle thermal mass, which can be different from mechanical mass when particleDensity is used
Sphere* sphere = static_cast<Sphere*>(b->shape.get());
const Real vol = (4.0 / 3.0) * M_PI * pow(sphere->radius, 3);
state->thermalMass = (particleDensity > 0 ? particleDensity * vol : state->mass);
}
YADE_PARALLEL_FOREACH_BODY_END();
particleExpansion = hasExpansion.load(std::memory_order_relaxed);
}
void ThermalEngine::timeStepEstimate()
{
if (tsSafetyFactor > 0) {
// #pragma omp parallel for
for (const auto& b : *scene->bodies) {
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* thState = static_cast<ThermalState*>(b->state.get());
const Real bodyTimeStep = thState->thermalMass * thState->Cp / thState->stabilityCoefficient;
thState->stabilityCoefficient = 0; // reset the stability coefficient
if (!maxTimeStep) maxTimeStep = bodyTimeStep;
if (bodyTimeStep < maxTimeStep) maxTimeStep = bodyTimeStep;
}
if (advection && fluidConduction) {
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
// #ifdef YADE_OPENMP
const long sizeCells = Tes.cellHandles.size();
// #pragma omp parallel for
for (long i = 0; i < sizeCells; i++) {
CellHandle& cell = Tes.cellHandles[i];
Real poreVolume;
if (cell->info().isCavity) poreVolume = cell->info().volume();
else if (porosityFactor > 0)
poreVolume = cell->info().volume() * porosityFactor;
else
poreVolume = 1. / cell->info().invVoidVolume();
const Real mass = flow->fluidRho * poreVolume;
const Real poreTimeStep = mass * flow->fluidCp / cell->info().stabilityCoefficient;
cell->info().stabilityCoefficient = 0;
if (!maxTimeStep) maxTimeStep = poreTimeStep;
if (poreTimeStep < maxTimeStep) maxTimeStep = poreTimeStep;
}
}
if (debug) cout << "body steps done" << endl;
// estimate the conduction iterperiod based on current mechanical/fluid timestep
conductionIterPeriod = int(tsSafetyFactor * maxTimeStep / scene->dt);
} else if (thermalFreq > 1) {
conductionIterPeriod = thermalFreq;
}
if (debug) cout << "conduction iter period set" << conductionIterPeriod << endl;
elapsedIters = 0;
elapsedTime = 0;
timeStepEstimated = true;
runConduction = false;
}
void ThermalEngine::resetBoundaryFluxSums()
{
for (int i = 0; i < 6; i++)
thermalBndFlux[i] = 0;
}
void ThermalEngine::setConductionBoundary()
{
for (int k = 0; k < 6; k++) {
flow->solver->conductionBoundary(flow->wallIds[k]).fluxCondition = !bndCondIsTemperature[k];
flow->solver->conductionBoundary(flow->wallIds[k]).value = thermalBndCondValue[k];
}
RTriangulation& Tri = flow->solver->T[flow->solver->currentTes].Triangulation();
const shared_ptr<BodyContainer>& bodies = scene->bodies;
for (int bound = 0; bound < 6; bound++) {
int& id = *flow->solver->boundsIds[bound];
flow->solver->conductionBoundingCells[bound].clear();
if (id < 0) continue;
CGT::ThermalBoundary& bi = flow->solver->conductionBoundary(id);
if (!bi.fluxCondition) {
VectorCell tmpCells;
tmpCells.resize(10000);
VCellIterator cells_it = tmpCells.begin();
VCellIterator cells_end = Tri.incident_cells(flow->solver->T[flow->solver->currentTes].vertexHandles[id], cells_it);
for (VCellIterator it = tmpCells.begin(); it != cells_end; it++) {
CellHandle& cell = *it;
for (int v = 0; v < 4; v++) {
if (!cell->vertex(v)->info().isFictious) {
const long int id2 = cell->vertex(v)->info().id();
if (!Body::byId(id2)) continue;
const shared_ptr<Body>& b = (*bodies)[id2];
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* thState = static_cast<ThermalState*>(b->state.get());
thState->Tcondition = true;
thState->temp = bi.value;
thState->boundaryId = bound;
}
}
flow->solver->conductionBoundingCells[bound].push_back(cell);
}
}
}
boundarySet = true;
}
// FIXME: buggy, commenting out for now
//void ThermalEngine::applyBoundaryHeatFluxes()
//{
// RTriangulation& Tri = flow->solver->T[flow->solver->currentTes].Triangulation();
// const shared_ptr<BodyContainer>& bodies = scene->bodies;
// for (int bound = 0; bound < 6; bound++) {
// int& id = *flow->solver->boundsIds[bound];
// flow->solver->conductionBoundingCells[bound].clear();
// if (id < 0)
// continue;
// CGT::ThermalBoundary& bi = flow->solver->conductionBoundary(id);
// if (bi.fluxCondition) {
// VectorCell tmpCells;
// tmpCells.resize(10000);
// VCellIterator cells_it = tmpCells.begin();
// VCellIterator cells_end = Tri.incident_cells(flow->solver->T[flow->solver->currentTes].vertexHandles[id], cells_it);
// for (VCellIterator it = tmpCells.begin(); it != cells_end; it++) {
// CellHandle& cell = *it;
// for (int v = 0; v < 4; v++) {
// if (!cell->vertex(v)->info().isFictious) {
// const long int id = cell->vertex(v)->info().id();
// const shared_ptr<Body>& b = (*bodies)[id];
// if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b)
// continue;
// auto* thState = b->state.get();
// thState->Tcondition = false;
// thState->stepFlux += bi.value;
// thState->boundaryId = bound;
// }
// }
// }
// }
// }
//}
void ThermalEngine::computeSolidFluidFluxes()
{
if (!flow->solver->sphericalVertexAreaCalculated) computeVertexSphericalArea();
shared_ptr<BodyContainer>& bodies = scene->bodies;
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
// #ifdef YADE_OPENMP
const long size = Tes.cellHandles.size();
#pragma omp parallel for
for (long i = 0; i < size; i++) {
CellHandle& cell = Tes.cellHandles[i];
// #else
if ((ignoreFictiousConduction && cell->info().isFictious) || cell->info().blocked) continue;
for (int v = 0; v < 4; v++) {
if (cell->vertex(v)->info().isFictious) continue;
if (!cell->info().Tcondition && cell->info().isFictious)
continue; // don't compute conduction with boundary cells that do not have a temperature assigned
const long int id = cell->vertex(v)->info().id();
if (!Body::byId(id)) continue;
const shared_ptr<Body>& b = (*bodies)[id];
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* thState = static_cast<ThermalState*>(b->state.get());
if (!cell->info().isCavity
&& unboundCavityBodies) { // nothing to do with fluxes, but the difficulty required to get here warrants tracking cavitybodies while we are here
thState->isCavity = false;
}
if (!first && thState->isCavity) continue; // avoid heat transfer with placeholder cavity bodies
const Real surfaceArea = cell->info().sphericalVertexSurface[v];
computeFlux(cell, b, surfaceArea);
}
}
}
void ThermalEngine::unboundCavityParticles()
{ // maybe move to flowbounding sphere, but all tools are here atm
YADE_PARALLEL_FOREACH_BODY_BEGIN(const shared_ptr<Body>& b, scene->bodies)
{
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* thState = static_cast<ThermalState*>(b->state.get());
if (thState->isCavity) {
b->setBounded(false);
if (debug) cout << "cavity body unbounded" << endl;
}
}
YADE_PARALLEL_FOREACH_BODY_END();
}
void ThermalEngine::computeVertexSphericalArea()
{
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
// #ifdef YADE_OPENMP
const long size = Tes.cellHandles.size();
#pragma omp parallel for
for (long i = 0; i < size; i++) {
CellHandle& cell = Tes.cellHandles[i];
// #else
if ((ignoreFictiousConduction && cell->info().isFictious) || cell->info().blocked) continue;
VertexHandle W[4];
for (int k = 0; k < 4; k++)
W[k] = cell->vertex(k);
if (cell->vertex(0)->info().isFictious) cell->info().sphericalVertexSurface[0] = 0;
else
cell->info().sphericalVertexSurface[0]
= flow->solver->fastSphericalTriangleArea(W[0]->point(), W[1]->point().point(), W[2]->point().point(), W[3]->point().point());
if (cell->vertex(1)->info().isFictious) cell->info().sphericalVertexSurface[1] = 0;
else
cell->info().sphericalVertexSurface[1]
= flow->solver->fastSphericalTriangleArea(W[1]->point(), W[0]->point().point(), W[2]->point().point(), W[3]->point().point());
if (cell->vertex(2)->info().isFictious) cell->info().sphericalVertexSurface[2] = 0;
else
cell->info().sphericalVertexSurface[2]
= flow->solver->fastSphericalTriangleArea(W[2]->point(), W[1]->point().point(), W[0]->point().point(), W[3]->point().point());
if (cell->vertex(3)->info().isFictious) cell->info().sphericalVertexSurface[3] = 0;
else
cell->info().sphericalVertexSurface[3]
= flow->solver->fastSphericalTriangleArea(W[3]->point(), W[1]->point().point(), W[2]->point().point(), W[0]->point().point());
}
flow->solver->sphericalVertexAreaCalculated = true;
}
void ThermalEngine::computeFlux(CellHandle& cell, const shared_ptr<Body>& b, const Real surfaceArea)
{
const Sphere* sphere = static_cast<Sphere*>(b->shape.get());
auto* thState = static_cast<ThermalState*>(b->state.get());
const Real h = cell->info().NutimesFluidK / (2. * sphere->radius);
//const Real h = cell->info().NutimesFluidK / (2.*sphere->radius); // heat transfer coeff assuming Re<<1 (stokes flow)
const Real flux = h * surfaceArea * (cell->info().temp() - thState->temp);
if (runConduction && tsSafetyFactor > 0) {
thState->stabilityCoefficient += h * surfaceArea; // for auto time step estimation
cell->info().stabilityCoefficient += h * surfaceArea;
}
if (!cell->info().Tcondition && !cell->info().isFictious && !cell->info().blocked) cell->info().internalEnergy -= flux * thermalDT;
if (!thState->Tcondition) thState->stepFlux += flux;
}
void ThermalEngine::computeSolidSolidFluxes()
{
// #ifdef YADE_OPENMP
const shared_ptr<InteractionContainer>& interactions = scene->interactions;
const long size = interactions->size();
#pragma omp parallel for
for (long i = 0; i < size; i++) {
const shared_ptr<Interaction>& I = (*interactions)[i];
// #else
// for (const auto & I : *scene->interactions){
// #endif
if (!I || !I->geom.get() || !I->phys.get() || !I->isReal()) continue;
computeSolidSolidConduction(I);
if (heatGenerationRatio > 0.0) computeSolidSolidHeatGeneration(I);
}
}
void ThermalEngine::computeSolidSolidConduction(const shared_ptr<Interaction>& I)
{
if (I->geom.get()) {
const ScGeom* geom;
geom = YADE_CAST<ScGeom*>(I->geom.get());
if (!geom) return;
const Real pd = geom->penetrationDepth;
if (!Body::byId(I->getId1(), scene) or !Body::byId(I->getId2(), scene)) return;
const shared_ptr<Body>& b1_ = Body::byId(I->getId1(), scene);
const shared_ptr<Body>& b2_ = Body::byId(I->getId2(), scene);
if (b1_->shape->getClassIndex() != Sphere::getClassIndexStatic() || b2_->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b1_
|| !b2_)
return;
auto* thState1 = static_cast<ThermalState*>(b1_->state.get()); //b1_->state.get();
auto* thState2 = static_cast<ThermalState*>(b2_->state.get()); //b2_->state.get();
FrictPhys* phys = static_cast<FrictPhys*>(I->phys.get());
if (!first && (thState1->isCavity || thState2->isCavity)) return; // avoid conduction with placeholder cavity bodies
Sphere* sphere1 = static_cast<Sphere*>(b1_->shape.get());
Sphere* sphere2 = static_cast<Sphere*>(b2_->shape.get());
FrictMat* mat1 = static_cast<FrictMat*>(b1_->material.get());
FrictMat* mat2 = static_cast<FrictMat*>(b2_->material.get());
const Real k1 = thState1->k;
const Real k2 = thState2->k;
const Real r1 = sphere1->radius;
const Real r2 = sphere2->radius;
const Real T1 = thState1->temp;
const Real T2 = thState2->temp;
const Real d = r1 + r2 - pd;
const Real E1 = mat1->young;
const Real E2 = mat2->young;
const Real nu1 = mat1->poisson;
const Real nu2 = mat2->poisson;
const Real F = phys->normalForce.squaredNorm();
if (d == 0) return;
Real R = 0;
Real r = 0;
// for equation:
if (r1 >= r2) {
R = r1;
r = r2;
} else if (r1 < r2) {
R = r2;
r = r1;
}
// The radius of the intersection found by: Kern, W. F. and Bland, J. R. Solid Mensuration with Proofs, 2nd ed. New York: Wiley, p. 97, 1948. http://mathworld.wolfram.com/Sphere-SphereIntersection.html
//const Real area = M_PI*pow(rc,2);
//const Real dt = scene->dt;
//const Real fluxij = 4.*rc*(T1-T2) / (1./k1 + 1./k2);
// compute the overlapping volume for thermodynamic considerations
// const Real capHeight1 = (r1-r2+d)*(r1+r2-d)/2*d;
// const Real capHeight2 = (r2-r1+d)*(r2+r1-d)/2*d;
// thState1->capVol += (1./3.)*M_PI*pow(capHeight1,2)*(3.*r1-capHeight1);
// thState2->capVol += (1./3.)*M_PI*pow(capHeight2,2)*(3.*r2-capHeight2);
// compute the thermal resistance of the pair and the associated flux
Real thermalResist;
if (useKernMethod) {
const Real numerator = pow((-d + r - R) * (-d - r + R) * (-d + r + R) * (d + r + R), 0.5);
const Real rc = numerator / (2. * d);
thermalResist = 2. * (k1 + k2) * rc * rc / (r1 + r2 - pd);
} //thermalResist = ((k1+k2)/2.)*area/(r1+r2-pd);}
else if (useBoBMethod) {
const Real rc = pow((-d + r - R) * (-d - r + R) * (-d + r + R) * (d + r + R), 0.5) / (2.0 * d);
thermalResist = 4.0 * rc / (1.0 / k1 + 1.0 / k2);
} else if (useHertzMethod) {
const Real re = 1. / r1 + 1. / r2;
const Real Eavg = (E1 + E2) / 2.;
const Real Nuavg = (nu1 + nu2) / 2.;
const Real Estar = Eavg / (1. - pow(Nuavg, 2));
const Real a = pow(3. * F * re / (4. * Estar), 1. / 3.);
thermalResist = ((k1 + k2) / 2.) / (r1 + r2) * M_PI * pow(a, 2);
} else {
thermalResist = 2. * (k1 + k2) * r1 * r2 / (r1 + r2 - pd);
}
const Real fluxij = thermalResist * (T1 - T2);
//cout << "Flux b/w "<< b1_->id << " & "<< b2_->id << " fluxij " << fluxij << endl;
if (runConduction && tsSafetyFactor > 0) {
thState1->stabilityCoefficient += thermalResist;
thState2->stabilityCoefficient += thermalResist;
}
if (!thState1->Tcondition) {
#pragma omp atomic update
thState1->stepFlux -= fluxij; //U1 -= fluxij*dt;
} else {
#pragma omp atomic update
thermalBndFlux[thState1->boundaryId] -= fluxij;
}
if (!thState2->Tcondition) {
#pragma omp atomic update
thState2->stepFlux += fluxij; // U2 += fluxij*dt;
} else {
#pragma omp atomic update
thermalBndFlux[thState2->boundaryId] += fluxij;
}
}
}
void ThermalEngine::computeSolidSolidHeatGeneration(const shared_ptr<Interaction>& I)
{
FrictPhys* phys = static_cast<FrictPhys*>(I->phys.get());
if (!phys || phys->frictDissip == 0.0) return;
if (!Body::byId(I->getId1(), scene) or !Body::byId(I->getId2(), scene)) return;
const shared_ptr<Body>& b1_ = Body::byId(I->getId1(), scene);
const shared_ptr<Body>& b2_ = Body::byId(I->getId2(), scene);
if (b1_->shape->getClassIndex() != Sphere::getClassIndexStatic() || b2_->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b1_ || !b2_)
return;
auto* thState1 = static_cast<ThermalState*>(b1_->state.get());
auto* thState2 = static_cast<ThermalState*>(b2_->state.get());
if (!first && (thState1->isCavity || thState2->isCavity)) return;
// Calculate average heat generation rate since last thermal step (frictDissip accumulates energy dissipated between thermal steps)
const Real heat_gen_rate = heatGenerationRatio * phys->frictDissip / thermalDT;
phys->frictDissip = 0.0;
// Calculate partition coefficient
const Real k1 = thState1->k;
const Real k2 = thState2->k;
const Real partition = k1 / (k1 + k2);
// Split heat between particles
const Real heat1 = partition * heat_gen_rate;
const Real heat2 = (1.0 - partition) * heat_gen_rate;
if (!thState1->Tcondition) {
#pragma omp atomic update
thState1->stepFlux += heat1;
} else {
#pragma omp atomic update
thermalBndFlux[thState1->boundaryId] += heat1;
}
if (!thState2->Tcondition) {
#pragma omp atomic update
thState2->stepFlux += heat2;
} else {
#pragma omp atomic update
thermalBndFlux[thState2->boundaryId] += heat2;
}
}
void ThermalEngine::computeFluidFluidConduction()
{
//CVector fluidSurfK; CVector poreVector; Real distance; Real area; Real conductionEnergy;
// cycle through facets instead of cells to avoid duplicate math
/* Parallel version */
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
const long sizeFacets = Tes.facetCells.size();
// #ifdef YADE_OPENMP
// #pragma omp parallel for
// #endif
for (long i = 0; i < sizeFacets; i++) {
CVector fluidSurfK;
CVector poreVector;
Real distance;
Real area;
Real conductionEnergy;
std::pair<CellHandle, int> facetPair = Tes.facetCells[i];
const CellHandle& cell = facetPair.first;
const CellHandle& neighborCell = cell->neighbor(facetPair.second);
if (cell->info().isFictious || neighborCell->info().isFictious || cell->info().blocked || neighborCell->info().blocked) continue;
const Real deltaT = cell->info().temp() - neighborCell->info().temp();
Real fluidToSolidRatio;
if (cell->info().isCavity && neighborCell->info().isCavity) fluidToSolidRatio = 1.;
else
fluidToSolidRatio = cell->info().facetFluidSurfacesRatio[facetPair.second];
//if (flow->thermalPorosity>0) fluidConductionAreaFactor=flow->thermalPorosity;
area = fluidConductionAreaFactor * sqrt(cell->info().facetSurfaces[facetPair.second].squared_length()) * fluidToSolidRatio;
//area = sqrt(fluidSurfK.squared_length());
//poreVector = cell->info() - neighborCell->info();
poreVector = cellBarycenter(cell) - cellBarycenter(neighborCell); // voronoi was breaking for hexagonal packings
distance = sqrt(poreVector.squared_length());
if (distance < minimumFluidCondDist) distance = minimumFluidCondDist;
//cout << "conduction distance" << distance << endl;
//if (distance < area) continue; // hexagonal packings result in extremely small distances that blow up the simulation
const Real thermalResist = fluidK * area / distance;
conductionEnergy = thermalResist * deltaT * thermalDT;
if (math::isnan(conductionEnergy)) conductionEnergy = 0;
cell->info().stabilityCoefficient += thermalResist;
//cout << "conduction distance" << distance << endl;
if (!cell->info().Tcondition && !math::isnan(conductionEnergy)) {
//#ifdef YADE_OPENMP
//#pragma omp atomic
//#endif
cell->info().internalEnergy -= conductionEnergy;
}
if (!neighborCell->info().Tcondition && !math::isnan(conductionEnergy)) {
//#ifdef YADE_OPENMP
//#pragma omp atomic
//#endif
neighborCell->info().internalEnergy += conductionEnergy;
}
}
/* non parallel version */
// RTriangulation& Tri = flow->solver->T[flow->solver->currentTes].Triangulation();
// for (FiniteFacetsIterator f_it=Tri.finite_facets_begin(); f_it != Tri.finite_facets_end();f_it++){
// const CellHandle& cell = f_it->first;
// const CellHandle& neighborCell = f_it->first->neighbor(f_it->second);
// if (cell->info().isFictious || neighborCell->info().isFictious || cell->info().blocked || neighborCell->info().blocked) continue;
// delT = cell->info().temp() - neighborCell->info().temp();
// Real fluidToSolidRatio;
// if (cell->info().isCavity && neighborCell->info().isCavity) fluidToSolidRatio = 1.;
// else fluidToSolidRatio = cell->info().facetFluidSurfacesRatio[f_it->second];
// area = fluidConductionAreaFactor * math::sqrt(cell->info().facetSurfaces[f_it->second].squared_length())*fluidToSolidRatio;
// //area = math::sqrt(fluidSurfK.squared_length());
// //poreVector = cell->info() - neighborCell->info();
// poreVector = cellBarycenter(cell) - cellBarycenter(neighborCell); // voronoi was breaking for hexagonal packings
// distance = math::sqrt(poreVector.squared_length());
// //cout << "conduction distance" << distance << endl;
// //if (distance < area) continue; // hexagonal packings result in extremely small distances that blow up the simulation
// const Real thermalResist = fluidK*area/distance;
// conductionEnergy = thermalResist * delT * thermalDT;
// if (isnan(conductionEnergy)) conductionEnergy=0;
// cell->info().stabilityCoefficient+=thermalResist;
// //cout << "conduction distance" << distance << endl;
// if (!cell->info().Tcondition && !isnan(conductionEnergy)) cell->info().internalEnergy -= conductionEnergy;
// if (!neighborCell->info().Tcondition && !isnan(conductionEnergy)) neighborCell->info().internalEnergy += conductionEnergy;
// //cout << "added conduction energy"<< conductionEnergy << endl;
// }
}
CVector ThermalEngine::cellBarycenter(const CellHandle& cell)
{
CVector center(0, 0, 0);
for (int k = 0; k < 4; k++)
center = center + 0.25 * (cell->vertex(k)->point().point() - CGAL::ORIGIN);
return center;
}
void ThermalEngine::computeNewPoreTemperatures()
{
bool addToDeltaTemp = false;
flow->solver->setNewCellTemps(addToDeltaTemp);
}
void ThermalEngine::computeNewParticleTemperatures()
{
//applyBoundaryHeatFluxes(); // FIXME: buggy commenting out for now
YADE_PARALLEL_FOREACH_BODY_BEGIN(const shared_ptr<Body>& b, scene->bodies)
{
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* thState = static_cast<ThermalState*>(b->state.get());
if (!first && thState->isCavity) continue;
if (thState->Tcondition) continue;
thState->oldTemp = thState->temp;
thState->temp = thState->stepFlux * thermalDT / (thState->Cp * thState->thermalMass) + thState->oldTemp; // first order forward difference
thState->stepFlux = 0;
}
YADE_PARALLEL_FOREACH_BODY_END();
}
void ThermalEngine::thermalExpansion()
{
// adjust particle size
if (particleExpansion) {
YADE_PARALLEL_FOREACH_BODY_BEGIN(const shared_ptr<Body>& b, scene->bodies)
{
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
Sphere* sphere = static_cast<Sphere*>(b->shape.get());
auto* thState = static_cast<ThermalState*>(b->state.get());
if (!first && thState->isCavity) continue;
if (!thState->Tcondition && thState->temp != thState->oldTemp) {
// Update radius
// ATTENTION: Material density is not updated, so density should not be used anywhere to calculate particle mass in order to respect mass conservation.
thState->delRadius = thState->alpha * sphere->radius * (thState->temp - thState->oldTemp);
sphere->radius += thState->delRadius;
// Update inertia for momentum conservation
thState->inertia = (2.0 / 5.0) * thState->mass * pow(sphere->radius, 2) * Vector3r::Ones();
}
}
YADE_PARALLEL_FOREACH_BODY_END();
}
// adjust cell pressure
if (fluidBeta > 0) {
cavitySolidVolumeChange = 0;
cavityVolume = 0;
cavityDtemp = 0;
flow->solver->cavityDV = 0; //setting cavity rate of volume change to 0 here, will be added to in adjustCavityVolumeChange
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
Real cavDens = flow->solver->cavityFluidDensity;
// #ifdef YADE_OPENMP
const long sizeCells = Tes.cellHandles.size();
#pragma omp parallel for
for (long i = 0; i < sizeCells; i++) {
CellHandle& cell = Tes.cellHandles[i];
// #else
if (cell->info().isFictious || cell->info().blocked) continue;
cell->info().dv() = 0; // reset dv so we can start adding to it
if (cell->info().isCavity) cavityVolume += 1. / cell->info().invVoidVolume();
if (solidThermoMech && particleExpansion) computeCellVolumeChangeFromSolidVolumeChange(cell);
if (fluidThermoMech) computeCellVolumeChangeFromDeltaTemp(cell, cavDens);
}
if (solidThermoMech && particleExpansion && flow->controlCavityPressure) accountForCavitySolidVolumeChange();
}
if (fluidThermoMech && flow->controlCavityVolumeChange) accountForCavityThermalVolumeChange();
}
void ThermalEngine::accountForCavityThermalVolumeChange() { flow->solver->cavityDV += -cavityVolume * fluidBeta * cavityDtemp / thermalDT; }
void ThermalEngine::accountForCavitySolidVolumeChange()
{
Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
// #ifdef YADE_OPENMP
const long sizeCells = Tes.cellHandles.size();
#pragma omp parallel for
for (long i = 0; i < sizeCells; i++) {
CellHandle& cell = Tes.cellHandles[i];
if (!cell->info().isCavity || cell->info().blocked) continue;
cell->info().p() += (1. / flow->solver->equivalentCompressibility) * cavityVolume * cavitySolidVolumeChange;
}
}
void ThermalEngine::computeCellVolumeChangeFromSolidVolumeChange(CellHandle& cell)
{
const shared_ptr<BodyContainer>& bodies = scene->bodies;
//const Real K = flow->fluidBulkModulus;
// const Real Vo = 1./cell->info().invVoidVolume(); // FIXME: depends on volumeSolidPore(), which only uses CGAL triangulations so this value is only updated with remeshes. We need our own function for volumeSolidPore.
Real solidVolumeChange = 0;
for (int v = 0; v < 4; v++) {
const long int id = cell->vertex(v)->info().id();
if (!Body::byId(id)) continue;
const shared_ptr<Body>& b = (*bodies)[id];
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
Sphere* sphere = static_cast<Sphere*>(b->shape.get());
auto* thState = static_cast<ThermalState*>(b->state.get());
if (!first && thState->isCavity) continue; // don't consider fake cavity bodies
const Real surfaceArea
= cell->info().sphericalVertexSurface[v]; // from last fluid engine remesh. We could store this in cell->info() if it becomes a burden
const Real rCubedDiff = pow(sphere->radius, 3) - pow(sphere->radius - thState->delRadius, 3);
const Real areaTot = 4. * M_PI * pow(sphere->radius, 2); // We could store this in cell->info() if it becomes a burden
solidVolumeChange += surfaceArea / areaTot * rCubedDiff * M_PI * 4. / 3.;
}
// Real newVoidVol = Vo - solidVolumeChange;
if (!cell->info().isCavity || !flow->controlCavityPressure) {
//cell->info().invVoidVolume() = newVoidVol > 0 ? 1./newVoidVol : cell->info().invVoidVolume();
cell->info().dv() += -solidVolumeChange / thermalDT;
} else {
cavitySolidVolumeChange += solidVolumeChange;
}
}
//void ThermalEngine::computeInvVoidVolume(){
// const shared_ptr<BodyContainer>& bodies=scene->bodies;
// Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
// const long sizeCells = Tes.cellHandles.size();
// #pragma omp parallel for
// for (long i=0; i<sizeCells; i++){
// Real solidVolume = 0;
// CellHandle& cell = Tes.cellHandles[i];
// if (cell->info().isFictious) continue;
// for (int v=0;v<4;v++){
// const long int id = cell->vertex(v)->info().id();
// const shared_ptr<Body>& b =(*bodies)[id];
// if (b->shape->getClassIndex()!=Sphere::getClassIndexStatic() || !b) continue;
// Sphere* sphere = dynamic_cast<Sphere*>(b->shape.get());
// const Real surfaceArea = cell->info().sphericalVertexSurface[v];
// const Real areaTot = 4. * M_PI * pow(sphere->radius,2);
// solidVolume += surfaceArea/areaTot * pow(sphere->radius,3) * M_PI * 4./3.;
// }
// cell->info().invVoidVolume() = abs(cell->info().volume()-solidVolume);
// }
//}
void ThermalEngine::computeCellVolumeChangeFromDeltaTemp(CellHandle& cell, Real /*cavDens*/)
{
Real beta;
if (tempDependentFluidBeta) beta = 7.5e-6 * cell->info().temp() + 5.7e-5; // linear model for thermal expansion
else
beta = fluidBeta;
Real poreVolume;
if (porosityFactor > 0) poreVolume = cell->info().volume() * porosityFactor; // allows us to simulate low porosity matrices
else
poreVolume = (1. / cell->info().invVoidVolume());
// else K = flow->fluidBulkModulus;
if (!cell->info().isCavity) {
cell->info().dv() += -poreVolume * beta * cell->info().dtemp() / thermalDT;
} else if (cell->info().isCavity) {
cell->info().dv() += -(cell->info().volume()) * beta * cell->info().dtemp()
/ thermalDT; // ignore the particles used for fluid discretization in the pore (i.e. use volume())
}
}
// used for computing flow forces after thermalengine modifies pressures (thermomech) // CURRENTLY USELESS
void ThermalEngine::updateForces()
{
flow->solver->computeFacetForcesWithCache();
scene->forces.sync();
flow->computeViscousForces(*flow->solver);
flow->applyForces(*flow->solver);
}
// used for instantly changing temperature and observing volumetric expansion
void ThermalEngine::applyTempDeltaToSolids(Real delT2)
{
YADE_PARALLEL_FOREACH_BODY_BEGIN(const shared_ptr<Body>& b, scene->bodies)
{
if (b->shape->getClassIndex() != Sphere::getClassIndexStatic() || !b) continue;
auto* thState = static_cast<ThermalState*>(b->state.get());
if (!thState->Tcondition) { thState->temp += delT2; }
}
YADE_PARALLEL_FOREACH_BODY_END();
delT2 = 0;
}
void ThermalEngine::resetFlowBoundaryTemps()
{
for (int k = 0; k < 6; k++) {
flow->solver->thermalBoundary(flow->wallIds[k]).fluxCondition = !flow->bndCondIsTemperature[k];
flow->solver->thermalBoundary(flow->wallIds[k]).value = flow->thermalBndCondValue[k];
}
RTriangulation& Tri = flow->solver->T[flow->solver->currentTes].Triangulation();
for (int bound = 0; bound < 6; bound++) {
int& id = *flow->solver->boundsIds[bound];
//flow->solver->thermalBoundingCells[bound].clear();
if (id < 0) continue;
CGT::ThermalBoundary& bi = flow->solver->thermalBoundary(id);
if (!bi.fluxCondition) {
VectorCell tmpCells;
tmpCells.resize(10000);
VCellIterator cells_it = tmpCells.begin();
VCellIterator cells_end = Tri.incident_cells(flow->solver->T[flow->solver->currentTes].vertexHandles[id], cells_it);
for (VCellIterator it = tmpCells.begin(); it != cells_end; it++) {
(*it)->info().temp() = bi.value;
}
}
}
flowTempBoundarySet = true;
}
bool ThermalEngine::checkThermal()
{
scene = Omega::instance().getScene().get();
lenBodies = Omega::instance().getScene()->bodies->size(); //remember length of last visit
FOREACH(const shared_ptr<Body>& b, *scene->bodies)
{
if (b and not YADE_PTR_DYN_CAST<ThermalState>(b->state)) {
LOG_WARN(
"new bodies have non-thermal states, make sure ThermalEngine.makeThermal() is called after inserting bodies (id=" << b->getId()
<< " )");
return false;
}
}
return true;
}
void ThermalEngine::makeThermal()
{
scene = Omega::instance().getScene().get();
/* turn thermal the states which are not */
FOREACH(const shared_ptr<Body>& b, *scene->bodies) // YADE_PARALLEL_FOREACH_BODY is probably slower for such a trivial task
if (b and not YADE_PTR_DYN_CAST<ThermalState>(b->state)) b->state = shared_ptr<ThermalState>(new ThermalState(*b->state));
lenBodies = Omega::instance().getScene()->bodies->size(); //remember length of last visit
}
// void ThermalEngine::computeVolumeSolidPore(CellHandle& Cell){
// const shared_ptr<BodyContainer>& bodies=scene->bodies;
// Tesselation& Tes = flow->solver->T[flow->solver->currentTes];
// // #ifdef YADE_OPENMP
// const long size = Tes.cellHandles.size();
// // #pragma omp parallel for num_threads(ompThreads>0 ? ompThreads : 1)
// for (long i=0; i<size; i++){
// CellHandle& cell = Tes.cellHandles[i];
// Real vSolid;
// VertexHandle W[4];
// Body
// for (int k=0;k<4;k++){
//
// const long int id = cell->vertex(k)->info().id();
// const shared_ptr<Body>& b =(*bodies)[id];
// for (int l=0;l<4;k++) W[l] = cell->vertex(l);
// if (b->shape->getClassIndex()!=Sphere::getClassIndexStatic() || !b) continue;
// Sphere* sphere = dynamic_cast<Sphere*>(b->shape.get());
// W[k] = cell->vertex(k);
// vSolid += sphericalTriangleVolume(*sphere,W[1]->point().point,W[2]->point().point(),W[3]->point().point())
//
// }
//
// Real ThermalEngine::sphericalTriangleVolume(const Sphere& ST1, const Point& PT1, const Point& PT2, const Point& PT3)
// {
// Real rayon = math::sqrt(ST1.weight());
// if (rayon == 0.0) return 0.0;
// return ((ONE_THIRD * rayon) * (fastSphericalTriangleArea(ST1, PT1, PT2, PT3))) ;
// }
//
// Real ThermalEngine::fastSolidAngle(const Point& STA1, const Point& PTA1, const Point& PTA2, const Point& PTA3)
// {
// //! This function needs to be fast because it is used heavily. Avoid using vector operations which require constructing vectors (~50% of cpu time in the non-fast version), and compute angle using the 3x faster formula of Oosterom and StrackeeVan Oosterom, A; Strackee, J (1983). "The Solid Angle of a Plane Triangle". IEEE Trans. Biom. Eng. BME-30 (2): 125-126. (or check http://en.wikipedia.org/wiki/Solid_angle)
// using namespace CGAL;
// Real M[3][3];
// M[0][0] = PTA1.x() - STA1.x();
// M[0][1] = PTA2.x() - STA1.x();
// M[0][2] = PTA3.x() - STA1.x();
// M[1][0] = PTA1.y() - STA1.y();
// M[1][1] = PTA2.y() - STA1.y();
// M[1][2] = PTA3.y() - STA1.y();
// M[2][0] = PTA1.z() - STA1.z();
// M[2][1] = PTA2.z() - STA1.z();
// M[2][2] = PTA3.z() - STA1.z();
//
// Real detM = M[0][0]* (M[1][1]*M[2][2]-M[2][1]*M[1][2]) +
// M[1][0]* (M[2][1]*M[0][2]-M[0][1]*M[2][2]) +
// M[2][0]* (M[0][1]*M[1][2]-M[1][1]*M[0][2]);
//
// Real pv12N2 = pow(M[0][0],2) +pow(M[1][0],2) +pow(M[2][0],2);
// Real pv13N2 = pow(M[0][1],2) +pow(M[1][1],2) +pow(M[2][1],2);
// Real pv14N2 = pow(M[0][2],2) +pow(M[1][2],2) +pow(M[2][2],2);
//
// Real pv12N = sqrt(pv12N2);
// Real pv13N = sqrt(pv13N2);
// Real pv14N = sqrt(pv14N2);
//
// Real cp12 = (M[0][0]*M[0][1]+M[1][0]*M[1][1]+M[2][0]*M[2][1]);
// Real cp13 = (M[0][0]*M[0][2]+M[1][0]*M[1][2]+M[2][0]*M[2][2]);
// Real cp23 = (M[0][1]*M[0][2]+M[1][1]*M[1][2]+M[2][1]*M[2][2]);
//
// Real ratio = detM/ (pv12N*pv13N*pv14N+cp12*pv14N+cp13*pv13N+cp23*pv12N);
// return abs(2*atan(ratio));
// }
} // namespace yade
#endif //YADE_OPENMP
#endif //THERMAL
#endif //FLOW_ENGINE
|