1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
// © 2013 Jan Elias, http://www.fce.vutbr.cz/STM/elias.j/, elias.j@fce.vutbr.cz
// https://www.vutbr.cz/www_base/gigadisk.php?i=95194aa9a
#ifdef YADE_CGAL
// NDEBUG causes crashes in CGAL sometimes. Anton
#ifdef NDEBUG
#undef NDEBUG
#endif
#include "Polyhedra.hpp"
#ifdef YADE_OPENGL
#include <lib/opengl/OpenGLWrapper.hpp>
#include <preprocessing/dem/Shop.hpp>
#endif
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
#ifdef YADE_OPENGL
YADE_PLUGIN((Gl1_Polyhedra)(Gl1_PolyhedraGeom)(Gl1_PolyhedraPhys));
#endif
//****************************************************************************************
/* Destructor */
Polyhedra::~Polyhedra() { }
//****************************************************************************************
Real PolyhedraMat::GetStrength() const { return strength; };
Real PolyhedraMat::GetStrengthTau() const { return strengthTau; };
Real PolyhedraMat::GetStrengthSigmaCZ() const { return sigmaCZ; };
Real PolyhedraMat::GetStrengthSigmaCD() const { return sigmaCD; };
int PolyhedraMat::GetWeiM() const { return Wei_m; };
Real PolyhedraMat::GetWeiS0() const { return Wei_S0; };
Real PolyhedraMat::GetWeiV0() const { return Wei_V0; };
Real PolyhedraMat::GetP() const { return Wei_P; };
//****************************************************************************************
/* Destructor */
PolyhedraGeom::~PolyhedraGeom() { }
//****************************************************************************************
/* AaBb overlap checker */
void Bo1_Polyhedra_Aabb::go(const shared_ptr<Shape>& ig, shared_ptr<Bound>& bv, const Se3r& se3, const Body*)
{
Polyhedra* t = static_cast<Polyhedra*>(ig.get());
if (!t->IsInitialized()) t->Initialize();
if (!bv) { bv = shared_ptr<Bound>(new Aabb); }
Aabb* aabb = static_cast<Aabb*>(bv.get());
//Quaternionr invRot=se3.orientation.conjugate();
int N = (int)t->v.size();
Vector3r v_g, mincoords(0., 0., 0.), maxcoords(0., 0., 0.);
for (int i = 0; i < N; i++) {
v_g = se3.orientation * t->v[i]; // vertices in global coordinates
mincoords = Vector3r(min(mincoords[0], v_g[0]), min(mincoords[1], v_g[1]), min(mincoords[2], v_g[2]));
maxcoords = Vector3r(max(maxcoords[0], v_g[0]), max(maxcoords[1], v_g[1]), max(maxcoords[2], v_g[2]));
}
if (aabbEnlargeFactor > 0) {
mincoords *= aabbEnlargeFactor;
maxcoords *= aabbEnlargeFactor;
}
aabb->min = se3.position + mincoords;
aabb->max = se3.position + maxcoords;
}
//**********************************************************************************
/* Plotting */
#ifdef YADE_OPENGL
bool Gl1_Polyhedra::wire;
void Gl1_Polyhedra::go(const shared_ptr<Shape>& cm, const shared_ptr<State>&, bool wire2, const GLViewInfo&)
{
glMaterialv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, Vector3r(cm->color[0], cm->color[1], cm->color[2]));
glColor3v(cm->color);
Polyhedra* t = static_cast<Polyhedra*>(cm.get());
vector<int> faceTri = t->GetSurfaceTriangulation();
if (wire || wire2) {
glDisable(GL_LIGHTING);
glBegin(GL_LINES)
;
for (int tri = 0; tri < (int)faceTri.size(); tri += 3) {
glOneWire(t, faceTri[tri], faceTri[tri + 1]);
glOneWire(t, faceTri[tri], faceTri[tri + 2]);
glOneWire(t, faceTri[tri + 1], faceTri[tri + 2]);
}
glEnd();
} else {
Vector3r centroid = t->GetCentroid();
glDisable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glBegin(GL_TRIANGLES)
;
for (int tri = 0; tri < (int)faceTri.size(); tri += 3) {
const auto a = faceTri[tri + 0];
const auto b = faceTri[tri + 1];
const auto c = faceTri[tri + 2];
Vector3r n = (t->v[b] - t->v[a]).cross(t->v[c] - t->v[a]);
n.normalize();
Vector3r faceCenter = (t->v[a] + t->v[b] + t->v[c]) / 3.;
if ((faceCenter - centroid).dot(n) < 0) n = -n;
glNormal3v(n);
glVertex3v(t->v[a]);
glVertex3v(t->v[b]);
glVertex3v(t->v[c]);
}
glEnd();
}
}
void Gl1_PolyhedraGeom::go(const shared_ptr<IGeom>& ig, const shared_ptr<Interaction>&, const shared_ptr<Body>&, const shared_ptr<Body>&, bool) { draw(ig); }
void Gl1_PolyhedraGeom::draw(const shared_ptr<IGeom>& /*ig*/) {};
GLUquadric* Gl1_PolyhedraPhys::gluQuadric = NULL;
Real Gl1_PolyhedraPhys::maxFn;
Real Gl1_PolyhedraPhys::refRadius;
Real Gl1_PolyhedraPhys::maxRadius;
int Gl1_PolyhedraPhys::signFilter;
int Gl1_PolyhedraPhys::slices;
int Gl1_PolyhedraPhys::stacks;
void Gl1_PolyhedraPhys::go(
const shared_ptr<IPhys>& ip, const shared_ptr<Interaction>& i, const shared_ptr<Body>& b1, const shared_ptr<Body>& b2, bool /*wireFrame*/)
{
if (!gluQuadric) {
gluQuadric = gluNewQuadric();
if (!gluQuadric) throw runtime_error("Gl1_PolyhedraPhys::go unable to allocate new GLUquadric object (out of memory?).");
}
PolyhedraPhys* np = static_cast<PolyhedraPhys*>(ip.get());
shared_ptr<IGeom> ig(i->geom);
if (!ig) return; // changed meanwhile?
PolyhedraGeom* geom = YADE_CAST<PolyhedraGeom*>(ig.get());
Real fnNorm = np->normalForce.dot(geom->normal);
if ((signFilter > 0 && fnNorm < 0) || (signFilter < 0 && fnNorm > 0)) return;
int fnSign = fnNorm > 0 ? 1 : -1;
fnNorm = math::abs(fnNorm);
Real radiusScale = 1.;
maxFn = max(fnNorm, maxFn);
Real realMaxRadius;
if (maxRadius < 0) {
refRadius = min(0.03, refRadius);
realMaxRadius = refRadius;
} else
realMaxRadius = maxRadius;
Real radius = radiusScale * realMaxRadius * (fnNorm / maxFn);
if (radius <= 0.) radius = 1E-8;
Vector3r color = Shop::scalarOnColorScale(fnNorm * fnSign, -maxFn, maxFn);
Vector3r p1 = b1->state->pos, p2 = b2->state->pos;
Vector3r relPos;
relPos = p2 - p1;
Real dist = relPos.norm();
glDisable(GL_CULL_FACE);
glPushMatrix();
glTranslate(p1[0], p1[1], p1[2]);
Quaternionr q(Quaternionr().setFromTwoVectors(Vector3r(0, 0, 1), relPos / dist /* normalized */));
// using Transform with OpenGL: http://eigen.tuxfamily.org/dox/TutorialGeometry.html
//glMultMatrixd(Eigen::Affine3d(q).data());
glMultMatrix(Eigen::Transform<Real, 3, Eigen::Affine>(q).data());
glColor3v(color);
gluCylinder(gluQuadric, radius, radius, dist, slices, stacks);
glPopMatrix();
}
#endif
//**********************************************************************************
//!Precompute data needed for rotating tangent vectors attached to the interaction
void PolyhedraGeom::precompute(
const State& rbp1,
const State& rbp2,
const Scene* scene,
const shared_ptr<Interaction>& /*c*/,
const Vector3r& currentNormal,
bool isNew,
const Vector3r& shift2)
{
if (!isNew) {
orthonormal_axis = normal.cross(currentNormal);
Real angle = scene->dt * 0.5 * normal.dot(rbp1.angVel + rbp2.angVel);
twist_axis = angle * normal;
} else
twist_axis = orthonormal_axis = Vector3r::Zero();
//Update contact normal
normal = currentNormal;
//Precompute shear increment
Vector3r c1x = (contactPoint - rbp1.pos);
Vector3r c2x = (contactPoint - (rbp2.pos + shift2));
Vector3r relativeVelocity = (rbp2.vel + rbp2.angVel.cross(c2x)) - (rbp1.vel + rbp1.angVel.cross(c1x));
//keep the shear part only
relativeVelocity = relativeVelocity - normal.dot(relativeVelocity) * normal;
shearInc = relativeVelocity * scene->dt;
}
//**********************************************************************************
Vector3r& PolyhedraGeom::rotate(Vector3r& shearForce) const
{
// approximated rotations
shearForce -= shearForce.cross(orthonormal_axis);
shearForce -= shearForce.cross(twist_axis);
//NOTE : make sure it is in the tangent plane? It's never been done before. Is it not adding rounding errors at the same time in fact?...
shearForce -= normal.dot(shearForce) * normal;
return shearForce;
}
//**********************************************************************************
/* Material law, physics */
void Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
if (interaction->phys) return;
const shared_ptr<PolyhedraMat>& mat1 = YADE_PTR_CAST<PolyhedraMat>(b1);
const shared_ptr<PolyhedraMat>& mat2 = YADE_PTR_CAST<PolyhedraMat>(b2);
interaction->phys = shared_ptr<PolyhedraPhys>(new PolyhedraPhys());
const shared_ptr<PolyhedraPhys>& contactPhysics = YADE_PTR_CAST<PolyhedraPhys>(interaction->phys);
Real Kna = mat1->young;
Real Knb = mat2->young;
Real Ksa = mat1->young * mat1->poisson;
Real Ksb = mat2->young * mat2->poisson;
Real frictionAngle = math::min(mat1->frictionAngle, mat2->frictionAngle);
contactPhysics->tangensOfFrictionAngle = math::tan(frictionAngle);
contactPhysics->kn = Kna * Knb / (Kna + Knb);
contactPhysics->ks = Ksa * Ksb / (Ksa + Ksb);
};
void Ip2_FrictMat_PolyhedraMat_FrictPhys::go(const shared_ptr<Material>& pp1, const shared_ptr<Material>& pp2, const shared_ptr<Interaction>& interaction)
{
const shared_ptr<FrictMat>& mat1 = YADE_PTR_CAST<FrictMat>(pp1);
const shared_ptr<PolyhedraMat>& mat2 = YADE_PTR_CAST<PolyhedraMat>(pp2);
Ip2_FrictMat_FrictMat_FrictPhys().go(mat1, mat2, interaction);
}
//**************************************************************************************
Real Law2_PolyhedraGeom_PolyhedraPhys_Volumetric::getPlasticDissipation() const { return (Real)plasticDissipation; }
void Law2_PolyhedraGeom_PolyhedraPhys_Volumetric::initPlasticDissipation(Real initVal)
{
plasticDissipation.reset();
plasticDissipation += initVal;
}
Real Law2_PolyhedraGeom_PolyhedraPhys_Volumetric::elasticEnergy()
{
Real energy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
FrictPhys* phys = dynamic_cast<FrictPhys*>(I->phys.get());
if (phys) { energy += 0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks); }
}
return energy;
}
//**************************************************************************************
// Apply forces on polyhedrons in collision based on geometric configuration
bool Law2_PolyhedraGeom_PolyhedraPhys_Volumetric::go(shared_ptr<IGeom>& /*ig*/, shared_ptr<IPhys>& /*ip*/, Interaction* I)
{
if (!I->geom) { return true; }
const shared_ptr<PolyhedraGeom>& contactGeom(YADE_PTR_DYN_CAST<PolyhedraGeom>(I->geom));
if (!contactGeom) { return true; }
const Body::id_t idA = I->getId1(), idB = I->getId2();
const shared_ptr<Body>&A = Body::byId(idA), B = Body::byId(idB);
PolyhedraPhys* phys = dynamic_cast<PolyhedraPhys*>(I->phys.get());
//erase the interaction when aAbB shows separation, otherwise keep it to be able to store previous separating plane for fast detection of separation
Vector3r shift2 = scene->cell->hSize * I->cellDist.cast<Real>();
if (A->bound->min[0] >= B->bound->max[0] + shift2[0] || B->bound->min[0] + shift2[0] >= A->bound->max[0]
|| A->bound->min[1] >= B->bound->max[1] + shift2[1] || B->bound->min[1] + shift2[1] >= A->bound->max[1]
|| A->bound->min[2] >= B->bound->max[2] + shift2[2] || B->bound->min[2] + shift2[2] >= A->bound->max[2]) {
return false;
}
//zero penetration depth means no interaction force
if (!(contactGeom->equivalentPenetrationDepth > 1E-18) || !(contactGeom->penetrationVolume > 0)) {
phys->normalForce = Vector3r(0., 0., 0.);
phys->shearForce = Vector3r(0., 0., 0.);
return true;
}
Real prop = math::pow(contactGeom->penetrationVolume, volumePower);
Vector3r normalForce = contactGeom->normal * prop * phys->kn;
//shear force: in case the polyhdras are separated and come to contact again, one
//should not use the previous shear force
Vector3r shearForce = phys->shearForce;
if (contactGeom->isShearNew) shearForce = Vector3r::Zero();
else
shearForce = contactGeom->rotate(shearForce);
const Vector3r& shearDisp = contactGeom->shearInc;
shearForce -= phys->ks * shearDisp;
const Real maxFs = normalForce.squaredNorm() * math::pow(phys->tangensOfFrictionAngle, 2);
if (shearForce.squaredNorm() > maxFs && maxFs) {
//PFC3d SlipModel, is using friction angle. CoulombCriterion
Real ratio = sqrt(maxFs) / shearForce.norm();
if (math::isinf(ratio)) {
LOG_DEBUG(
"shearForce.squaredNorm() > maxFs && maxFs: "
<< (shearForce.squaredNorm() > maxFs && maxFs)); // the condition should be 1 (we are in this branch), but is actually 0
LOG_DEBUG("shearForce: " << shearForce); // should be (0,0,0)
ratio = 0;
}
//Store prev force for definition of plastic slip
//Define the plastic work input and increment the total plastic energy dissipated
const Vector3r trialForce = shearForce;
shearForce *= ratio;
if (scene->trackEnergy && traceEnergy) {
const Real dissip = ((1 / phys->ks) * (trialForce - shearForce)).dot(shearForce);
if (traceEnergy) plasticDissipation += dissip;
else if (dissip > 0)
scene->energy->add(dissip, "plastDissip", plastDissipIx, false);
// compute elastic energy as well
scene->energy->add(
0.5 * (normalForce.squaredNorm() / phys->kn + shearForce.squaredNorm() / phys->ks), "elastPotential", elastPotentialIx, true);
}
} else {
if (maxFs == 0) shearForce = Vector3r::Zero();
scene->energy->add(
0.5 * (normalForce.squaredNorm() / phys->kn + shearForce.squaredNorm() / phys->ks), "elastPotential", elastPotentialIx, true);
}
Vector3r F = -normalForce - shearForce;
if (contactGeom->equivalentPenetrationDepth != contactGeom->equivalentPenetrationDepth) exit(1);
scene->forces.addForce(idA, F);
scene->forces.addForce(idB, -F);
scene->forces.addTorque(idA, -(A->state->pos - contactGeom->contactPoint).cross(F));
scene->forces.addTorque(idB, (B->state->pos - contactGeom->contactPoint).cross(F));
/*
FILE * fin = fopen("Forces.dat","a");
fprintf(fin,"************** IDS %d %d **************\n",idA, idB);
Vector3r T = (B->state->pos-contactGeom->contactPoint).cross(F);
fprintf(fin,"volume\t%e\n",contactGeom->penetrationVolume);
fprintf(fin,"normal_force\t%e\t%e\t%e\n",normalForce[0],normalForce[1],normalForce[2]);
fprintf(fin,"shear_force\t%e\t%e\t%e\n",shearForce[0],shearForce[1],shearForce[2]);
fprintf(fin,"total_force\t%e\t%e\t%e\n",F[0],F[1],F[2]);
fprintf(fin,"torsion\t%e\t%e\t%e\n",T[0],T[1],T[2]);
fprintf(fin,"A\t%e\t%e\t%e\n",A->state->pos[0],A->state->pos[1],A->state->pos[2]);
fprintf(fin,"B\t%e\t%e\t%e\n",B->state->pos[0],B->state->pos[1],B->state->pos[2]);
fprintf(fin,"centroid\t%e\t%e\t%e\n",contactGeom->contactPoint[0],contactGeom->contactPoint[1],contactGeom->contactPoint[2]);
fclose(fin);
*/
//needed to be able to acces interaction forces in other parts of yade
phys->normalForce = normalForce;
phys->shearForce = shearForce;
return true;
}
} // namespace yade
#endif // YADE_CGAL
|