File: Polyhedra_support.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (896 lines) | stat: -rw-r--r-- 36,302 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
// © 2013 Jan Elias, http://www.fce.vutbr.cz/STM/elias.j/, elias.j@fce.vutbr.cz
// https://www.vutbr.cz/www_base/gigadisk.php?i=95194aa9a

#ifdef YADE_CGAL
// NDEBUG causes crashes in CGAL sometimes. Anton
#ifdef NDEBUG
#undef NDEBUG
#endif

#include "Polyhedra.hpp"

#define likely(x) __builtin_expect((x), 1)
#define unlikely(x) __builtin_expect((x), 0)

namespace yade { // Cannot have #include directive inside.

CREATE_CPP_LOCAL_LOGGER("Polyhedra_support.cpp");

//EMPRIRICAL CONSTANTS - ADJUST IF SEGMENTATION FAULT OCCUR, IT IS A PROBLEM OF CGAL. THESE ARE USED TO CHECK CGAL IMPUTS
//DISTANCE_LIMIT controls numerical issues in calculating intersection. It should be small enough to neglect only extremely
//small overlaps, but large enough to prevent errors during computation of convex hull
const Real DISTANCE_LIMIT = 2E-11;
//MERGE_PLANES_LIMIT - if two facets of two intersecting polyhedron differ less, then they are treated ose one only
const Real MERGE_PLANES_LIMIT = 1E-18; //18
//FIND_NORMAL_LIMIT - to determine which facet of intersection belongs to which polyhedron
const Real FIND_NORMAL_LIMIT = 1E-40;
//SPLITTER_GAP - creates gap between splitted polyhedrons
const Real SPLITTER_GAP = 1E-8;


//**********************************************************************************
//return volume and centroid of polyhedron

bool P_volume_centroid(Polyhedron P, Real* volume, Vector3r* centroid)
{
	Vector3r basepoint = FromCGALPoint(P.vertices_begin()->point());
	Vector3r A, B, C, D;
	(*volume) = 0;
	Real vtet;
	(*centroid) = Vector3r(0., 0., 0.);

	//compute centroid and volume
	for (Polyhedron::Facet_iterator fIter = P.facets_begin(); fIter != P.facets_end(); fIter++) {
		Polyhedron::Halfedge_around_facet_circulator hfc0;
		hfc0  = fIter->facet_begin();
		int n = fIter->facet_degree();
		A     = FromCGALPoint(hfc0->vertex()->point());
		C     = FromCGALPoint(hfc0->next()->vertex()->point());
		for (int i = 2; i < n; i++) {
			++hfc0;
			B    = C;
			C    = FromCGALPoint(hfc0->next()->vertex()->point());
			vtet = math::abs((basepoint - C).dot((A - C).cross(B - C))) / 6.;
			*volume += vtet;
			*centroid = *centroid + (basepoint + A + B + C) / 4. * vtet;
		}
	}
	*centroid = *centroid / (*volume);
	return true;
}

//**********************************************************************************
//STOLEN FROM TETRA body of Vaclav Smilauer

/*! Calculates tetrahedron inertia relative to the origin (0,0,0), with unit density (scales linearly).
* See article F. Tonon, "Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of its Vertex Coordinates",
* http://docsdrive.com/pdfs/sciencepublications/jmssp/2005/8-11.pdf
* [Tonon2005]
*/

//Centroid MUST be [0,0,0]
Matrix3r TetraInertiaTensor(Vector3r av, Vector3r bv, Vector3r cv, Vector3r dv)
{
	const auto x1 = av[0];
	const auto y1 = av[1];
	const auto z1 = av[2];
	const auto x2 = bv[0];
	const auto y2 = bv[1];
	const auto z2 = bv[2];
	const auto x3 = cv[0];
	const auto y3 = cv[1];
	const auto z3 = cv[2];
	const auto x4 = dv[0];
	const auto y4 = dv[1];
	const auto z4 = dv[2];

	// Jacobian of transformation to the reference 4hedron
	Real detJ = (x2 - x1) * (y3 - y1) * (z4 - z1) + (x3 - x1) * (y4 - y1) * (z2 - z1) + (x4 - x1) * (y2 - y1) * (z3 - z1)
	        - (x2 - x1) * (y4 - y1) * (z3 - z1) - (x3 - x1) * (y2 - y1) * (z4 - z1) - (x4 - x1) * (y3 - y1) * (z2 - z1);
	detJ         = math::abs(detJ);
	const Real a = detJ
	        * (y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3 + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4 + z1 * z1 + z1 * z2 + z2 * z2 + z1 * z3
	           + z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
	        / 60.;
	const Real b = detJ
	        * (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + z1 * z1 + z1 * z2 + z2 * z2 + z1 * z3
	           + z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
	        / 60.;
	const Real c = detJ
	        * (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3
	           + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4)
	        / 60.;
	// a' in the article etc.
	const Real a__ = detJ
	        * (2 * y1 * z1 + y2 * z1 + y3 * z1 + y4 * z1 + y1 * z2 + 2 * y2 * z2 + y3 * z2 + y4 * z2 + y1 * z3 + y2 * z3 + 2 * y3 * z3 + y4 * z3 + y1 * z4
	           + y2 * z4 + y3 * z4 + 2 * y4 * z4)
	        / 120.;
	const Real b__ = detJ
	        * (2 * x1 * z1 + x2 * z1 + x3 * z1 + x4 * z1 + x1 * z2 + 2 * x2 * z2 + x3 * z2 + x4 * z2 + x1 * z3 + x2 * z3 + 2 * x3 * z3 + x4 * z3 + x1 * z4
	           + x2 * z4 + x3 * z4 + 2 * x4 * z4)
	        / 120.;
	const Real c__ = detJ
	        * (2 * x1 * y1 + x2 * y1 + x3 * y1 + x4 * y1 + x1 * y2 + 2 * x2 * y2 + x3 * y2 + x4 * y2 + x1 * y3 + x2 * y3 + 2 * x3 * y3 + x4 * y3 + x1 * y4
	           + x2 * y4 + x3 * y4 + 2 * x4 * y4)
	        / 120.;

	Matrix3r ret;
	ret << a, -c__, -b__, -c__, b, -a__, -b__, -a__, c;
	return ret;
}

//**********************************************************************************
//distace of point from a plane (squared) with sign
Real Oriented_squared_distance(Plane P, CGALpoint x)
{
	Real h = P.a() * x.x() + P.b() * x.y() + P.c() * x.z() + P.d();
	return ((h > 0.) - (h < 0.)) * pow(h, 2) / (CGALvector(P.a(), P.b(), P.c())).squared_length();
}

//**********************************************************************************
// test if point is inside polyhedra in strong sence, i.e. boundary location is not enough
bool Is_inside_Polyhedron(Polyhedron P, CGALpoint inside)
{
	Polyhedron::Plane_iterator pi;
	for (pi = P.planes_begin(); pi != P.planes_end(); ++pi) {
		if (!pi->has_on_negative_side(inside)) return false;
	}
	return true;
}

//**********************************************************************************
// test if point is inside polyhedra not closer than lim to its boundary
bool Is_inside_Polyhedron(Polyhedron P, CGALpoint inside, Real lim)
{
	Polyhedron::Plane_iterator pi;
	lim = pow(lim, 2);
	for (pi = P.planes_begin(); pi != P.planes_end(); ++pi) {
		if (Oriented_squared_distance(*pi, inside) > -lim) return false;
	}
	return true;
}

//**********************************************************************************
//test if two polyhedron intersect
bool do_intersect(Polyhedron A, Polyhedron B)
{
	std::vector<int> sep_plane;
	sep_plane.assign(3, 0);
	return do_intersect(A, B, sep_plane);
}

//**********************************************************************************
//test if two polyhedron intersect based on previous data
bool do_intersect(Polyhedron A, Polyhedron B, std::vector<int>& sep_plane)
{
	bool found;
	//check previous separation plane
	switch (sep_plane[0]) {
		case 0: //no prior information about separation plane
			break;
		case 1: //separation plane was previously determined as sep_plane[2]-th plane of A polyhedron
		{
			if (unlikely((unsigned)sep_plane[2] >= A.size_of_facets())) break;
			Polyhedron::Facet_iterator fIter = A.facets_begin();
			for (int i = 0; i < sep_plane[2]; i++)
				++fIter;
			found = true;
			for (Polyhedron::Vertex_iterator vIter = B.vertices_begin(); vIter != B.vertices_end(); ++vIter) {
				if (!fIter->plane().has_on_positive_side(vIter->point())) {
					found = false;
					break;
				};
			}
			if (found) return false;
		} break;
		case 2: //separation plane was previously determined as sep_plane[2]-th plane of B polyhedron
		{
			if (unlikely((unsigned)sep_plane[2] >= B.size_of_facets())) break;
			Polyhedron::Facet_iterator fIter = B.facets_begin();
			for (int i = 0; i < sep_plane[2]; i++)
				++fIter;
			found = true;
			for (Polyhedron::Vertex_iterator vIter = A.vertices_begin(); vIter != A.vertices_end(); ++vIter) {
				if (!fIter->plane().has_on_positive_side(vIter->point())) {
					found = false;
					break;
				};
			}
			if (found) return false;
		} break;
		case 3: //separation plane was previously given by sep_plane[1]-th and sep_plane[2]-th edge of A & B polyhedrons
		{
			if (unlikely((unsigned)sep_plane[1] >= A.size_of_halfedges() / 2)) break;
			if (unlikely((unsigned)sep_plane[2] >= B.size_of_halfedges() / 2)) break;
			Polyhedron::Edge_iterator eIter1 = A.edges_begin();
			Polyhedron::Edge_iterator eIter2 = B.edges_begin();
			for (int i = 0; i < sep_plane[1]; i++)
				++eIter1;
			for (int i = 0; i < sep_plane[2]; i++)
				++eIter2;
			found = true;
			Plane X(eIter1->vertex()->point(),
			        CGAL::cross_product(
			                (eIter1->vertex()->point() - eIter1->opposite()->vertex()->point()),
			                (eIter2->vertex()->point() - eIter2->opposite()->vertex()->point())));
			if (!X.has_on_positive_side(B.vertices_begin()->point())) X = X.opposite();

			Real lim = pow(DISTANCE_LIMIT, 2);
			for (Polyhedron::Vertex_iterator vIter = A.vertices_begin(); vIter != A.vertices_end(); ++vIter) {
				if (Oriented_squared_distance(X, vIter->point()) > lim) {
					found = false;
					break;
				};
			}
			for (Polyhedron::Vertex_iterator vIter = B.vertices_begin(); vIter != B.vertices_end(); ++vIter) {
				if (!X.has_on_positive_side(vIter->point())) {
					found = false;
					break;
				};
			}
			if (found) return false;
		} break;
		default:
			LOG_WARN("Unhandled switch case:" << sep_plane[0] << ", function do_intersect(…).");
			// throw std::runtime_error(__FILE__ " : switch default case error.");
	}

	//regular test with no previous information about separating plane
	//test all planes from A
	int i = 0;
	for (Polyhedron::Facet_iterator fIter = A.facets_begin(); fIter != A.facets_end(); fIter++, i++) {
		found = true;
		for (Polyhedron::Vertex_iterator vIter = B.vertices_begin(); vIter != B.vertices_end(); ++vIter) {
			if (!fIter->plane().has_on_positive_side(vIter->point())) {
				found = false;
				break;
			};
		}
		if (found) {
			sep_plane[0] = 1;
			sep_plane[1] = 1;
			sep_plane[2] = i;
			return false;
		}
	}
	//test all planes from B
	i = 0;
	for (Polyhedron::Facet_iterator fIter = B.facets_begin(); fIter != B.facets_end(); fIter++, i++) {
		found = true;
		for (Polyhedron::Vertex_iterator vIter = A.vertices_begin(); vIter != A.vertices_end(); ++vIter) {
			if (!fIter->plane().has_on_positive_side(vIter->point())) {
				found = false;
				break;
			};
		}
		if (found) {
			sep_plane[0] = 2;
			sep_plane[1] = 2;
			sep_plane[2] = i;
			return false;
		}
	}
	//test all pairs of edges from A & B
	Plane      X;
	CGALvector vA;
	Real       lim = pow(DISTANCE_LIMIT, 2);
	i              = 0;
	for (Polyhedron::Edge_iterator eIter1 = A.edges_begin(); eIter1 != A.edges_end(); ++eIter1, i++) {
		vA    = eIter1->vertex()->point() - eIter1->opposite()->vertex()->point();
		int j = 0;
		for (Polyhedron::Edge_iterator eIter2 = B.edges_begin(); eIter2 != B.edges_end(); ++eIter2, j++) {
			found = true;
			X     = Plane(eIter1->vertex()->point(), CGAL::cross_product(vA, (eIter2->vertex()->point() - eIter2->opposite()->vertex()->point())));
			if (!X.has_on_positive_side(B.vertices_begin()->point())) X = X.opposite();
			for (Polyhedron::Vertex_iterator vIter = A.vertices_begin(); vIter != A.vertices_end(); ++vIter) {
				if (Oriented_squared_distance(X, vIter->point()) > lim) {
					found = false;
					break;
				};
			}
			for (Polyhedron::Vertex_iterator vIter = B.vertices_begin(); vIter != B.vertices_end(); ++vIter) {
				if (!X.has_on_positive_side(vIter->point())) {
					found = false;
					break;
				};
			}
			if (found) {
				sep_plane[0] = 3;
				sep_plane[1] = i;
				sep_plane[2] = j;
				return false;
			}
		}
	}

	sep_plane[0] = 0;
	return true;
}

//**********************************************************************************
//norm of difference between two planes
Real PlaneDifference(const Plane& a, const Plane& b)
{
	Real la = sqrt(pow(a.a(), 2) + pow(a.b(), 2) + pow(a.c(), 2) + pow(a.d(), 2));
	Real lb = sqrt(pow(b.a(), 2) + pow(b.b(), 2) + pow(b.c(), 2) + pow(b.d(), 2));
	return pow(a.a() / la - b.a() / lb, 2) + pow(a.b() / la - b.b() / lb, 2) + pow(a.c() / la - b.c() / lb, 2) + pow(a.d() / la - b.d() / lb, 2);

	//in case we do not care of the orientation
	//return min(pow(a.a()/la-b.a()/lb,2) + pow(a.b()/la-b.b()/lb,2) + pow(a.c()/la-b.c()/lb,2) + pow(a.d()/la-b.d()/lb,2),pow(a.a()/la+b.a()/lb,2) + pow(a.b()/la+b.b()/lb,2) + pow(a.c()/la+b.c()/lb,2) + pow(a.d()/la+b.d()/lb,2));
}

//**********************************************************************************
//connect triagular facets if possible
Polyhedron Simplify(Polyhedron P) // this version does not use 'limit' but check 'exact' coplanarity
{
	bool elimination = true;
	while (elimination) {
		elimination = false;
		for (Polyhedron::Edge_iterator hei = P.edges_begin(); hei != P.edges_end(); ++hei) {
		    CGALpoint& a = hei->vertex()->point();
		    CGALpoint& b = hei->next()->vertex()->point();
		    CGALpoint& c = hei->next()->next()->vertex()->point();
		    CGALpoint& d = hei->opposite()->next()->vertex()->point();
			if (CGAL::coplanar(a, b, c, d)) {
				if (hei->vertex()->vertex_degree() < 3) hei = P.erase_center_vertex(hei);
				else if (hei->opposite()->vertex()->vertex_degree() < 3)
					hei = P.erase_center_vertex(hei->opposite());
				else
					hei = P.join_facet(hei);
				elimination = true;
				break;
			}
		}
	}
	if (P.size_of_facets() < 4) P.clear();
	return P;
}

Polyhedron Simplify(Polyhedron P, Real limit) // this version is used during Polyhedron initialization
{
	bool elimination = true;
	while (elimination) {
		elimination = false;
		for (Polyhedron::Edge_iterator hei = P.edges_begin(); hei != P.edges_end(); ++hei) {
			if (PlaneDifference(hei->facet()->plane(), hei->opposite()->facet()->plane()) < limit) {
				if (hei->vertex()->vertex_degree() < 3) hei = P.erase_center_vertex(hei);
				else if (hei->opposite()->vertex()->vertex_degree() < 3)
					hei = P.erase_center_vertex(hei->opposite());
				else
					hei = P.join_facet(hei);
				elimination = true;
				break;
			}
		}
	}
	if (P.size_of_facets() < 4) P.clear();
	return P;
}


//**********************************************************************************
//list of facets + edges
void PrintPolyhedron2File(Polyhedron P, std::ofstream& X)
{
	Vector3r A, B, C;
	X << "*** faces ***\n";
	for (Polyhedron::Facet_iterator fIter = P.facets_begin(); fIter != P.facets_end(); ++fIter) {
		Polyhedron::Halfedge_around_facet_circulator hfc0;
		hfc0  = fIter->facet_begin();
		int n = fIter->facet_degree();
		A     = FromCGALPoint(hfc0->vertex()->point());
		C     = FromCGALPoint(hfc0->next()->vertex()->point());
		for (int i = 2; i < n; i++) {
			++hfc0;
			B = C;
			C = FromCGALPoint(hfc0->next()->vertex()->point());
			X << A[0] << "\t" << A[1] << "\t" << A[2] << "\t" << B[0] << "\t" << B[1] << "\t" << B[2] << "\t" << C[0] << "\t" << C[1] << "\t"
			  << C[2] << "\n";
		}
	}
	X << "*** edges ***\n";
	for (Polyhedron::Edge_iterator hei = P.edges_begin(); hei != P.edges_end(); ++hei) {
		X << hei->vertex()->point()[0] << "\t" << hei->vertex()->point()[1] << "\t" << hei->vertex()->point()[2] << "\t"
		  << hei->opposite()->vertex()->point()[0] << "\t" << hei->opposite()->vertex()->point()[1] << "\t" << hei->opposite()->vertex()->point()[2]
		  << "\n";
	}
}

//**********************************************************************************
//list of facets + edges
void PrintPolyhedron(Polyhedron P)
{
	Vector3r A, B, C;
	cout << "*** faces ***" << endl;
	for (Polyhedron::Facet_iterator fIter = P.facets_begin(); fIter != P.facets_end(); ++fIter) {
		Polyhedron::Halfedge_around_facet_circulator hfc0;
		hfc0  = fIter->facet_begin();
		int n = fIter->facet_degree();
		A     = FromCGALPoint(hfc0->vertex()->point());
		C     = FromCGALPoint(hfc0->next()->vertex()->point());
		for (int i = 2; i < n; i++) {
			++hfc0;
			B = C;
			C = FromCGALPoint(hfc0->next()->vertex()->point());
			cout << A << " " << B << " " << C << endl;
		}
	}
	cout << "*** edges ***" << endl;
	for (Polyhedron::Edge_iterator hei = P.edges_begin(); hei != P.edges_end(); ++hei) {
		cout << hei->vertex()->point() << " " << hei->opposite()->vertex()->point() << endl;
	}
}

//**********************************************************************************
//list of facets
void PrintPolyhedronFacets(Polyhedron P)
{
	Vector3r A, B, C;
	for (Polyhedron::Facet_iterator fIter = P.facets_begin(); fIter != P.facets_end(); ++fIter) {
		cout << "***" << endl;
		Polyhedron::Halfedge_around_facet_circulator hfc0;
		hfc0  = fIter->facet_begin();
		int n = fIter->facet_degree();
		for (int i = 0; i < n; ++hfc0, i++) {
			cout << hfc0->vertex()->point() << endl;
		}
	}
}

//**********************************************************************************
//solve system of 3x3 by Cramers rule
Vector3r SolveLinSys3x3(Matrix3r A, Vector3r y)
{
	//only system 3x3 by Cramers rule
	Real det = A(0, 0) * A(1, 1) * A(2, 2) + A(0, 1) * A(1, 2) * A(2, 0) + A(0, 2) * A(1, 0) * A(2, 1) - A(0, 2) * A(1, 1) * A(2, 0)
	        - A(0, 1) * A(1, 0) * A(2, 2) - A(0, 0) * A(1, 2) * A(2, 1);
	if (det == 0) {
		LOG_WARN("error in linear solver");
		return Vector3r(0, 0, 0);
	}
	return Vector3r(
	        (y(0) * A(1, 1) * A(2, 2) + A(0, 1) * A(1, 2) * y(2) + A(0, 2) * y(1) * A(2, 1) - A(0, 2) * A(1, 1) * y(2) - A(0, 1) * y(1) * A(2, 2)
	         - y(0) * A(1, 2) * A(2, 1))
	                / det,
	        (A(0, 0) * y(1) * A(2, 2) + y(0) * A(1, 2) * A(2, 0) + A(0, 2) * A(1, 0) * y(2) - A(0, 2) * y(1) * A(2, 0) - y(0) * A(1, 0) * A(2, 2)
	         - A(0, 0) * A(1, 2) * y(2))
	                / det,
	        (A(0, 0) * A(1, 1) * y(2) + A(0, 1) * y(1) * A(2, 0) + y(0) * A(1, 0) * A(2, 1) - y(0) * A(1, 1) * A(2, 0) - A(0, 1) * A(1, 0) * y(2)
	         - A(0, 0) * y(1) * A(2, 1))
	                / det);
}

//**********************************************************************************
/*
 * Return convex hull of points 
 * critical point, because CGAL often returnes segmentation fault.
 * The planes must be sufficiently "different". This is, however,
 * checked elswhere by DISTANCE_LIMIT variable.
*/
Polyhedron ConvexHull(vector<CGALpoint>& planes)
{
	Polyhedron Int;
	for (const auto& p : planes) {
		if (math::isnan(p.x()) || math::isnan(p.y()) || math::isnan(p.z())) return Int;
	}
	if (planes.size() > 3) CGAL::convex_hull_3(planes.begin(), planes.end(), Int);
	return Int;
}

//**********************************************************************************
//determination of normal direction of intersection

Vector3r FindNormal(Polyhedron Int, Polyhedron PA, Polyhedron PB)
{
	//determine which plane is from which polyhedra
	Polyhedron::Plane_iterator pi, pj;
	std::transform(Int.facets_begin(), Int.facets_end(), Int.planes_begin(), Plane_equation());
	std::transform(PA.facets_begin(), PA.facets_end(), PA.planes_begin(), Plane_equation());
	std::transform(PB.facets_begin(), PB.facets_end(), PB.planes_begin(), Plane_equation());
	vector<bool> from_A(Int.size_of_facets());
	vector<Real> minsA(Int.size_of_facets());
	vector<Real> minsB(Int.size_of_facets());
	int          i = 0;
	Real         minA, minB, k;
	for (pi = Int.planes_begin(); pi != Int.planes_end(); ++pi, i++) {
		minA = 1.;
		minB = 1.;
		for (pj = PA.planes_begin(); pj != PA.planes_end(); ++pj) {
			k = PlaneDifference(*pi, *pj);
			if (k < minA) {
				minA     = k;
				minsA[i] = minA;
				if (minA < FIND_NORMAL_LIMIT) {
					from_A[i] = true;
					break;
				} //already satisfactory
			}
		}
		if (minA < FIND_NORMAL_LIMIT) continue;
		for (pj = PB.planes_begin(); pj != PB.planes_end(); ++pj) {
			k = PlaneDifference(*pi, *pj);

			if (k < minB) {
				minB     = k;
				minsB[i] = minB;
				if (minB < FIND_NORMAL_LIMIT || minB < minA) break; //already satisfactory
			}
		}
		from_A[i] = ((minA < minB) ? true : false);
	}
	//check that not all belongs to A and not all belongs to B
	if (*std::min_element(from_A.begin(), from_A.end()) == 1) {
		int loc     = std::min_element(minsB.begin(), minsB.end()) - minsB.begin();
		from_A[loc] = false;
	} else if (*std::max_element(from_A.begin(), from_A.end()) == 0) {
		int loc     = std::min_element(minsA.begin(), minsA.end()) - minsA.begin();
		from_A[loc] = true;
	}

	//find intersecting segments
	vector<Segment> segments;
	int             a, b;

	for (Polyhedron::Edge_iterator hei = Int.edges_begin(); hei != Int.edges_end(); ++hei) {
		a = std::distance(Int.facets_begin(), hei->facet());
		b = std::distance(Int.facets_begin(), hei->opposite()->facet());
		if ((from_A[a] && !from_A[b]) || (from_A[b] && !from_A[a])) {
			segments.push_back(Segment(hei->vertex()->point(), hei->opposite()->vertex()->point()));
		}
	}

	//find normal direction
	Plane fit;
	linear_least_squares_fitting_3(segments.begin(), segments.end(), fit, CGAL::Dimension_tag<1>());
	CGALvector CGALnormal = fit.orthogonal_vector();
	CGALnormal            = CGALnormal / sqrt(CGALnormal.squared_length());
	// reverse direction if projection of the (contact_point-centroid_of_B) vector onto the normal is negative (i.e. the normal points more towards B)

	return FromCGALVector(CGALnormal);
}

//**********************************************************************************
//prepare data for CGAL convex hull
vector<Plane> MergePlanes(vector<Plane> planes1, vector<Plane> planes2, Real limit)
{
	vector<Plane> P = planes1;
	bool          add;
	for (vector<Plane>::iterator i = planes2.begin(); i != planes2.end(); ++i) {
		add = true;
		for (vector<Plane>::iterator j = planes1.begin(); j != planes1.end(); ++j) {
			if (PlaneDifference(*i, *j) < limit) {
				add = false;
				break;
			}
		}
		if (add) P.push_back(*i);
	}
	return P;
}

//**********************************************************************************
//returnes intersecting polyhedron of polyhedron & plane (possibly empty)
Polyhedron Polyhedron_Plane_intersection(Polyhedron A, Plane B, CGALpoint centroid, CGALpoint X)
{
	Polyhedron        Intersection;
	CGALpoint         inside;
	vector<Plane>     planes1, planes2;
	vector<CGALpoint> dual_planes;
	// test if do intersect, find some intersecting point
	bool intersection_found = false;
	Real lim                = pow(DISTANCE_LIMIT, 2);
	std::transform(A.facets_begin(), A.facets_end(), A.planes_begin(), Plane_equation());
	// test centroid of previous intersection
	if (Is_inside_Polyhedron(A, X, DISTANCE_LIMIT) && Oriented_squared_distance(B, X) <= -lim) {
		intersection_found = true;
		inside             = X;
		// find new point by checking polyhedron vertices that lies on negative side of the plane
	} else {
		for (Polyhedron::Vertex_iterator vIter = A.vertices_begin(); vIter != A.vertices_end() && !intersection_found; vIter++) {
			if (Oriented_squared_distance(B, vIter->point()) <= -lim) {
				if (Oriented_squared_distance(B, centroid) < lim / 10.) {
					inside = vIter->point() + 0.5 * CGALvector(vIter->point(), centroid);
				} else {
					CGAL::Object result = CGAL::intersection(Line(vIter->point(), centroid), B);
					if (const CGALpoint* ipoint = CGAL::object_cast<CGALpoint>(&result)) {
						inside = vIter->point() + 0.5 * CGALvector(vIter->point(), *ipoint);
					} else {
						LOG_WARN("Error in line-plane intersection");
					}
				}
				if (Is_inside_Polyhedron(A, inside, DISTANCE_LIMIT) && Oriented_squared_distance(B, inside) <= -lim) intersection_found = true;
			}
		}
	}
	//no intersectiong point => no intersection polyhedron
	if (!intersection_found) return Intersection;

	//set the intersection point to origin
	Transformation transl_back(CGAL::TRANSLATION, inside - CGALpoint(0., 0., 0.));
	Transformation transl(CGAL::TRANSLATION, CGALpoint(0., 0., 0.) - inside);

	std::transform(A.points_begin(), A.points_end(), A.points_begin(), transl);
	B = transl.transform(B);

	//dualize plane
	planes1.push_back(B);

	//dualize polyhedron
	std::transform(A.facets_begin(), A.facets_end(), A.planes_begin(), Plane_equation());
	for (Polyhedron::Plane_iterator pi = A.planes_begin(); pi != A.planes_end(); ++pi)
		planes2.push_back(*pi);
	;

	//merge planes
	planes1 = MergePlanes(planes1, planes2, MERGE_PLANES_LIMIT); //MERGE_PLANES_LIMIT);
	for (vector<Plane>::iterator pi = planes1.begin(); pi != planes1.end(); ++pi)
		dual_planes.push_back(CGALpoint(-pi->a() / pi->d(), -pi->b() / pi->d(), -pi->c() / pi->d()));

	//compute convex hull of it
	Intersection = ConvexHull(dual_planes);
	if (Intersection.empty()) return Intersection;

	//simplify - turn off simplification in the interaction computations
	std::transform(Intersection.facets_begin(), Intersection.facets_end(), Intersection.planes_begin(), Plane_equation());
	Intersection = Simplify(Intersection);
	std::transform(Intersection.facets_begin(), Intersection.facets_end(), Intersection.planes_begin(), Plane_equation());

	//dualize again
	dual_planes.clear();
	for (Polyhedron::Plane_iterator pi = Intersection.planes_begin(); pi != Intersection.planes_end(); ++pi)
		dual_planes.push_back(CGALpoint(-pi->a() / pi->d(), -pi->b() / pi->d(), -pi->c() / pi->d()));

	//compute convex hull of it
	Intersection = ConvexHull(dual_planes);
	if (Intersection.empty()) return Intersection;

	//return to original position
	std::transform(Intersection.points_begin(), Intersection.points_end(), Intersection.points_begin(), transl_back);

	if (Intersection.size_of_facets() < 4) Intersection.clear();
	return Intersection;
}

//**********************************************************************************
//returnes intersecting polyhedron of polyhedron & plane defined by direction and point
Polyhedron Polyhedron_Plane_intersection(Polyhedron A, Vector3r direction, Vector3r plane_point)
{
	Plane     B(ToCGALPoint(plane_point), ToCGALVector(direction));
	CGALpoint X = ToCGALPoint(plane_point) - 1E-8 * ToCGALVector(direction);
	return Polyhedron_Plane_intersection(A, B, ToCGALPoint(plane_point), X);
}

//**********************************************************************************
//returnes intersecting polyhedron of two polyhedrons (possibly empty)
Polyhedron Polyhedron_Polyhedron_intersection(Polyhedron A, Polyhedron B, CGALpoint X, CGALpoint centroidA, CGALpoint centroidB, std::vector<int>& sep_plane)
{
	Polyhedron Intersection;

	vector<Plane>     planes1, planes2;
	vector<CGALpoint> dual_planes;
	//Polyhedron::Plane_iterator pi;
	CGALpoint inside(0, 0, 0);

	bool intersection_found = false;
	std::transform(A.facets_begin(), A.facets_end(), A.planes_begin(), Plane_equation());
	std::transform(B.facets_begin(), B.facets_end(), B.planes_begin(), Plane_equation());
	Matrix3r Amatrix;
	Vector3r y;
	// test that X is really inside
	if (Is_inside_Polyhedron(A, X, DISTANCE_LIMIT) && Is_inside_Polyhedron(B, X, DISTANCE_LIMIT)) {
		intersection_found = true;
		inside             = X;
	} else {
		if (!do_intersect(A, B, sep_plane)) return Intersection;
		//some intersection point
		Real       dist_S, dist_T;
		Real       lim2 = pow(DISTANCE_LIMIT, 2);
		CGALvector d1;
		Real       factor = sqrt(DISTANCE_LIMIT * 1.5);
		//test vertices A - not needed, edges are enough
		for (Polyhedron::Vertex_iterator vIter = A.vertices_begin(); vIter != A.vertices_end() && !intersection_found; vIter++) {
			d1                 = centroidA - vIter->point();
			inside             = vIter->point() + d1 / sqrt(d1.squared_length()) * DISTANCE_LIMIT * 20.;
			intersection_found = (Is_inside_Polyhedron(A, inside, DISTANCE_LIMIT) && Is_inside_Polyhedron(B, inside, DISTANCE_LIMIT));
		}
		//test vertices B - necessary
		for (Polyhedron::Vertex_iterator vIter = B.vertices_begin(); vIter != B.vertices_end() && !intersection_found; vIter++) {
			d1                 = centroidB - vIter->point();
			inside             = vIter->point() + d1 / sqrt(d1.squared_length()) * DISTANCE_LIMIT * 20.;
			intersection_found = (Is_inside_Polyhedron(A, inside, DISTANCE_LIMIT) && Is_inside_Polyhedron(B, inside, DISTANCE_LIMIT));
		}

		//test edges
		for (Polyhedron::Edge_iterator eIter = A.edges_begin(); eIter != A.edges_end() && !intersection_found; eIter++) {
			for (Polyhedron::Facet_iterator fIter = B.facets_begin(); fIter != B.facets_end() && !intersection_found; fIter++) {
				dist_S = Oriented_squared_distance(fIter->plane(), eIter->vertex()->point());
				dist_T = Oriented_squared_distance(fIter->plane(), eIter->opposite()->vertex()->point());
				if (dist_S * dist_T >= 0 || math::abs(dist_S) < lim2 || math::abs(dist_T) < lim2) continue;
				inside = eIter->vertex()->point()
				        + (eIter->opposite()->vertex()->point() - eIter->vertex()->point()) * sqrt(math::abs(dist_S))
				                / (sqrt(math::abs(dist_S)) + sqrt(math::abs(dist_T)));
				// the fact that edge intersects the facet (not only its plane) is not explicitely checked, it sufices to check that the resulting point is inside both polyhedras
				Plane p1 = fIter->plane();
				Plane p2 = eIter->facet()->plane();
				Plane p3 = eIter->opposite()->facet()->plane();
				Amatrix << p1.a(), p1.b(), p1.c(), p2.a(), p2.b(), p2.c(), p3.a(), p3.b(), p3.c();
				y = Vector3r(
				        -p1.d() - factor * sqrt(pow(p1.a(), 2) + pow(p1.b(), 2) + pow(p1.c(), 2)),
				        -p2.d() - factor * sqrt(pow(p2.a(), 2) + pow(p2.b(), 2) + pow(p2.c(), 2)),
				        -p3.d() - factor * sqrt(pow(p3.a(), 2) + pow(p3.b(), 2) + pow(p3.c(), 2)));
				inside             = ToCGALPoint(SolveLinSys3x3(Amatrix, y));
				intersection_found = (Is_inside_Polyhedron(A, inside, DISTANCE_LIMIT) && Is_inside_Polyhedron(B, inside, DISTANCE_LIMIT));
			}
		}
	}

	//Polyhedrons do not intersect
	if (!intersection_found) return Intersection;

	//set the intersection point to origin
	Transformation transl_back(CGAL::TRANSLATION, inside - CGALpoint(0., 0., 0.));
	Transformation transl(CGAL::TRANSLATION, CGALpoint(0., 0., 0.) - inside);

	std::transform(A.points_begin(), A.points_end(), A.points_begin(), transl);
	std::transform(B.points_begin(), B.points_end(), B.points_begin(), transl);

	//dualize polyhedrons
	std::transform(A.facets_begin(), A.facets_end(), A.planes_begin(), Plane_equation());
	std::transform(B.facets_begin(), B.facets_end(), B.planes_begin(), Plane_equation());
	for (Polyhedron::Plane_iterator pi = A.planes_begin(); pi != A.planes_end(); ++pi)
		planes1.push_back(*pi);
	for (Polyhedron::Plane_iterator pi = B.planes_begin(); pi != B.planes_end(); ++pi)
		planes2.push_back(*pi);


	//merge planes
	planes1 = MergePlanes(planes1, planes2, MERGE_PLANES_LIMIT); //MERGE_PLANES_LIMIT);
	for (vector<Plane>::iterator pi = planes1.begin(); pi != planes1.end(); ++pi)
		dual_planes.push_back(CGALpoint(-pi->a() / pi->d(), -pi->b() / pi->d(), -pi->c() / pi->d()));

	//compute convex hull of it
	Intersection = ConvexHull(dual_planes);
	if (Intersection.empty()) return Intersection;

	//simplify - turn off simplification in the interaction computations
	std::transform(Intersection.facets_begin(), Intersection.facets_end(), Intersection.planes_begin(), Plane_equation());
	Intersection = Simplify(Intersection);
	std::transform(Intersection.facets_begin(), Intersection.facets_end(), Intersection.planes_begin(), Plane_equation());

	//dualize again
	dual_planes.clear();
	for (Polyhedron::Plane_iterator pi = Intersection.planes_begin(); pi != Intersection.planes_end(); ++pi) {
		const auto pX = -pi->a() / pi->d();
		const auto pY = -pi->b() / pi->d();
		const auto pZ = -pi->c() / pi->d();
		if (math::isnan(pX) || math::isnan(pY) || math::isnan(pZ)) {
			Polyhedron IntersectionEmpty;
			return IntersectionEmpty;
		} else {
			dual_planes.push_back(CGALpoint(-pi->a() / pi->d(), -pi->b() / pi->d(), -pi->c() / pi->d()));
		}
	}
	//compute convex hull of it
	Intersection = ConvexHull(dual_planes);
	if (Intersection.empty()) return Intersection;
	//return to original position
	std::transform(Intersection.points_begin(), Intersection.points_end(), Intersection.points_begin(), transl_back);

	if (Intersection.size_of_facets() < 4) Intersection.clear();
	return Intersection;
}

//**********************************************************************************
Vector3r FromCGALPoint(CGALpoint A) { return Vector3r(A.x(), A.y(), A.z()); }

//**********************************************************************************
Vector3r FromCGALVector(CGALvector A) { return Vector3r(A.x(), A.y(), A.z()); }

//**********************************************************************************
CGALpoint ToCGALPoint(Vector3r A) { return CGALpoint(A[0], A[1], A[2]); }

//**********************************************************************************
CGALvector ToCGALVector(Vector3r A) { return CGALvector(A[0], A[1], A[2]); }

//**********************************************************************************
//new polyhedra
shared_ptr<Body> NewPolyhedra(vector<Vector3r> v, shared_ptr<Material> mat)
{
	shared_ptr<Body> body(new Body);
	body->material = mat;
	body->shape    = shared_ptr<Polyhedra>(new Polyhedra());
	Polyhedra* A   = static_cast<Polyhedra*>(body->shape.get());
	A->v           = v;
	A->Initialize();
	body->state->pos     = A->GetCentroid();
	body->state->mass    = body->material->density * A->GetVolume();
	body->state->inertia = A->GetInertia() * body->material->density;
	body->state->ori     = A->GetOri();
	body->bound          = shared_ptr<Aabb>(new Aabb);
	body->setAspherical(true);
	return body;
}

Real maxDistancePoints(const std::vector<Vector3r>& v)
{
	Real maxDistance = 0.;
	for (unsigned int i = 0; i < v.size(); ++i) {
		for (unsigned int j = i + 1; j < v.size(); ++j) {
			maxDistance = math::max(maxDistance, (v[i] - v[j]).norm());
		}
	}
	return maxDistance;
}

//**********************************************************************************
//split polyhedra
shared_ptr<Body> SplitPolyhedra(const shared_ptr<Body>& body, const Vector3r direction, const Vector3r point)
{
	Scene*      scene = Omega::instance().getScene().get();
	const Se3r& se3   = body->state->se3;
	Polyhedra*  A     = static_cast<Polyhedra*>(body->shape.get());
	State*      X     = static_cast<State*>(body->state.get());

	const Vector3r OrigPos    = X->pos;
	const Vector3r OrigVel    = X->vel;
	const Vector3r OrigAngVel = X->angVel;

	//move and rotate CGAL structure Polyhedron
	const Matrix3r rot_mat   = (se3.orientation).toRotationMatrix();
	const Vector3r trans_vec = se3.position;

	Transformation t_rot_trans(
	        rot_mat(0, 0),
	        rot_mat(0, 1),
	        rot_mat(0, 2),
	        trans_vec[0],
	        rot_mat(1, 0),
	        rot_mat(1, 1),
	        rot_mat(1, 2),
	        trans_vec[1],
	        rot_mat(2, 0),
	        rot_mat(2, 1),
	        rot_mat(2, 2),
	        trans_vec[2],
	        1.);

	Polyhedron PA = A->GetPolyhedron();
	std::transform(PA.points_begin(), PA.points_end(), PA.points_begin(), t_rot_trans);

	//calculate splitted polyhedrons
	Plane      B(ToCGALPoint(point - direction * SPLITTER_GAP), ToCGALVector(direction));
	Polyhedron S1 = Polyhedron_Plane_intersection(PA, B, ToCGALPoint(se3.position), B.projection(ToCGALPoint(OrigPos)) - 1E-6 * ToCGALVector(direction));

	B             = Plane(ToCGALPoint(point + direction * SPLITTER_GAP), ToCGALVector((-1.) * direction));
	Polyhedron S2 = Polyhedron_Plane_intersection(PA, B, ToCGALPoint(se3.position), B.projection(ToCGALPoint(OrigPos)) + 1E-6 * ToCGALVector(direction));

	//replace original polyhedron
	A->Clear();
	for (Polyhedron::Vertex_iterator vi = S1.vertices_begin(); vi != S1.vertices_end(); vi++)
		A->v.push_back(FromCGALPoint(vi->point()));
	A->Initialize();
	X->pos       = A->GetCentroid();
	X->ori       = A->GetOri();
	X->mass      = body->material->density * A->GetVolume();
	X->refPos[0] = X->refPos[0] + 1.;
	X->inertia   = A->GetInertia() * body->material->density;
	X->vel       = OrigVel + OrigAngVel.cross(X->pos - OrigPos);
	X->angVel    = OrigAngVel;

	//second polyhedron
	vector<Vector3r> v2;
	for (Polyhedron::Vertex_iterator vi = S2.vertices_begin(); vi != S2.vertices_end(); vi++)
		v2.push_back(FromCGALPoint(vi->point()));
	shared_ptr<Body> BP = NewPolyhedra(v2, body->material);

	BP->shape->color = Vector3r(Real(rand()) / RAND_MAX, Real(rand()) / RAND_MAX, Real(rand()) / RAND_MAX);
	scene->bodies->insert(BP);
	//set proper state variables
	BP->state->vel    = OrigVel + OrigAngVel.cross(BP->state->pos - OrigPos);
	BP->state->angVel = OrigAngVel;
	return BP;
}

} // namespace yade

#endif // YADE_CGAL