File: Gl1_PotentialBlock.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (871 lines) | stat: -rw-r--r-- 32,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/* CWBoon 2016 */
#ifdef YADE_POTENTIAL_BLOCKS

#include <core/Aabb.hpp>
#include <core/Clump.hpp>
#include <pkg/dem/ScGeom.hpp>
#include <pkg/potential/KnKsPBLaw.hpp>

#include "Gl1_PotentialBlock.hpp"

#ifdef YADE_VTK

#include <lib/compatibility/VTKCompatibility.hpp>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wsuggest-override"
#include <vtkActor2D.h>
#include <vtkAppendPolyData.h>
#include <vtkCamera.h>
#include <vtkCellArray.h>
#include <vtkCellData.h>
#include <vtkConeSource.h>
#include <vtkContourFilter.h>
#include <vtkDiskSource.h>
#include <vtkExtractVOI.h>
#include <vtkFloatArray.h>
#include <vtkImplicitBoolean.h>
#include <vtkIntArray.h>
#include <vtkLabeledDataMapper.h>
#include <vtkLine.h>
#include <vtkLinearExtrusionFilter.h>
#include <vtkLookupTable.h>
#include <vtkPointData.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRegularPolygonSource.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkSampleFunction.h>
#include <vtkSmartPointer.h>
#include <vtkSphereSource.h>
#include <vtkStructuredPoints.h>
#include <vtkStructuredPointsWriter.h>
#include <vtkTransform.h>
#include <vtkTransformPolyDataFilter.h>
#include <vtkTriangle.h>
#include <vtkUnsignedCharArray.h>
#include <vtkUnstructuredGrid.h>
#include <vtkVectorText.h>
#include <vtkWriter.h>
#include <vtkXMLDataSetWriter.h>
#include <vtkXMLImageDataWriter.h>
#include <vtkXMLPolyDataWriter.h>
#include <vtkXMLStructuredGridWriter.h>
#include <vtkXMLUnstructuredGridWriter.h>
#pragma GCC diagnostic pop

#endif // YADE_VTK

namespace yade { // Cannot have #include directive inside.

/* New script to visualise the PBs using OPENGL. The triangulation of the particles is derived from: PotentialBlock.connectivity */
#ifdef YADE_OPENGL
bool Gl1_PotentialBlock::wire;

void Gl1_PotentialBlock::go(const shared_ptr<Shape>& cm, const shared_ptr<State>&, bool wire2, const GLViewInfo&)
{
	glColor3v(cm->color); //glColor3v is used when lighting is not enabled
	PotentialBlock* pb = static_cast<PotentialBlock*>(cm.get());

	if (wire || wire2) {
		glDisable(GL_CULL_FACE);
		glDisable(GL_LIGHTING);
		glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); //Turn on wireframe mode. Render front and back faces of the wireframe
	} else {
		glMaterialv(
		        GL_FRONT, GL_AMBIENT_AND_DIFFUSE, Vector3r(cm->color[0], cm->color[1], cm->color[2])); //glMaterialv is used when lighting is enabled
		glCullFace(GL_BACK);
		glEnable(GL_CULL_FACE);
		glEnable(GL_LIGHTING);
		glPolygonMode(GL_FRONT, GL_FILL); // Turn off wireframe mode. Render only front faces
	}

	vector<vector<int>> con = pb->connectivity;

	//TODO: Orient the faces always as cwise or ccwise in the shape class, to avoid going through the if statement below in every timestep qt.View() is activated.
	for (int j = 0; j < (int)con.size(); j++) {
		Vector3r n = (pb->vertices[con[j][1]] - pb->vertices[con[j][0]]).cross(pb->vertices[con[j][2]] - pb->vertices[con[j][0]]);
		n.normalize();
		Vector3r nFace = Vector3r(pb->a[j], pb->b[j], pb->c[j]);

		glBegin(GL_TRIANGLE_FAN)
			;
			glNormal3v(nFace);
			if (n.dot(nFace) < 0.0) {
				for (int i1 = con[j].size() - 1; i1 >= 0; i1--) {
					glVertex3v(pb->vertices[con[j][i1]]);
				} // Create a fan with vertices on plane in descending order
			} else {
				for (unsigned int i2 = 0; i2 < con[j].size(); i2++) {
					glVertex3v(pb->vertices[con[j][i2]]);
				} // Create a fan with vertices on plane in ascending order
			}
		glEnd();
	}
	glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
YADE_PLUGIN((Gl1_PotentialBlock));
#endif // YADE_OPENGL

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* PREVIOUSLY EXISTING CODE DEVELOPED BY CW BOON USING THE MARCHING CUBES */
/* TODO  THE EXISTING CODE WILL BE USED TO VISUALISE THE INNER POTENTIAL PARTICLE, BY INTRODUCING A BOOLEAN TO CHOOSE BETWEEN display="ACTUAL_PARTICLE" OR display="INNER_PP" */

//#ifdef YADE_OPENGL

////if (display == 0){
//////	CGAL script/Actual Particle


////}else if(display==1) {
////// Marching Cubes/Inner Potential Particle

//	void Gl1_PotentialBlock::calcMinMax(const PotentialBlock& pp)
//	{
//		Min = -aabbEnlargeFactor*pp.minAabb;
//		Max =  aabbEnlargeFactor*pp.maxAabb;
//
//		float dx = (Max[0]-Min[0])/((float)(sizeX-1));
//		float dy = (Max[1]-Min[1])/((float)(sizeY-1));
//		float dz = (Max[2]-Min[2])/((float)(sizeZ-1));

//		isoStep=Vector3r(dx,dy,dz);
//	}


//	void Gl1_PotentialBlock::generateScalarField(const PotentialBlock& pp)
//	{

//		for(int i=0;i<sizeX;i++){
//			for(int j=0;j<sizeY;j++){
//				for(int k=0;k<sizeZ;k++){
//					scalarField[i][j][k] = evaluateF(pp,  Min[0]+ Real(i)*isoStep[0],  Min[1]+ Real(j)*isoStep[1],  Min[2]+Real(k)*isoStep[2]);//
//				}
//			}
//		}
//	}


//	vector<Gl1_PotentialBlock::scalarF> Gl1_PotentialBlock::SF;
//	int Gl1_PotentialBlock::sizeX, Gl1_PotentialBlock::sizeY, Gl1_PotentialBlock::sizeZ;
//	bool Gl1_PotentialBlock::store;
//	bool Gl1_PotentialBlock::initialized;
//	Real Gl1_PotentialBlock::aabbEnlargeFactor;
//	//void Gl1_PotentialBlock::clearMemory(){
//	//SF.clear();
//	//}


//	bool Gl1_PotentialBlock::wire;

//	void Gl1_PotentialBlock::go( const shared_ptr<Shape>& cm, const shared_ptr<State>& state ,bool wire2, const GLViewInfo&){


//		PotentialBlock* pp = static_cast<PotentialBlock*>(cm.get());
//		int shapeId = pp->id;

//		if(store == false) {
//			if(SF.size()>0) {
//				SF.clear();
//				initialized = false;
//			}
//		}

//		/* CONSTRUCTION OF PARTICLE SURFACE USING THE MARCHING CUBES ALGORITHM */
//		if(initialized == false ) {
//			for(const auto & b :  *scene->bodies) {
//				if (!b) continue;
//				PotentialBlock* cmbody = dynamic_cast<PotentialBlock*>(b->shape.get());
//				if (!cmbody) continue;

//					Matrix3r rotation = b->state->ori.toRotationMatrix(); //*pb->oriAabb.conjugate();
//					int count = 0;
//					for (int i=0; i<3; i++){
//						for (int j=0; j<3; j++){
//							//function->rotationMatrix[count] = directionCos(j,i);
//							rotationMatrix(i,j) = rotation(i,j);	//input is actually direction cosine?
//							count++;
//						}
//					}

//				calcMinMax(*cmbody);
//				mc.init(sizeX,sizeY,sizeZ,Min,Max);
//				mc.resizeScalarField(scalarField,sizeX,sizeY,sizeZ);
//				SF.push_back(scalarF());
//				generateScalarField(*cmbody);
//				mc.computeTriangulation(scalarField,0.0);
//				SF[cmbody->id].triangles = mc.getTriangles();
//				SF[cmbody->id].normals = mc.getNormals();
//				SF[cmbody->id].nbTriangles = mc.getNbTriangles();
//				for(unsigned int i=0; i<scalarField.size(); i++) {
//					for(unsigned int j=0; j<scalarField[i].size(); j++) scalarField[i][j].clear();
//					scalarField[i].clear();
//				}
//				scalarField.clear();
//			}
//			initialized = true;
//		}


//		/* VISUALIZATION USING OPENGL */
//		const vector<Vector3r>& triangles = SF[shapeId].triangles; //mc.getTriangles();
//		int nbTriangles = SF[shapeId].nbTriangles; // //mc.getNbTriangles();
//		const vector<Vector3r>& normals = SF[shapeId].normals; //mc.getNormals();
//		glDisable(GL_CULL_FACE);

//		if (wire || wire2) {
//			glDisable(GL_LIGHTING);
//			glBegin(GL_LINES);
//			for(int i=0; i<3*nbTriangles; i+=3) {
//				glVertex3v(triangles[i+0]); glVertex3v(triangles[i+1]);
//				glVertex3v(triangles[i+0]); glVertex3v(triangles[i+2]);
//				glVertex3v(triangles[i+1]); glVertex3v(triangles[i+2]);
//			}
//			glEnd();
//		} else {

//			glMaterialv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, Vector3r(cm->color[0],cm->color[1],cm->color[2]));
//			glColor3v(cm->color);
//			//glColorMaterial(GL_BACK,GL_AMBIENT_AND_DIFFUSE);

//			glEnable(GL_LIGHTING); // 2D
//			glEnable(GL_NORMALIZE);
//			//glEnable(GL_RESCALE_NORMAL); // alternative to GL_NORMALIZE
//			glBegin(GL_TRIANGLES);

//			for(int i=0; i<3*nbTriangles; ++i) {
//	//			glNormal3v(normals[i]);
//	//			glVertex3v(triangles[i]);
//	//			glNormal3v(normals[++i]);
//	//			glVertex3v(triangles[i]);
//	//			glNormal3v(normals[++i]);
//	//			glVertex3v(triangles[i]);
//
//				glNormal3v(normals[i]);
//					glVertex3v(triangles[i]);
//				glNormal3v(normals[i+1]);
//					//glVertex3v(triangles[i+1]);
//				glNormal3v(normals[i+2]);
//					//glVertex3v(triangles[i+2]);
//			}

//			glEnd();

//		}
//		return;
//	}


//	Real Gl1_PotentialBlock::evaluateF(const PotentialBlock& pp, Real x, Real y, Real z){
//		Real r = pp.r;
//		int planeNo = pp.a.size();

//		//Vector3r xori(x,y,z);
//		//Vector3r xlocal = rotationMatrix*xori;
//		//rotationMatrix*xori;
//		//xlocal[0] = rotationMatrix(0,0)*xori[0] + rotationMatrix(0,1)*xori[1] + rotationMatrix(0,2)*xori[2];
//		//xlocal[1] = rotationMatrix(1,0)*xori[0] + rotationMatrix(1,1)*xori[1] + rotationMatrix(1,2)*xori[2];
//		//xlocal[2] = rotationMatrix(2,0)*xori[0] + rotationMatrix(2,1)*xori[1] + rotationMatrix(2,2)*xori[2];

//		vector<Real>a; vector<Real>b; vector<Real>c; vector<Real>d; vector<Real>p; Real pSum3 = 0.0;
//		for (int i=0; i<planeNo; i++){
//			Vector3r planeOri(pp.a[i],pp.b[i],pp.c[i]);
///* PREVIOUS */ 		Vector3r planeRotated = planeOri; //rotationMatrix*planeOri; //FIXME
///*TO REVISIT*/		//Vector3r planeRotated = se3.orientation*planeOri //FIXME

//			Real plane = planeRotated.x()*x + planeRotated.y()*y + planeRotated.z()*z - pp.d[i]; if (plane<pow(10,-15)){plane = 0.0;}
//			//Real plane =  pp.a[i]*xlocal[0] +  pp.b[i]*xlocal[1] +  pp.c[i]*xlocal[2] - pp.d[i]; if (plane<pow(10,-15)){plane = 0.0;}
////			p.push_back(plane);
//			pSum3 += pow(plane,2);
//		}

//		Real f = (pSum3-1.0*pow(r,2));
//	//	Real f = (pSum3-1.0*pow(r,1));

//		return f;
//	}

////} // display
//#endif // YADE_OPENGL


#ifdef YADE_VTK

ImpFuncPB* ImpFuncPB::New()
{
	// Skip factory stuff - create class
	return new ImpFuncPB;
}


// Create the function
ImpFuncPB::ImpFuncPB()
{
	clump = false;
	// Initialize members here if you need
}

ImpFuncPB::~ImpFuncPB()
{
	// Initialize members here if you need
}

// Evaluate function
Real ImpFuncPB::FunctionValue(Real x[3])
{
	int          planeNo = a.size();
	vector<Real> p;
	Real         pSum2 = 0.0;
	if (clump == false) {
		Vector3r xori(x[0], x[1], x[2]);
		Vector3r xlocal = rotationMatrix * xori;
		xlocal[0]       = rotationMatrix(0, 0) * x[0] + rotationMatrix(0, 1) * x[1] + rotationMatrix(0, 2) * x[2];
		xlocal[1]       = rotationMatrix(1, 0) * x[0] + rotationMatrix(1, 1) * x[1] + rotationMatrix(1, 2) * x[2];
		xlocal[2]       = rotationMatrix(2, 0) * x[0] + rotationMatrix(2, 1) * x[1] + rotationMatrix(2, 2) * x[2];
		//std::cout<<"rotationMatrix: "<<endl<<rotationMatrix<<endl;
		//x[0]=xlocal[0]; x[1]=xlocal[1]; x[2]=xlocal[2];

		for (int i = 0; i < planeNo; i++) {
			Real plane = a[i] * xlocal[0] + b[i] * xlocal[1] + c[i] * xlocal[2] - d[i];
			if (plane < pow(10, -15)) { plane = 0.0; }
			p.push_back(plane);
			pSum2 += pow(p[i], 2);
		}
		//  Real sphere  = (  pow(xlocal[0],2) + pow(xlocal[1],2) + pow(xlocal[2],2) ) ;
		//  Real f = (1.0-k)*(pSum2/pow(r,2) - 1.0)+k*(sphere/pow(R,2)-1.0);
		Real f = (pSum2 - 1.0 * pow(r, 2));
		return f;
	} else {
		Vector3r xori(x[0], x[1], x[2]);
		Vector3r clumpMemberCentre(clumpMemberCentreX, clumpMemberCentreY, clumpMemberCentreZ);
		Vector3r xlocal = xori - clumpMemberCentre;
		//xlocal[0] = rotationMatrix[0]*x[0] + rotationMatrix[3]*x[1] + rotationMatrix[6]*x[2];
		//xlocal[1] = rotationMatrix[1]*x[0] + rotationMatrix[4]*x[1] + rotationMatrix[7]*x[2];
		//xlocal[2] = rotationMatrix[2]*x[0] + rotationMatrix[5]*x[1] + rotationMatrix[8]*x[2];
		//std::cout<<"rotationMatrix: "<<endl<<rotationMatrix<<endl;
		//x[0]=xlocal[0]; x[1]=xlocal[1]; x[2]=xlocal[2];

		for (int i = 0; i < planeNo; i++) {
			Real plane = a[i] * xlocal[0] + b[i] * xlocal[1] + c[i] * xlocal[2] - d[i];
			if (plane < pow(10, -15)) { plane = 0.0; }
			p.push_back(plane);
			pSum2 += pow(p[i], 2);
		}
		// Real sphere  = (  pow(xlocal[0],2) + pow(xlocal[1],2) + pow(xlocal[2],2) ) ;
		// Real f = (1.0-k)*(pSum2/pow(r,2) - 1.0)+k*(sphere/pow(R,2)-1.0);
		Real f = (pSum2 - 1.5 * pow(r, 2));
		return f;
		// return 0;
	}
	// the value of the function
}


void PotentialBlockVTKRecorder::action()
{
	if (fileName.size() == 0) return;
	auto pbPos          = vtkSmartPointer<vtkPointsReal>::New();
	auto appendFilter   = vtkSmartPointer<vtkAppendPolyData>::New();
	auto appendFilterID = vtkSmartPointer<vtkAppendPolyData>::New();
	//auto transformFilter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
	//auto transform = vtkSmartPointer<vtkTransform>::New();

	// interactions ###############################################
	auto intrBodyPos = vtkSmartPointer<vtkPoints>::New();
	auto intrCells   = vtkSmartPointer<vtkCellArray>::New();
	auto intrForceN  = vtkSmartPointer<vtkFloatArray>::New();
	intrForceN->SetNumberOfComponents(3);
	intrForceN->SetName("forceN");
	auto intrAbsForceT = vtkSmartPointer<vtkFloatArray>::New();
	intrAbsForceT->SetNumberOfComponents(1);
	intrAbsForceT->SetName("absForceT");
	// interactions ###############################################

	// interaction contact point ###############################################
	auto pbContactPoint = vtkSmartPointer<vtkPointsReal>::New();
	auto pbCellsContact = vtkSmartPointer<vtkCellArray>::New();
	auto pbNormalForce  = vtkSmartPointer<vtkFloatArray>::New();
	pbNormalForce->SetNumberOfComponents(3);
	pbNormalForce->SetName("normalForce"); //Linear velocity in Vector3 form
	auto pbShearForce = vtkSmartPointer<vtkFloatArray>::New();
	pbShearForce->SetNumberOfComponents(3);
	pbShearForce->SetName("shearForce"); //Angular velocity in Vector3 form
	auto pbTotalForce = vtkSmartPointer<vtkFloatArray>::New();
	pbTotalForce->SetNumberOfComponents(3);
	pbTotalForce->SetName("totalForce");
	auto pbTotalStress = vtkSmartPointer<vtkFloatArray>::New();
	pbTotalStress->SetNumberOfComponents(3);
	pbTotalStress->SetName("totalStress");
	auto pbMobilizedShear = vtkSmartPointer<vtkFloatArray>::New();
	pbMobilizedShear->SetNumberOfComponents(1);
	pbMobilizedShear->SetName("mobilizedShear");
	// interactions contact point###############################################


	// velocity ###################################################
	auto pbCells     = vtkSmartPointer<vtkCellArray>::New();
	auto pbLinVelVec = vtkSmartPointer<vtkFloatArray>::New();
	pbLinVelVec->SetNumberOfComponents(3);
	pbLinVelVec->SetName("linVelVec"); //Linear velocity in Vector3 form

	auto pbLinVelLen = vtkSmartPointer<vtkFloatArray>::New();
	pbLinVelLen->SetNumberOfComponents(1);
	pbLinVelLen->SetName("linVelLen"); //Length (magnitude) of linear velocity

	auto pbAngVelVec = vtkSmartPointer<vtkFloatArray>::New();
	pbAngVelVec->SetNumberOfComponents(3);
	pbAngVelVec->SetName("angVelVec"); //Angular velocity in Vector3 form

	auto pbAngVelLen = vtkSmartPointer<vtkFloatArray>::New();
	pbAngVelLen->SetNumberOfComponents(1);
	pbAngVelLen->SetName("angVelLen"); //Length (magnitude) of angular velocity


	auto pbDisplacementVec = vtkSmartPointer<vtkFloatArray>::New();
	pbDisplacementVec->SetNumberOfComponents(3);
	pbDisplacementVec->SetName("Displacement"); //Linear velocity in Vector3 form

	// velocity ####################################################

	// bodyId ##############################################################
	//#if 0
	auto pbPosID   = vtkSmartPointer<vtkPointsReal>::New();
	auto pbIdCells = vtkSmartPointer<vtkCellArray>::New();
	auto blockId   = vtkSmartPointer<vtkIntArray>::New();
	blockId->SetNumberOfComponents(1);
	blockId->SetName("id");
	// bodyId ##############################################################
	//#endif
	int                                       countID = 0;
	vtkSmartPointer<vtkVectorText>            textArray2[scene->bodies->size()];
	vtkSmartPointer<vtkPolyDataMapper>        txtMapper[scene->bodies->size()];
	vtkSmartPointer<vtkLinearExtrusionFilter> extrude[scene->bodies->size()];
	vtkSmartPointer<vtkActor>                 textActor[scene->bodies->size()];


	for (const auto& b : *scene->bodies) {
		if (!b) continue;
		if (b->isClumpMember() == true) continue;

		//const PotentialBlock* pb=dynamic_cast<PotentialBlock*>(b->shape.get());
		//if(!pb) continue;
		if (REC_ID == true) {
			//#if 0
			blockId->InsertNextValue(b->getId());
			vtkIdType pid[1];
			Vector3r  pos(b->state->pos);
			pid[0] = pbPosID->InsertNextPoint(pos);
			pbIdCells->InsertNextCell(1, pid);
			//#endif
			/* ################# Display id VTK extrusion vector ############## */

#if 0
			textArray2[countID]= vtkVectorText::New();
			//#if 0
			int bid = b->id;
			std::string testString = boost::lexical_cast<std::string>(bid);
			const char * testChar = testString.c_str();
			textArray2[countID]->SetText(testChar);
			extrude[countID] = vtkLinearExtrusionFilter::New();
		   	extrude[countID]->SetInputConnection( textArray2[countID]->GetOutputPort());
			extrude[countID]->SetExtrusionTypeToNormalExtrusion();
			extrude[countID]->SetVector(0, 0, 1.0 );
			extrude[countID]->SetScaleFactor (1.0);
#if 0
			txtMapper[countID] = vtkPolyDataMapper::New();
			txtMapper[countID]->SetInputConnection( extrude[countID]->GetOutputPort());
			textActor[countID] = vtkActor::New();
			textActor[countID]->SetMapper(txtMapper[countID]);
			textActor[countID]->RotateX(-90);
			textActor[countID]->SetPosition(b->state->pos[0], b->state->pos[1], b->state->pos[2]);
			Real contactPtSize = 5.0;
			textActor[countID]->SetScale(3.0*contactPtSize);
			textActor[countID]->GetProperty()->SetColor(0.0,0.0,0.0);
#endif
			//#if 0
			//txtMapper[countID] = vtkPolyDataMapper::New();
			//txtMapper[countID]->SetInputConnection( extrude[count]->GetOutputPort());
			//appendFilterID->AddInputConnection(extrude[countID]-> GetOutputPort());
			//auto polydata = vtkSmartPointer<vtkPolyData>::New();
			//polydata->DeepCopy(extrude[countID]-> GetOutput());
			Vector3r centre (b->state->pos[0], b->state->pos[1], b->state->pos[2]);
			auto transformFilter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
			transformFilter->SetInput( extrude[countID]-> GetOutput() );
			auto transform = vtkSmartPointer<vtkTransform>::New();
			transformFilter->SetTransform( transform );
			transform->PostMultiply();
			transform->Translate (centre[0], centre[1],centre[2]);
			//#endif
			appendFilterID->AddInputConnection(transformFilter-> GetOutputPort());
			//polydata->DeleteCells();

#endif
			countID++;
		}
		//vtkSmartPointer<ImpFuncPB> function = ImpFuncPB::New();
		vtkSmartPointer<vtkImplicitBoolean> boolFunction   = vtkSmartPointer<vtkImplicitBoolean>::New();
		vtkSmartPointer<ImpFuncPB>*         functionBool   = nullptr;
		int                                 ImplicitBoolNo = 0;
		Real                                xmin           = 0.0;
		Real                                xmax           = 0.0;
		Real                                ymin           = 0.0;
		Real                                ymax           = 0.0;
		Real                                zmin           = 0.0;
		Real                                zmax           = 0.0;
		Vector3r                            particleColour(0, 0, 0);
		if (b->isClump() == false && b->isClumpMember() == false) {
			const PotentialBlock* pb = dynamic_cast<PotentialBlock*>(b->shape.get());
			if (pb->isLining == true) { continue; }
			function->a = pb->a;
			function->b = pb->b;
			function->c = pb->c;
			function->d = pb->d;
			function->R = pb->R;
			function->r = pb->r;
			function->k = pb->k;
			//Matrix3r directionCos = b->state->ori.conjugate().toRotationMatrix();  //FIXME
			Matrix3r rotation = b->state->ori.conjugate().toRotationMatrix(); //*pb->oriAabb.conjugate();
			int      count    = 0;
			function->clump   = false;
			for (int i = 0; i < 3; i++) {
				for (int j = 0; j < 3; j++) {
					//function->rotationMatrix[count] = directionCos(j,i);
					function->rotationMatrix(i, j) = rotation(i, j); //input is actually direction cosine?
					count++;
				}
			}

			if (pb->minAabb.norm() > 0 and pb->maxAabb.norm() > 0) {
				xmin = -pb->minAabb.x();
				xmax = pb->maxAabb.x();
				ymin = -pb->minAabb.y();
				ymax = pb->maxAabb.y();
				zmin = -pb->minAabb.z();
				zmax = pb->maxAabb.z();
			} else {
				const Aabb* aabb = static_cast<Aabb*>(b->bound.get());
				xmin             = aabb->min.x() - b->state->pos.x();
				xmax             = aabb->max.x() - b->state->pos.x();
				ymin             = aabb->min.y() - b->state->pos.y();
				ymax             = aabb->max.y() - b->state->pos.y();
				zmin             = aabb->min.z() - b->state->pos.z();
				zmax             = aabb->max.z() - b->state->pos.z();

				xmin *= 1.2;
				xmax *= 1.2;
				ymin *= 1.2;
				ymax *= 1.2;
				zmin *= 1.2;
				zmax *= 1.2;
			}
			particleColour = pb->color;

		} else if (b->isClump() == true) {
			//const Clump* clump = dynamic_cast<Clump*>(b->shape.get());
			const shared_ptr<Clump> clump(YADE_PTR_CAST<Clump>(b->shape));

			//vtkSmartPointer<ImpFunc> functionBool [clump->ids.size()];
			auto clumpIds  = clump->ids_get();
			functionBool   = new vtkSmartPointer<ImpFuncPB>[clumpIds.size()];
			ImplicitBoolNo = clumpIds.size();

			for (unsigned int i = 0; i < clumpIds.size(); i++) {
				const shared_ptr<Body> clumpMember  = Body::byId(clumpIds[i], scene);
				const PotentialBlock*  pbShape      = dynamic_cast<PotentialBlock*>(clumpMember->shape.get());
				functionBool[i]                     = vtkSmartPointer<ImpFuncPB>::New();
				functionBool[i]->R                  = pbShape->R;
				functionBool[i]->r                  = pbShape->r;
				functionBool[i]->k                  = pbShape->k;
				functionBool[i]->clump              = true;
				functionBool[i]->clumpMemberCentreX = clumpMember->state->pos.x() - b->state->pos.x();
				functionBool[i]->clumpMemberCentreY = clumpMember->state->pos.y() - b->state->pos.y();
				functionBool[i]->clumpMemberCentreZ = clumpMember->state->pos.z() - b->state->pos.z();

				//Matrix3r directionCos = clumpMember->state->ori.conjugate().toRotationMatrix();  //FIXME
				Matrix3r rotation = clumpMember->state->ori.toRotationMatrix(); //*pbShape->oriAabb.conjugate();
				for (unsigned int j = 0; j < pbShape->a.size(); j++) {
					Vector3r plane = rotation * Vector3r(pbShape->a[j], pbShape->b[j], pbShape->c[j]);
					Real     d     = pbShape->d[j];
					//Real     d     = -1.0*(plane.x()*(b->state->pos.x()-clumpMember->state->pos.x() ) + plane.y()*(b->state->pos.y()-clumpMember->state->pos.y() ) + plane.z()*(b->state->pos.z()-clumpMember->state->pos.z() ) - pbShape->d[j]);
					functionBool[i]->a.push_back(plane.x());
					functionBool[i]->b.push_back(plane.y());
					functionBool[i]->c.push_back(plane.z());
					functionBool[i]->d.push_back(d);
				}

				const Aabb* aabb = static_cast<Aabb*>(clumpMember->bound.get());

				xmin = std::min(xmin, aabb->min.x() - b->state->pos.x());
				xmax = std::max(xmax, aabb->max.x() - b->state->pos.x());
				ymin = std::min(ymin, aabb->min.y() - b->state->pos.y());
				ymax = std::max(ymax, aabb->max.y() - b->state->pos.y());
				zmin = std::min(zmin, aabb->min.z() - b->state->pos.z());
				zmax = std::max(zmax, aabb->max.z() - b->state->pos.z());

				xmin *= 1.2;
				xmax *= 1.2;
				ymin *= 1.2;
				ymax *= 1.2;
				zmin *= 1.2;
				zmax *= 1.2;

				particleColour = pbShape->color;

				boolFunction->AddFunction(functionBool[i]);
			}
			boolFunction->SetOperationTypeToUnion();
		}
		auto sample = vtkSmartPointer<vtkSampleFunctionReal>::New();
		if (b->isClump() == false && b->isClumpMember() == false) {
			sample->SetImplicitFunction(function);
		} else if (b->isClump() == true) {
			sample->SetImplicitFunction(boolFunction);
			boolFunction->SetOperationTypeToUnion();
		}

		if (twoDimension == true) {
			if (sampleY < 2) {
				ymin = 0.0;
				ymax = 0.0;
			} else if (sampleZ < 2) {
				zmin = 0.0;
				zmax = 0.0;
			}
		}

		sample->SetModelBounds(Vector3r(xmin, ymin, zmin), Vector3r(xmax, ymax, zmax));

		int sampleXno = sampleX;
		int sampleYno = sampleY;
		int sampleZno = sampleZ;
		if (fabs(xmax - xmin) / static_cast<Real>(sampleX) > maxDimension) { sampleXno = static_cast<int>(fabs(xmax - xmin) / maxDimension); }
		if (fabs(ymax - ymin) / static_cast<Real>(sampleY) > maxDimension) { sampleYno = static_cast<int>(fabs(ymax - ymin) / maxDimension); }
		if (fabs(zmax - zmin) / static_cast<Real>(sampleZ) > maxDimension) { sampleZno = static_cast<int>(fabs(zmax - zmin) / maxDimension); }

		if (twoDimension == true) {
			if (sampleY < 2) {
				sampleYno = 1;
			} else if (sampleZ < 2) {
				sampleZno = 1;
			}
		}

		sample->SetSampleDimensions(sampleXno, sampleYno, sampleZno);
		sample->ComputeNormalsOff();
		//sample->Update();
		auto contours = vtkSmartPointer<vtkContourFilter>::New();
		contours->SetInputConnection(sample->GetOutputPort());
		contours->SetNumberOfContours(1);
		contours->SetValue(0, 0.0);
		auto polydata = vtkSmartPointer<vtkPolyData>::New();
		contours->Update();
		polydata->DeepCopy(contours->GetOutput());
		//polydata->Update();

		auto pbColors = vtkSmartPointer<vtkUnsignedCharArray>::New();
		pbColors->SetName("pbColors");
		pbColors->SetNumberOfComponents(3);

		Vector3r color = particleColour;
#if ((VTK_MAJOR_VERSION <= 8) and (VTK_MINOR_VERSION < 2)) or (VTK_MAJOR_VERSION <= 7) // unsigned char for VTK versions < 8.2
		unsigned char c[3];                                                    //c = {color[0],color[1],color[2]};
		c[0] = (unsigned char)(color[0]);
		c[1] = (unsigned char)(color[1]);
		c[2] = (unsigned char)(color[2]);
#else
		float c[3]; //c = {color[0],color[1],color[2]};
		c[0] = (float)(color[0]);
		c[1] = (float)(color[1]);
		c[2] = (float)(color[2]);
#endif

		int nbCells = polydata->GetNumberOfPoints();
		for (int i = 0; i < nbCells; i++) {
			pbColors->INSERT_NEXT_TUPLE(c);
		}
		polydata->GetPointData()->SetScalars(pbColors);
		//polydata->Update();


		Vector3r    centre(b->state->pos[0], b->state->pos[1], b->state->pos[2]);
		Quaternionr orientation = b->state->ori;
		orientation.normalize();
		//AngleAxisr aa(orientation); Vector3r axis = aa.axis(); /* axis.normalize(); */ Real angle = aa.angle()/3.14159*180.0;	Real xAxis = axis[0]; Real yAxis = axis[1]; Real zAxis = axis[2];
		auto transformFilter = vtkSmartPointer<vtkTransformPolyDataFilter>::New();
		transformFilter->SetInputData(polydata);
		auto transform = vtkSmartPointer<vtkTransformReal>::New();

		transformFilter->SetTransform(transform);
		transform->PostMultiply();

		transform->Translate(centre);
		//transform->RotateWXYZ(angle,xAxis, yAxis, zAxis);
		//transformFilter->Update();
		appendFilter->AddInputConnection(transformFilter->GetOutputPort());


		// ################## velocity ####################
		if (REC_VELOCITY == true) {
			vtkIdType pid[1];
			Vector3r  pos(b->state->pos);
			pid[0] = pbPos->InsertNextPoint(pos);
			pbCells->InsertNextCell(1, pid);
			const Vector3r& vel = b->state->vel;
			float           v[3]; //v = { vel[0],vel[1],vel[2] };
			v[0] = float(vel[0]);
			v[1] = float(vel[1]);
			v[2] = float(vel[2]);
			pbLinVelVec->INSERT_NEXT_TUPLE(v);
			pbLinVelLen->InsertNextValue(float(vel.norm()));
			const Vector3r& angVel = b->state->angVel;
			float           av[3]; //av = { angVel[0],angVel[1],angVel[2] };
			av[0] = float(angVel[0]);
			av[1] = float(angVel[1]);
			av[2] = float(angVel[2]);
			pbAngVelVec->INSERT_NEXT_TUPLE(av);
			pbAngVelLen->InsertNextValue(float(angVel.norm()));
			//if(b->state->refPos.squaredNorm()>0.001){ //if initialized
			Vector3r displacement = pos - b->state->refPos;
			float    disp[3];
			disp[0] = float(displacement[0]);
			disp[1] = float(displacement[1]);
			disp[2] = float(displacement[2]);
			pbDisplacementVec->INSERT_NEXT_TUPLE(disp);

			//}
		}
		// ################ velocity ###########################
		polydata->DeleteCells();
		//#if 0
		if (b->isClump() == true) {
			//boolFunction->Delete();
			for (int i = 0; i < ImplicitBoolNo; i++) {
				functionBool[i]->Delete();
			}
			//boolFunction = NULL;
		}
		//#endif
	}

	if (REC_VELOCITY == true) {
		auto pbUg = vtkSmartPointer<vtkUnstructuredGrid>::New();
		pbUg->SetPoints(pbPos);
		pbUg->SetCells(VTK_VERTEX, pbCells);
		pbUg->GetPointData()->AddArray(pbLinVelVec);
		pbUg->GetPointData()->AddArray(pbAngVelVec);
		pbUg->GetPointData()->AddArray(pbLinVelLen);
		pbUg->GetPointData()->AddArray(pbAngVelLen);
		pbUg->GetPointData()->AddArray(pbDisplacementVec);
		auto writerA = vtkSmartPointer<vtkXMLUnstructuredGridWriter>::New();
		writerA->SetDataModeToAscii();
		string fv = fileName + "vel." + std::to_string(scene->iter) + ".vtu";
		writerA->SetFileName(fv.c_str());
		writerA->SetInputData(pbUg);
		writerA->Write();
	}

	//###################### bodyId ###############################
	if (REC_ID == true) {
#if 0
			auto writerA = vtkXMLPolyDataWriter::New();
			writerA->SetDataModeToAscii();
			string fn=fileName+"-Id."+std::to_string(scene->iter)+".vtp";
			writerA->SetFileName(fn.c_str());
			writerA->SetInputConnection(appendFilterID->GetOutputPort());//(extrude->GetOutputPort());
			writerA->Write();

			writerA->Delete();
#endif
		//#if 0
		auto pbUg = vtkSmartPointer<vtkUnstructuredGrid>::New();
		pbUg->SetPoints(pbPosID);
		pbUg->SetCells(VTK_VERTEX, pbIdCells);
		pbUg->GetPointData()->AddArray(blockId);
		auto writerA = vtkSmartPointer<vtkXMLUnstructuredGridWriter>::New();
		writerA->SetDataModeToAscii();
		string fv = fileName + "Id." + std::to_string(scene->iter) + ".vtu";
		writerA->SetFileName(fv.c_str());
		writerA->SetInputData(pbUg);
		writerA->Write();
		//#endif
	}

#if 0
	if(REC_ID== true){
		int counter =0;
		for(const auto & b :  *scene->bodies){
			if (!b) {continue;}
			if (b->isClumpMember()==true) {continue;}
			textArray2[counter]->Delete();
			//txtMapper[count]->Delete();
			extrude[counter]->Delete();
			counter++;
		}
	}

#endif
	// ################## contact point ####################
	if (REC_INTERACTION == true) {
		int count = 0;
		FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
		{
			if (!I->isReal()) { continue; }
			const KnKsPBPhys* phys = YADE_CAST<KnKsPBPhys*>(I->phys.get());
			const ScGeom*     geom = YADE_CAST<ScGeom*>(I->geom.get());
			vtkIdType         pid[1];
			Vector3r          pos(geom->contactPoint);
			pid[0] = pbContactPoint->InsertNextPoint(pos);
			pbCellsContact->InsertNextCell(1, pid);
			//intrBodyPos->InsertNextPoint(geom->contactPoint[0],geom->contactPoint[1],geom->contactPoint[2]);
			// gives _signed_ scalar of normal force, following the convention used in the respective constitutive law
			float fn[3]         = { (float)phys->normalForce[0], (float)phys->normalForce[1], (float)phys->normalForce[2] };
			float fs[3]         = { (float)phys->shearForce[0], (float)phys->shearForce[1], (float)phys->shearForce[2] };
			float totalForce[3] = { fn[0] + fs[0], fn[1] + fs[1], fn[2] + fs[2] };
			float totalStress[3]
			        = { 0.0, 0.0, 0.0 }; //{totalForce[0]/phys->contactArea, totalForce[1]/phys->contactArea, totalForce[2]/phys->contactArea};
			float mobilizedShear = float(phys->mobilizedShear);
			pbTotalForce->INSERT_NEXT_TUPLE(totalForce);
			pbMobilizedShear->InsertNextValue(mobilizedShear);
			pbNormalForce->INSERT_NEXT_TUPLE(fn);
			pbShearForce->INSERT_NEXT_TUPLE(fs);
			pbTotalStress->INSERT_NEXT_TUPLE(totalStress);
			count++;
		}
		if (count > 0) {
			auto pbUgCP = vtkSmartPointer<vtkUnstructuredGrid>::New();
			pbUgCP->SetPoints(pbContactPoint);
			pbUgCP->SetCells(VTK_VERTEX, pbCellsContact);
			pbUgCP->GetPointData()->AddArray(pbNormalForce);
			pbUgCP->GetPointData()->AddArray(pbShearForce);
			pbUgCP->GetPointData()->AddArray(pbTotalForce);
			pbUgCP->GetPointData()->AddArray(pbMobilizedShear);
			pbUgCP->GetPointData()->AddArray(pbTotalStress);
			auto writerB = vtkSmartPointer<vtkXMLUnstructuredGridWriter>::New();
			writerB->SetDataModeToAscii();
			string fcontact = fileName + "contactPoint." + std::to_string(scene->iter) + ".vtu";
			writerB->SetFileName(fcontact.c_str());
			writerB->SetInputData(pbUgCP);
			writerB->Write();
		}
	}


	// ################ contact point ###########################


	auto writer = vtkSmartPointer<vtkXMLPolyDataWriter>::New();
	writer->SetDataModeToAscii();
	string fn = fileName + "-pb." + std::to_string(scene->iter) + ".vtp";
	writer->SetFileName(fn.c_str());
	writer->SetInputConnection(appendFilter->GetOutputPort());
	writer->Write();
}

YADE_PLUGIN((PotentialBlockVTKRecorder));

#endif // YADE_VTK

} // namespace yade

#endif // YADE_POTENTIAL_BLOCKS