File: KnKsLaw.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (454 lines) | stat: -rw-r--r-- 21,364 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#ifdef YADE_POTENTIAL_PARTICLES
#include "KnKsLaw.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Scene.hpp>
//#include <pkg/dem/ScGeom.hpp>
#include <core/Omega.hpp>
#include <pkg/potential/PotentialParticle.hpp>


namespace yade { // Cannot have #include directive inside.


YADE_PLUGIN((Law2_SCG_KnKsPhys_KnKsLaw)(Ip2_FrictMat_FrictMat_KnKsPhys)(KnKsPhys));

/* ***************************************************************************************************************************** */
/** Function which returns the ratio between the number of sliding contacts to the total number at a given time */
Real Law2_SCG_KnKsPhys_KnKsLaw::ratioSlidingContacts()
{
	Real ratio(0);
	int  count(0);
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
	{
		if (!I->isReal()) continue;
		KnKsPhys* phys = dynamic_cast<KnKsPhys*>(I->phys.get()); /* contact physics */
		if (phys->isSliding) { ratio += 1; }
		count++;
	}
	ratio /= count;
	return ratio;
}


/* ***************************************************************************************************************************** */
/** Energy calculations */
Real Law2_SCG_KnKsPhys_KnKsLaw::getPlasticDissipation() const { return (Real)plasticDissipation; }
void Law2_SCG_KnKsPhys_KnKsLaw::initPlasticDissipation(Real initVal)
{
	plasticDissipation.reset();
	plasticDissipation += initVal;
}
Real Law2_SCG_KnKsPhys_KnKsLaw::getnormDampDissip() const { return (Real)normDampDissip; }
Real Law2_SCG_KnKsPhys_KnKsLaw::getshearDampDissip() const { return (Real)shearDampDissip; }

Real Law2_SCG_KnKsPhys_KnKsLaw::elasticEnergy()
{
	Real energy = 0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
	{
		if (!I->isReal()) continue;
		KnKsPhys* phys = dynamic_cast<KnKsPhys*>(I->phys.get()); /* contact physics */
		if (phys) {
			//FIXME: Check whether we need to add the viscous forces to the elastic ones below, since the normalForce is reduced by normalViscous
			//Currently, damping in the shear direction is deactivated, so shearViscous=Vector3r(0,0,0) in all cases.
			/* reduced+viscous */ //energy += 0.5*( (phys->normalForce + phys->normalViscous).squaredNorm()/phys->kn + (phys->shearForce + phys->shearViscous).squaredNorm()/phys->ks);
			/* reduced*/ energy += 0.5 * ((phys->normalForce).squaredNorm() / phys->kn + (phys->shearForce).squaredNorm() / phys->ks);
		}
	}
	return energy;
}


/* ***************************************************************************************************************************** */
/** Law2_SCG_KnKsPhys_KnKsLaw */
CREATE_LOGGER(Law2_SCG_KnKsPhys_KnKsLaw);

bool Law2_SCG_KnKsPhys_KnKsLaw::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact)
{
	const Real&        dt         = scene->dt;
	int                id1        = contact->getId1();
	int                id2        = contact->getId2();
	ScGeom*            geom       = static_cast<ScGeom*>(ig.get());
	KnKsPhys*          phys       = static_cast<KnKsPhys*>(ip.get());
	State*             de1        = Body::byId(id1, scene)->state.get();
	State*             de2        = Body::byId(id2, scene)->state.get();
	Shape*             shape1     = Body::byId(id1, scene)->shape.get();
	Shape*             shape2     = Body::byId(id2, scene)->shape.get();
	PotentialParticle* s1         = static_cast<PotentialParticle*>(shape1);
	PotentialParticle* s2         = static_cast<PotentialParticle*>(shape2);
	Vector3r&          shearForce = phys->shearForce;
	Real               un         = geom->penetrationDepth;
	//TRVAR3(geom->penetrationDepth,de1->se3.position,de2->se3.position);

	/* Need to initialise in python.  In the 1st time step.  All the particles in contact (controlled by initialOverlap) are identified.  The interactions are set to tensile and cohesive (tensionBroken = false and cohesionBroken = false).  If there is no initial tension or cohesion, the contact law is run in a tensionless or cohesionless mode */

	if (un < 0.0) {
		if (neverErase) {
			phys->shearForce    = Vector3r::Zero();
			phys->normalForce   = Vector3r::Zero();
			phys->normalViscous = Vector3r::Zero();
			phys->shearViscous  = Vector3r::Zero();
			geom->normal        = Vector3r::Zero();
			phys->tensionBroken = true;
		} else {
			scene->interactions->requestErase(id1, id2);
			return false;
		}
		return true;
	}

	//Vector3r shearForceBeforeRotate = shearForce;
	//	Vector3r shiftVel = Vector3r(0,0,0); //scene->isPeriodic ? (Vector3r)((scene->cell->velGrad*scene->cell->Hsize)*Vector3r((Real) contact->cellDist[0],(Real) contact->cellDist[1],(Real) contact->cellDist[2])) : Vector3r::Zero();
	geom->rotate(shearForce); //AndGetShear(shearForce,phys->prevNormal,de1,de2,dt,shiftVel,/*avoid ratcheting*/false);
	//Vector3r shearForceAfterRotate = shearForce;
	//Linear elasticity giving "trial" shear force

	Vector3r shiftVel = scene->isPeriodic ? Vector3r(scene->cell->velGrad * scene->cell->hSize * contact->cellDist.cast<Real>()) : Vector3r::Zero();
	Vector3r shift2   = scene->isPeriodic ? Vector3r(scene->cell->hSize * contact->cellDist.cast<Real>()) : Vector3r::Zero();

	const shared_ptr<Body>&b1 = Body::byId(id1, scene), b2 = Body::byId(id2, scene);
	//erase the interaction when aAbB shows separation, otherwise keep it to be able to store previous separating plane for fast detection of separation
	//	Vector3r shift2=scene->cell->hSize*I->cellDist.cast<Real>();
	if (b1->bound->min[0] >= b2->bound->max[0] + shift2[0] || b1->bound->min[1] >= b2->bound->max[1] + shift2[1]
	    || b1->bound->min[2] >= b2->bound->max[2] + shift2[2] || b2->bound->min[0] + shift2[0] >= b1->bound->max[0]
	    || b2->bound->min[1] + shift2[1] >= b1->bound->max[1] || b2->bound->min[2] + shift2[2] >= b1->bound->max[2]) {
		return false;
	}

	//	Vector3r shift2(0,0,0);
	Vector3r incidentV      = geom->getIncidentVel(de1, de2, dt, shift2, shiftVel, /*preventGranularRatcheting*/ false);
	Vector3r incidentVn     = geom->normal.dot(incidentV) * geom->normal; // contact normal velocity
	Vector3r incidentVs     = incidentV - incidentVn;                     // contact shear velocity
	Vector3r shearIncrement = incidentVs * dt;
	phys->shearDir          = shearIncrement;
	phys->shearIncrementForCD += shearIncrement.norm();
	Real du = 0.0;
	//Real debugFn = 0.0;
	//Real u_prev = fabs(phys->u_cumulative);
	if (phys->shearDir.norm() > pow(10, -15)) {
		phys->shearDir.normalize(); // FIXME: Maybe normalise the shearDir regardless of its magnitude?
	}
	Real degradeLength = phys->brittleLength; /*jointLength = 100u_peak */
	/* Elastic and plastic displacement can have negative signs but must be consistent throughout the simulation */
	if (phys->initialShearDir.norm() < pow(10, -11)) {
		phys->initialShearDir = phys->shearDir;
		du                    = shearIncrement.norm();
		if (fabs(phys->mobilizedShear) > 0.99999) {
			phys->u_cumulative += du;
			phys->cumulative_us += du;
		} else {
			phys->u_elastic += du;
		}
	} else {
		du = math::sign(phys->initialShearDir.dot(phys->shearDir)) * shearIncrement.norm(); //check cumulative shear displacement
		if (fabs(phys->mobilizedShear) > 0.99999) {
			if (du > 0.0) { //if negative it means it is unloading
				phys->u_cumulative += du;
				phys->cumulative_us += du;
			} else {
				phys->u_elastic += du;
			}
		} else {
			phys->u_elastic += du;
		}
	}


	/* Original */
	//	if(phys->twoDimension) { //moved this to Ig2_PP_PP_ScGeom.cpp @vsangelidakis
	//		phys->contactArea = phys->unitWidth2D*phys->jointLength;
	//	}
	if (s1->isBoundary == true || s2->isBoundary == true) {
		phys->tensionBroken  = true;
		phys->cohesionBroken = true;
	}
	if (!Talesnick) { //FIXME: Talesnick is not developed for the PPs. Either remove this check or develop it
		un = un - initialOverlapDistance;

		if (phys->jointType == 3) {
			phys->prevSigma = un * phys->kn_i / (1.0 - un / phys->maxClosure);
		} else {
			phys->prevSigma = phys->knVol * un;
		}
		//}
		phys->normalForce = phys->prevSigma * math::max(pow(10, -15), phys->contactArea) * geom->normal;
	}

	phys->kn = phys->knVol * math::max(pow(10, -15), phys->contactArea);

	if ((un < 0.0 && fabs(phys->prevSigma) > phys->tension && phys->tensionBroken == false /* first time tension is broken */)
	    || (un < 0.0 && phys->tensionBroken == true)) {
		if (neverErase) {
			phys->shearForce    = Vector3r::Zero();
			phys->normalForce   = Vector3r::Zero();
			phys->normalViscous = Vector3r::Zero();
			geom->normal        = Vector3r::Zero();
			phys->tensionBroken = true;
		} else {
			return false;
		}
		return true;
	}


	/*ORIGINAL */
	Vector3r c1x = geom->contactPoint - de1->pos;
	Vector3r c2x = geom->contactPoint - de2->pos;
	incidentV    = (de2->vel + de2->angVel.cross(c2x))
	        - (de1->vel
	           + de1->angVel.cross(
	                   c1x)); //FIXME: If we need to recalculate the relative velocity here, we should add shiftVel manually in this line, to handle periodicity @vsangelidakis
	incidentVn     = geom->normal.dot(incidentV) * geom->normal; // contact normal velocity
	incidentVs     = incidentV - incidentVn;                     // contact shear velocity
	shearIncrement = incidentVs
	        * dt; //FIXME: Do we need to recalculate incidentV, incidentVn, incidentVs and shearIncrement here? Need to revise whether to subtract shift2 from c2x @vsangelidakis

	if (!Talesnick) {
		Real Ks = 0.0;
		if (phys->jointType == 3) {
			Ks = phys->ks_i * pow(phys->prevSigma, 0.6);
		} else {
			Ks = phys->ksVol;
		}
		shearForce -= Ks * shearIncrement * math::max(pow(10, -15), phys->contactArea);
	}
	phys->ks = phys->ksVol * math::max(pow(10, -15), phys->contactArea);


	//	const shared_ptr<Body>& b1=Body::byId(id1,scene);
	//	const shared_ptr<Body>& b2=Body::byId(id2,scene);
	Real mbar    = (!b1->isDynamic() && b2->isDynamic())
	           ? de2->mass
	           : ((!b2->isDynamic() && b1->isDynamic())
	                      ? de1->mass
	                      : (de1->mass * de2->mass
                              / (de1->mass + de2->mass))); // get equivalent mass if both bodies are dynamic, if not set it equal to the one of the dynamic body
	Real Cn_crit = 2. * sqrt(mbar * phys->kn);            // Critical damping coefficient (normal direction)
	Real Cs_crit = 2. * sqrt(mbar * phys->ks);            // Critical damping coefficient (shear direction)
	// Note: to compare with the analytical solution you provide cn and cs directly (since here we used a different method to define c_crit)
	Real cn = Cn_crit * phys->viscousDamping; // Damping normal coefficient
	Real cs = Cs_crit * phys->viscousDamping; // Damping tangential coefficient

	// add normal viscous component if damping is included
	//Real maxFnViscous = phys->normalForce.norm();
	phys->normalViscous = cn * incidentVn;
	//if(phys->normalViscous.norm() > maxFnViscous){
	//	phys->normalViscous = phys->normalViscous * maxFnViscous/phys->normalViscous.norm();
	//}

	phys->normalForce -= phys->normalViscous;

	/* Check whether to allow fictitious (unnatural) attractive forces due to viscous damping, near the end of a collision */
	if (not allowViscousAttraction) {
// viscous force should not exceed the value of current normal force, i.e. no attraction force should be permitted if particles are non-adhesive
// *** enforce normal force to zero if no adhesion is permitted ***

// This commented block is the approach used in Hertz-Mindlin. I don't think this worked correctly, since using it gave me some -practically- infinite plastic slips in some individual timesteps, which make me believe that this approach some times can lead to negative (attractive) contact forces. Thus, I used the uncommented code-block below, following this one. @vsangelidakis
#if 0
		Vector3r normTemp = phys->normalForce - phys->normalViscous; // temporary normal force
		if (normTemp.dot(geom->normal) < 0.0){
			phys->normalViscous = phys->normalForce;
		}
#endif
		if (phys->normalForce.dot(geom->normal) < 0) { // if the total normal force is attractive
			phys->normalForce = Vector3r::Zero();  // set normal force to 0
		}

		//FIXME: The same must be done for the shearForce, if viscous damping is to be considered in the shear direction as well in the future
	}

	//Real baseElevation =  geom->contactPoint.z();

	/* Water pressure, heat effect */

	/* strength degradation */
	//	const Real PI = math::atan(1.0)*4;
	Real tan_effective_phi = 0.0;


	if (s1->isBoundary == true || s2->isBoundary == true || phys->jointType == 2) { // clay layer at boundary;
		phys->effective_phi = phys->phi_b;                                      // - 3.25*(1.0-exp(-fabs(phys->cumulative_us)/0.4));
		tan_effective_phi   = tan(phys->effective_phi / 180.0 * Mathr::PI);
	} else if (phys->intactRock == true) {
		phys->effective_phi = phys->phi_r + (phys->phi_b - phys->phi_r) * (exp(-fabs(phys->u_cumulative) / degradeLength));
		tan_effective_phi   = tan(phys->effective_phi / 180.0 * Mathr::PI);
	} else {
		phys->effective_phi = phys->phi_b;
		tan_effective_phi   = tan(phys->effective_phi / 180.0 * Mathr::PI);
	}


	/* shear loss */
	Vector3r dampedShearForce = shearForce;
	Real     maxFs            = 0.0;
	if (un > 0.0 /*compression*/) {
		Real fN = phys->normalForce.norm();
		if (phys->intactRock == true) {
			if (phys->cohesionBroken == true && allowBreakage == true) {
				maxFs = math::max(fN, 0.0) * tan_effective_phi;
			} else {
				Real cohesiveForce = phys->cohesion * math::max(pow(10, -15), phys->contactArea);
				maxFs              = cohesiveForce + math::max(fN, 0.0) * tan_effective_phi;
			}
		} else {
			maxFs = math::max(fN, 0.0) * tan_effective_phi;
		}
	}

	/* ********************************************************************************************************************* */
	/** SHEAR CORRECTION - MOHR-COULOMB CRITERION */
	phys->isSliding = false;

	if (!scene->trackEnergy && !traceEnergy) { //Update force but don't compute energy terms (see below))
		if (shearForce.norm() > maxFs) {
			phys->isSliding = true;
			Real ratio      = maxFs / shearForce.norm();
			shearForce *= ratio;
			if (allowBreakage == true) { phys->cohesionBroken = true; }
			dampedShearForce   = shearForce; /* no damping when it slides */
			phys->shearViscous = Vector3r(0, 0, 0);
		} else {
			phys->shearViscous = Vector3r::Zero(); //cs*incidentVs;  //For now we do not consider viscous damping in the shear direction
			dampedShearForce   = shearForce - phys->shearViscous;
		}
	} else {
		//almost the same with additional Vector3r instatinated for energy tracing,
		//duplicated block to make sure there is no cost for the instanciation of the vector when traceEnergy==false
		if (shearForce.norm() > maxFs) {
			phys->isSliding               = true;
			Real               ratio      = maxFs / shearForce.norm();
			/*const*/ Vector3r trialForce = shearForce; //Store prev force for definition of plastic slip
			shearForce *= ratio;
			if (allowBreakage == true) { phys->cohesionBroken = true; }
			dampedShearForce   = shearForce; /* no damping when it slides */
			phys->shearViscous = Vector3r(0, 0, 0);

			/* Plastic dissipation due to friction */
			/*const*/ Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
			if (traceEnergy) plasticDissipation += dissip;
			else if (dissip > 0)
				scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset at every timestep*/ false);
		} else {
			phys->shearViscous = Vector3r::Zero(); //cs*incidentVs;  //For now we do not consider viscous damping in the shear direction
			dampedShearForce   = shearForce - phys->shearViscous;
		}

		// ------------------------------------------------------------------------------------------------------------------------------
		/* Elastic potential energy*/

		//FIXME: Check whether we need to add the viscous forces to the elastic ones on the elastic potential energy below, since the normalForce is reduced by normalViscous

		/* reduced+viscous */ //scene->energy->add(0.5*( (phys->normalForce + phys->normalViscous).squaredNorm()/phys->kn + (phys->shearForce + phys->shearViscous).squaredNorm()/phys->ks),"elastPotential",elastPotentialIx,/*reset at every timestep*/true);

		/* reduced*/ scene->energy->add(
		        0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks),
		        "elastPotential",
		        elastPotentialIx,
		        /*reset at every timestep*/ true);

		// ------------------------------------------------------------------------------------------------------------------------------
		/* Dissipation due to viscous damping*/
		if (phys->viscousDamping > 0.0) {
			/*const*/ Real normDampDissipValue = phys->normalViscous.dot(incidentVn * dt);
			if (traceEnergy) normDampDissip += normDampDissipValue; // calc dissipation of energy due to normal damping
			else if (normDampDissipValue > 0)
				scene->energy->add(normDampDissipValue, "normDampDissip", normDampDissipIx, /*reset at every timestep*/ false);
			// Here, instead of checking shearViscous.norm(), I should consider a boolean variable "noShearDamp", like in HertzMindlin.cpp
			if (phys->shearViscous.norm() > 0.0) {
				/*const*/ Real shearDampDissipValue = phys->shearViscous.dot(incidentVs * dt);
				if (traceEnergy) {
					shearDampDissip += shearDampDissipValue; // calc dissipation of energy due to shear damping damping
				} else {
					scene->energy->add(shearDampDissipValue, "shearDampDissip", shearDampDissipIx, /*reset at every timestep*/ false);
				}
			}
		}
	}
	if (shearForce.norm() < pow(10, -11)) {
		phys->mobilizedShear = 1.0;
	} else {
		phys->mobilizedShear = shearForce.norm() / maxFs;
	}

	Vector3r force = -phys->normalForce - dampedShearForce;
	if (math::isnan(force.norm())) { //FIXME: Check who necessarry this output is or else comment out this branch
		std::cout << "shearForce: " << shearForce << ", normalForce: " << phys->normalForce << ", viscousNormal: " << phys->normalViscous
		          << ", viscousShear: " << phys->shearViscous << ", geom normal: " << geom->normal << ", effective_phi: " << phys->effective_phi
		          << ", shearIncrement: " << shearIncrement << ", cs: " << cs << ", incidentVs: " << incidentVs << ", id1: " << id1 << ", id2: " << id2
		          << ", phys->mobilizedShear: " << phys->mobilizedShear << endl;
	}
	scene->forces.addForce(id1, force);
	scene->forces.addForce(id2, -force);
	//Vector3r normal = geom->normal;
	scene->forces.addTorque(id1, c1x.cross(force));
	scene->forces.addTorque(id2, -(c2x).cross(force));

	phys->prevNormal = geom->normal;
	return true;
}


/* ***************************************************************************************************************************** */
/** Ip2_FrictMat_FrictMat_KnKsPhys */
CREATE_LOGGER(Ip2_FrictMat_FrictMat_KnKsPhys);

void Ip2_FrictMat_FrictMat_KnKsPhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
	//	const Real PI = 3.14159265358979323846;
	if (interaction->phys) return;

	ScGeom* scg = YADE_CAST<ScGeom*>(interaction->geom.get());
	assert(scg);

	const shared_ptr<FrictMat>& sdec1 = YADE_PTR_CAST<FrictMat>(b1);
	const shared_ptr<FrictMat>& sdec2 = YADE_PTR_CAST<FrictMat>(b2);

	shared_ptr<KnKsPhys> contactPhysics(new KnKsPhys());
	//interaction->interactionPhysics = shared_ptr<MomentPhys>(new MomentPhys());
	//const shared_ptr<MomentPhys>& contactPhysics = YADE_PTR_CAST<MomentPhys>(interaction->interactionPhysics);

	/* From interaction physics */
	Real fa = sdec1->frictionAngle;
	Real fb = sdec2->frictionAngle;

	//	/* calculate stiffness */
	//	Real Kn= Knormal;
	//	Real Ks= Kshear;

	/* Pass values calculated from above to CSPhys */
	contactPhysics->viscousDamping = viscousDamping;
	//	contactPhysics->useOverlapVol = useOverlapVol;
	contactPhysics->knVol = Knormal; //Kn
	contactPhysics->ksVol = Kshear;  //Ks
	contactPhysics->kn_i  = Knormal;
	contactPhysics->ks_i  = Kshear;
	//	contactPhysics->u_peak = u_peak;
	contactPhysics->maxClosure     = maxClosure;
	contactPhysics->cohesionBroken = cohesionBroken;
	contactPhysics->tensionBroken  = tensionBroken;
	//	contactPhysics->unitWidth2D = unitWidth2D;
	contactPhysics->frictionAngle = math::min(fa, fb);
	if (!useFaceProperties) {
		contactPhysics->phi_r = math::min(fa, fb) / Mathr::PI * 180.0;
		contactPhysics->phi_b = contactPhysics->phi_r;
	}
	//	contactPhysics->tanFrictionAngle	= math::tan(contactPhysics->frictionAngle);
	//contactPhysics->initialOrientation1	= Body::byId(interaction->getId1())->state->ori;
	//contactPhysics->initialOrientation2	= Body::byId(interaction->getId2())->state->ori;
	contactPhysics->prevNormal = scg->normal; //This is also done in the Contact Law.  It is not redundant because this class is only called ONCE!
	                                          //	contactPhysics->calJointLength = calJointLength;
	                                          //	contactPhysics->twoDimension = twoDimension;
	contactPhysics->useFaceProperties = useFaceProperties;
	contactPhysics->brittleLength     = brittleLength;
	interaction->phys                 = contactPhysics;
}

/* ***************************************************************************************************************************** */
/** KnKsPhys */
CREATE_LOGGER(KnKsPhys);
/* KnKsPhys */
KnKsPhys::~KnKsPhys() { }

} // namespace yade

#endif // YADE_POTENTIAL_PARTICLES