1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
#ifdef YADE_POTENTIAL_BLOCKS
#include "KnKsPBLaw.hpp"
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/dem/ScGeom.hpp>
#include <pkg/potential/PotentialBlock.hpp>
#include "KnKsPBLaw.hpp"
#include <core/Scene.hpp>
//#include <pkg/dem/ScGeom.hpp>
#include <core/Omega.hpp>
#include <pkg/potential/PotentialBlock.hpp>
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((Law2_SCG_KnKsPBPhys_KnKsPBLaw)(Ip2_FrictMat_FrictMat_KnKsPBPhys)(KnKsPBPhys));
/* ***************************************************************************************************************************** */
/** Function which returns the ratio between the number of sliding contacts to the total number at a given time */
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::ratioSlidingContacts()
{
Real ratio(0);
int count(0);
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
KnKsPBPhys* phys = dynamic_cast<KnKsPBPhys*>(I->phys.get()); /* contact physics */
if (phys->isSliding) { ratio += 1; }
count++;
}
ratio /= count;
return ratio;
}
/* ***************************************************************************************************************************** */
/** Energy calculations */
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::getPlasticDissipation() const { return (Real)plasticDissipation; }
void Law2_SCG_KnKsPBPhys_KnKsPBLaw::initPlasticDissipation(Real initVal)
{
plasticDissipation.reset();
plasticDissipation += initVal;
}
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::getnormDampDissip() const { return (Real)normDampDissip; }
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::getshearDampDissip() const { return (Real)shearDampDissip; }
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::elasticEnergy()
{
Real energy = 0;
FOREACH(const shared_ptr<Interaction>& I, *scene->interactions)
{
if (!I->isReal()) continue;
KnKsPBPhys* phys = dynamic_cast<KnKsPBPhys*>(I->phys.get()); /* contact physics */
if (phys) {
//FIXME: Check whether we need to add the viscous forces to the elastic ones below, since the normalForce is reduced by normalViscous
//Currently, damping in the shear direction is deactivated, so shearViscous=Vector3r(0,0,0) in all cases.
/* reduced+viscous */ //energy += 0.5*( (phys->normalForce + phys->normalViscous).squaredNorm()/phys->kn + (phys->shearForce + phys->shearViscous).squaredNorm()/phys->ks);
/* reduced*/ energy += 0.5 * ((phys->normalForce).squaredNorm() / phys->kn + (phys->shearForce).squaredNorm() / phys->ks);
}
}
return energy;
}
/* ***************************************************************************************************************************** */
/** Law2_SCG_KnKsPBPhys_KnKsPBLaw */
CREATE_LOGGER(Law2_SCG_KnKsPBPhys_KnKsPBLaw);
bool Law2_SCG_KnKsPBPhys_KnKsPBLaw::go(shared_ptr<IGeom>& ig /* contact geometry */, shared_ptr<IPhys>& ip /* contact physics */, Interaction* contact)
{
TIMING_DELTAS_START();
const Real& dt = scene->dt; /* size of time step */
int id1 = contact->getId1(); /* id of Body1 */
int id2 = contact->getId2(); /* id of Body2 */
ScGeom* geom = static_cast<ScGeom*>(ig.get()); /* contact geometry */
KnKsPBPhys* phys = static_cast<KnKsPBPhys*>(ip.get()); /* contact physics */
State* de1 = Body::byId(id1, scene)->state.get(); /* pointer to Body1 */
State* de2 = Body::byId(id2, scene)->state.get(); /* pointer to Body2 */
Shape* shape1 = Body::byId(id1, scene)->shape.get(); /* pointer to Shape1 */
Shape* shape2 = Body::byId(id2, scene)->shape.get(); /* pointer to Shape2 */
PotentialBlock* s1 = static_cast<PotentialBlock*>(shape1);
PotentialBlock* s2 = static_cast<PotentialBlock*>(shape2);
Vector3r& shearForce = phys->shearForce; /* shear force at previous timestep */
Real un = geom->penetrationDepth; /* overlap distance */
//TRVAR3(geom->penetrationDepth,de1->se3.position,de2->se3.position);
TIMING_DELTAS_CHECKPOINT("Setup");
/* ********************************************************************************************************************* */
/** ERASE CONTACT OR RESET PARAMETERS IF NO OVERLAP */
if (un < 0.0) {
if (neverErase) {
phys->normalForce = Vector3r::Zero();
phys->shearForce = Vector3r::Zero();
phys->kn = 0;
phys->ks = 0;
phys->normalViscous = Vector3r::Zero();
phys->shearViscous = Vector3r::Zero();
geom->normal = Vector3r::Zero();
phys->tensionBroken = true;
return true;
} else {
scene->interactions->requestErase(id1, id2);
return false;
}
}
/* ********************************************************************************************************************* */
// Vector3r shiftVel = Vector3r::Zero(); //scene->isPeriodic ? (Vector3r)((scene->cell->velGrad*scene->cell->Hsize)*Vector3r((Real) contact->cellDist[0],(Real) contact->cellDist[1],(Real) contact->cellDist[2])) : Vector3r::Zero();
geom->rotateNonSpherical(shearForce); /*rotate shear force according to new contact plane (normal) */
Vector3r oriShear = shearForce;
//Vector3r oriNormalF = phys->normalForce;
/** CALCULATE SHEAR INCREMENT */
Vector3r shiftVel = scene->isPeriodic ? Vector3r(scene->cell->velGrad * scene->cell->hSize * contact->cellDist.cast<Real>()) : Vector3r::Zero();
Vector3r shift2 = scene->isPeriodic ? Vector3r(scene->cell->hSize * contact->cellDist.cast<Real>()) : Vector3r::Zero();
const shared_ptr<Body>&b1 = Body::byId(id1, scene), b2 = Body::byId(id2, scene);
//erase the interaction when aAbB shows separation, otherwise keep it to be able to store previous separating plane for fast detection of separation
// Vector3r shift2=scene->cell->hSize*I->cellDist.cast<Real>();
if (b1->bound->min[0] >= b2->bound->max[0] + shift2[0] || b1->bound->min[1] >= b2->bound->max[1] + shift2[1]
|| b1->bound->min[2] >= b2->bound->max[2] + shift2[2] || b2->bound->min[0] + shift2[0] >= b1->bound->max[0]
|| b2->bound->min[1] + shift2[1] >= b1->bound->max[1] || b2->bound->min[2] + shift2[2] >= b1->bound->max[2]) {
return false;
}
// Vector3r shift2(0,0,0);
Vector3r incidentV = geom->getIncidentVel(de1, de2, dt, shift2, shiftVel, /*preventGranularRatcheting*/ false); /* get relative velocity */
Vector3r incidentVn = geom->normal.dot(incidentV) * geom->normal; /* get normal relative velocity */
Vector3r incidentVs = incidentV - incidentVn; /* get shear relative velocity */
Vector3r shearIncrement = incidentVs * dt; /* calculate shear increment from shear velocity */
Real du = shearIncrement.norm(); /* magnitude of shear increment */
phys->shearDir = shearIncrement; /* get shear direction */
if (phys->shearDir.norm() > pow(10, -15)) {
phys->shearDir.normalize(); // FIXME: Maybe normalise the shearDir regardless of its magnitude?
}
bool oneIsBoundary = (s1->isBoundary == true || s2->isBoundary == true); //Whether one of the particles is part of the boundary
bool oneIsLining = (s1->isLining == true || s2->isLining == true); //Whether one of the particles is part of a Tunnel lining (see RockLiningGlobal)
// if(phys->twoDimension) { phys->contactArea = phys->unitWidth2D*phys->jointLength;} /* contact area in 2D */ //moved this to Ig2_PP_PP_ScGeom.cpp @vsangelidakis
if (oneIsBoundary) {
phys->tensionBroken = true;
phys->cohesionBroken = true;
} /* no cohesion and tension if the contact is a boundary*/
// if( s1->isBoundary == true || s2->isBoundary==true ){ phys->tensionBroken = true; phys->cohesionBroken = true; }
//TODO: In many instances, we consider a minimum value for the contactArea, equal to: pow(10,-15). This is meant to cover the cases where the contactArea is so small that the contact volume is degenerated to nearly a point. I think we should let the user decide the size of this minimum contactArea, since it depends on the scale of the problem and the unit system they consider @vsangelidakis
TIMING_DELTAS_CHECKPOINT("After shearIncrement");
/* ********************************************************************************************************************* */
/** NORMAL CONTACT FORCE */
Real normalStiffness = phys->knVol; /* use default stiffness values */
if (Talesnick) {
//phys->prevSigma = phys->knVol*math::max(un,(Real) 0.0);
//phys->normalForce=phys->prevSigma*phys->normal*math::max(pow(10,-15),phys->contactArea);
//#if 0
//#if 0
/* linear */
//un = un - 8.0*pow(10.0,-5);
Real A = 0.5 * 4.0 * pow(10.0, 9); //*pow(10.0,9);
Real B = 0.5 * 7.4 * pow(10.0, 4);
Real expTerm = B * (math::max(un, 0.0)) + math::log(A);
phys->prevSigma = math::max(((math::exp(expTerm) - A)) / B, 0.0);
Real Fn = phys->prevSigma * math::max(pow(10, -15), phys->contactArea);
phys->normalForce = Fn * geom->normal;
phys->knVol = (A + B * phys->prevSigma);
//#endif
#if 0
/* power */phys->h
Real Fn = pow(525000*math::max(un,(Real) 0),1.0/0.25)*math::max(pow(10,-11),phys->contactArea);
phys->knVol = 2.1*pow(10.0,6)*pow(phys->prevSigma,0.75);
#endif
#if 0
Real A = 7.0*pow(10.0,13);//*pow(10.0,9);
Real B = 1.0*pow(10.0,6);
phys->prevSigma = (A*un)*un - B*un;
Real Fn = phys->prevSigma*math::max(pow(10,-15),phys->contactArea);
phys->normalForce = Fn*geom->normal;
phys->knVol = A*2.0*un - pow(10,6);
#endif
#if 0
//power
Real A = 2.1*pow(10.0,6); //4.2*pow(10.0,5);
Real B = 0.75; //0.88;
phys->prevSigma = pow( (1.0-B)*A*math::max(un, 0.0),1.0/(1.0-B) );
Real Fn = phys->prevSigma*math::max(pow(10,-14),phys->contactArea);
phys->knVol = A*pow(phys->prevSigma,B); //1.0/(1.0-B)*pow( (1.0-B)*A,1.0/(1.0-B) ) * pow(math::max(un,0.0), B/(1.0-B)); //A*pow(phys->prevSigma,B); //
phys->normalForce = Fn*geom->normal;
#endif
if (phys->prevSigma > pow(10.0, 15) /* || Fn < 0.0 */) {
std::cout << "prevSigma: " << phys->prevSigma /* <<", Fn: "<<Fn*/ << endl;
while (1) { }
}
phys->kn = phys->knVol * math::max(pow(10, -15), phys->contactArea);
} else {
if (!oneIsBoundary) {
if (!oneIsLining) {
un = un - initialOverlapDistance; /*GENERAL CASE: initialOverlapDistance is the offset distance for tension overlap, i.e. negative overlap*/
if (phys->tensionBroken == true) {
//if(allowBreakage == false && un > 0.0){phys->tensionBroken = false;}
phys->prevSigma = normalStiffness * math::max(un, 0.0);
} else {
phys->prevSigma = normalStiffness * un;
}
} else {
if (s1->isLining == true) {
normalStiffness = s1->liningStiffness;
un = un - s1->liningTensionGap;
phys->prevSigma = normalStiffness * un;
} else if (s2->isLining == true) {
normalStiffness = s2->liningStiffness;
un = un - s2->liningTensionGap;
phys->prevSigma = normalStiffness * un;
}
}
} else {
normalStiffness = phys->kn_i; /* use special stiffness for boundaries */
phys->prevSigma = normalStiffness * un;
}
phys->normalForce = phys->prevSigma * math::max(pow(10, -15), phys->contactArea) * geom->normal;
phys->kn = normalStiffness * math::max(pow(10, -15), phys->contactArea);
// I compacted the existing commented code block below into the statement above, in order to minimise the number of "if" statements. I keep the old code for now, just in case a bug occurs @vsangelidakis
#if 0
if(s1->isBoundary == true || s2->isBoundary==true/*|| s1->isEastBoundary == true || s2->isEastBoundary==true*/){
normalStiffness = phys->kn_i; /* use special stiffness for boundaries */
phys->prevSigma = normalStiffness*un;
phys->normalForce = phys->prevSigma*math::max(pow(10,-15),phys->contactArea)*geom->normal; //math::max(pow(10,-15),phys->contactArea)*
phys->kn = normalStiffness*math::max(pow(10,-15),phys->contactArea);
}else{
if(s1->isLining==true){normalStiffness=s1->liningStiffness; un = un-s1->liningTensionGap; phys->prevSigma = normalStiffness*un;}
else if(s2->isLining==true){normalStiffness=s2->liningStiffness; un = un-s2->liningTensionGap; phys->prevSigma = normalStiffness*un;}
else{
un = un-initialOverlapDistance;
if(phys->tensionBroken == true){
//if(allowBreakage == false && un > 0.0){phys->tensionBroken = false;}
phys->prevSigma = normalStiffness*math::max(un,0.0);
}else{
phys->prevSigma = normalStiffness*un;
}
} /* GENERAL CASE - initialOverlapDistance is the offset distance for tension overlap, i.e. negative overlap */
phys->normalForce = phys->prevSigma*math::max(pow(10,-15),phys->contactArea)*geom->normal;
phys->kn = normalStiffness*math::max(pow(10,-15),phys->contactArea);
}
#endif
}
/* ********************************************************************************************************************* */
/** ERASE CONTACT IF TENSION IS BROKEN */
if ((un < 0.0 && fabs(phys->prevSigma) > phys->tension && phys->tensionBroken == false /* first time tension is broken */)
|| (un < 0.0 && phys->tensionBroken == true)) {
if (neverErase) {
phys->normalForce = Vector3r::Zero();
phys->shearForce = Vector3r::Zero();
phys->kn = 0;
phys->ks = 0;
phys->normalViscous = Vector3r::Zero();
phys->shearViscous = Vector3r::Zero();
//geom->normal = Vector3r::Zero(); //FIXME: Do we need to uncomment this?
phys->tensionBroken = true;
return true;
} else {
//FIXME: Do we need to delete the interaction using: scene->interactions->requestErase(id1, id2) here, like above? @vsangelidakis
return false;
}
}
TIMING_DELTAS_CHECKPOINT("After normalForce");
/* ********************************************************************************************************************* */
/** SHEAR CONTACT FORCE */
Real Ks = 0.0;
if (Talesnick) {
//shearForce -= phys->ksVol*shearIncrement*math::max(pow(10,-15),phys->contactArea);
#if 0
/* TALESNICK */
/* linear law */
Real shearStiffness = 1.0*pow(10.0,8) + 9.7*pow(10.0,4)*phys->prevSigma; /* current sigmaN from above */
/* power law */
//Real shearStiffness = 0.95*pow(10.0,6)*pow(phys->prevSigma,0.7); /* current sigmaN from above */
//Real shearStiffness = 3.3*pow(10.0,5)*pow(phys->prevSigma,0.88); /* current sigmaN from above */
phys->ksVol = shearStiffness;
Ks = shearStiffness;
shearForce -= shearStiffness*shearIncrement*math::max(pow(10,-15),phys->contactArea);
#endif
//#if 0
phys->ksVol = 1.9 * pow(10.0, 6) * pow(phys->prevSigma, 0.7);
shearForce -= phys->ksVol * shearIncrement * math::max(pow(10, -15), phys->contactArea);
//#endif
phys->ks = phys->ksVol * math::max(pow(10, -15), phys->contactArea);
} else {
if (!oneIsBoundary) {
if (!oneIsLining) {
Ks = phys->ksVol; /* use default values */
} else {
if (s1->isLining == true) {
Ks = s1->liningStiffness;
} else if (s2->isLining == true) {
Ks = s2->liningStiffness;
}
}
} else {
Ks = phys->ks_i; /* use special stiffness for boundaries */
}
shearForce -= Ks * shearIncrement * math::max(pow(10, -15), phys->contactArea);
phys->ks = Ks * math::max(pow(10, -15), phys->contactArea);
// I compacted the existing commented code block below into the statement above, in order to minimise the number of "if" statements. I keep the old code for now, just in case a bug occurs @vsangelidakis
#if 0
Ks = phys->ksVol; /* use default values */
if(s1->isBoundary == true || s2->isBoundary==true/* || s1->isEastBoundary == true || s2->isEastBoundary==true*/){
Ks = phys->ks_i;
shearForce -= Ks*shearIncrement*math::max(pow(10,-15),phys->contactArea);
phys->ks = Ks*math::max(pow(10,-15),phys->contactArea);
}else{
if(s1->isLining==true){Ks=s1->liningStiffness;}
if(s2->isLining==true){Ks=s2->liningStiffness;}
shearForce -= Ks*shearIncrement*math::max(pow(10,-15),phys->contactArea); /* GENERAL CASE */
phys->ks = Ks*math::max(pow(10,-15),phys->contactArea);
}
#endif
}
TIMING_DELTAS_CHECKPOINT("After shearForce");
/* ********************************************************************************************************************* */
/** CONTACT DAMPING */
Real mass1 = de1->mass, mass2 = de2->mass;
// const shared_ptr<Body>& b1=Body::byId(id1,scene);
// const shared_ptr<Body>& b2=Body::byId(id2,scene);
if (b1->isClumpMember() == true) {
State* stateClump = Body::byId(b1->clumpId, scene)->state.get();
mass1 = stateClump->mass;
}
if (b2->isClumpMember() == true) {
State* stateClump = Body::byId(b2->clumpId, scene)->state.get();
mass2 = stateClump->mass;
}
// if (b1->isClumpMember() == false && b2->isClumpMember() == false){
// mass1 = de1->mass;
// mass2 = de2->mass;
// }
Real mbar = (!b1->isDynamic() && b2->isDynamic())
? mass2
: ((!b2->isDynamic() && b1->isDynamic()) ? mass1 : (mass1 * mass2 / (mass1 + mass2))); // get equivalent mass
Real Cn_crit = 2. * sqrt(mbar * phys->kn); // Critical damping coefficient (normal direction) 2.*sqrt(mbar*math::min(phys->kn,phys->ks))
Real Cs_crit = Cn_crit; // Critical damping coefficient (shear direction)
// Real Cs_crit = 2.*sqrt(mbar*phys->ks); //TODO: Calculation of Cs_crit to be revisited, if viscous damping is to be considered in the shear direction @vsangelidakis
// Note: to compare with the analytical solution you provide cn and cs directly (since here we used a different method to define c_crit)
Real cn = Cn_crit * phys->viscousDamping; // Damping normal coefficient
Real cs = Cs_crit * phys->viscousDamping; // Damping tangential coefficient
/* Add normal viscous component if damping is included */
phys->normalViscous = cn * incidentVn;
phys->normalForce -= phys->normalViscous;
/* Check whether to allow fictitious (unnatural) attractive forces due to viscous damping, near the end of a collision */
if (not allowViscousAttraction) {
// viscous force should not exceed the value of current normal force, i.e. no attraction force should be permitted if particles are non-adhesive
// *** enforce normal force to zero if no adhesion is permitted ***
// This commented block is the approach used in Hertz-Mindlin. I don't think this worked correctly, since using it gave me some -practically- infinite plastic slips in some individual timesteps, which make me believe that this approach some times can lead to negative (attractive) contact forces. Thus, I used the uncommented code-block below, following this one. @vsangelidakis
#if 0
Vector3r normTemp = phys->normalForce - phys->normalViscous; // temporary normal force
if (normTemp.dot(geom->normal) < 0.0){
phys->normalViscous = phys->normalForce;
}
#endif
if (phys->normalForce.dot(geom->normal) < 0) { // if the total normal force is attractive
phys->normalForce = Vector3r::Zero(); // set normal force to 0
}
//FIXME: The same must be done for the shearForce, if viscous damping is to be considered in the shear direction as well in the future
}
TIMING_DELTAS_CHECKPOINT("After viscous coeffs");
/* ********************************************************************************************************************* */
/** FRICTION LIMIT */
// const Real PI = math::atan(1.0)*4;
Real tan_effective_phi = 0.0;
bool useIterativeMethod = false;
if (Talesnick) {
phys->cumulative_us = phys->cumulative_us + fabs(du);
phys->effective_phi = phys->phi_b;
tan_effective_phi = tan(phys->effective_phi / 180.0 * Mathr::PI);
#if 0
Real upeak = 2.0*pow(10.0,-6)*pow(phys->prevSigma,0.213);
Real delta_miu = phys->ksVol/phys->prevSigma*(1.0 - math::min(fabs(phys->cumulative_us)/upeak, 1.0) ); if (isnan(delta_miu)){delta_miu = phys->ksVol/phys->prevSigma;}
if (shearForce.norm() > phys->normalForce.norm()*phys->effective_phi){
phys->effective_phi = phys->effective_phi + delta_miu*fabs(du);
}
tan_effective_phi = phys->effective_phi;
#endif
} else {
phys->effective_phi = phys->phi_b;
/* if(oneIsBoundary || phys->jointType==2 ){ // clay layer at boundary;
//if (allowBreakage == true) {useIterativeMethod = true;}else{
useIterativeMethod = false;
//phys->effective_phi = phys->phi_b; // - 3.25*(1.0-exp(-fabs(phys->cumulative_us)/0.4));
}
else*/
if (oneIsLining) {
if (s1->isLining == true) {
phys->effective_phi = s1->liningFriction;
} else if (s2->isLining == true) {
phys->effective_phi = s2->liningFriction;
}
}
tan_effective_phi = tan(phys->effective_phi / 180.0 * Mathr::PI);
// I compacted the existing commented code block below into the statement above, in order to minimise the number of "if" statements. I keep the old code for now, just in case a bug occurs. Also, commented the "isBoundary" branch for now, since nothing was changing inside it. @vsangelidakis
#if 0
if(s1->isBoundary==true || s2->isBoundary == true || phys->jointType==2 ){ // clay layer at boundary;
//if (allowBreakage == true) {useIterativeMethod = true;}else{
useIterativeMethod = false;
phys->effective_phi = phys->phi_b; // - 3.25*(1.0-exp(-fabs(phys->cumulative_us)/0.4));
tan_effective_phi = tan(phys->effective_phi/180.0*Mathr::PI);
//}
}else if( s1->isLining==true ){ phys->effective_phi = s1->liningFriction; tan_effective_phi = tan(phys->effective_phi/180.0*Mathr::PI);
}else if( s2->isLining==true ){ phys->effective_phi = s2->liningFriction; tan_effective_phi = tan(phys->effective_phi/180.0*Mathr::PI);
}else{ // This last branch is the most common one to be invoked for 3D contacts, so we should see how to (carefully) move it as the first branch, to improve efficiency
phys->effective_phi = phys->phi_b;
//if(s1->isEastBoundary==true || s2->isEastBoundary==true){phys->effective_phi = 0.0;}
tan_effective_phi = tan(phys->effective_phi/180.0*Mathr::PI);
}
#endif
}
/* ********************************************************************************************************************* */
/** SHEAR CORRECTION - MOHR-COULOMB CRITERION */
Vector3r dampedShearForce = shearForce;
Real maxFs = 0.0; //Real maxShear = 0.0;
if (useIterativeMethod == false) {
Real fN = phys->normalForce.dot(geom->normal); //This calculation takes into account the sign of fN
// Real fN = phys->normalForce.norm(); //This alternative calculation does not check whether fN is compressive or tensile (attractive)
// if (fN<=0) { std::cout<<"Negative fN: "<<fN<<endl; } //This is here for debugging purposes, to check when fN can be negative
// else { std::cout<<"Positive fN: "<<fN<<endl; }
if (math::isnan(fN)) { fN = 0.0; } //FIXME: Maybe output a warning if fN is negative (i.e. attractive) and/or include an assertion
//fN should contribute to friction only when it is compressive. If allowViscousAttraction=True, fN can be tensile, and friction is not present
if (phys->intactRock == true) {
if (allowBreakage == false || phys->cohesionBroken == false) {
Real cohesiveForce = phys->cohesion * math::max(pow(10, -15), phys->contactArea);
maxFs = cohesiveForce + fN * tan_effective_phi;
} else {
maxFs = math::max(fN, 0.0) * tan_effective_phi;
}
} else {
maxFs = math::max(fN, 0.0) * tan_effective_phi;
}
phys->isSliding = false;
if (!scene->trackEnergy && !traceEnergy) { //Update force but don't compute energy terms (see below))
// PFC3d SlipModel, is using friction angle. CoulombCriterion
if (shearForce.norm() > maxFs) {
phys->isSliding = true;
Real ratio = maxFs / shearForce.norm(); //Define the plastic work input and increment the total plastic energy dissipated
shearForce *= ratio;
shearForce = shearForce; //FIXME: Check whether this line is necessary
if (allowBreakage == true) { phys->cohesionBroken = true; }
dampedShearForce = shearForce; /* no damping when it slides */
phys->shearForce = shearForce; //FIXME: Stop storing the shearForce in two places: dampedShearForce and phys->shearForce
} else {
phys->shearViscous = Vector3r::Zero(); //cs*incidentVs; //For now we do not consider viscous damping in the shear direction
dampedShearForce = shearForce - phys->shearViscous;
phys->shearForce = shearForce
- phys->shearViscous; //FIXME: Stop storing the shearForce in two places: dampedShearForce and phys->shearForce
}
} else {
//almost the same with additional Vector3r instatinated for energy tracing,
//duplicated block to make sure there is no cost for the instanciation of the vector when traceEnergy==false
if (shearForce.norm() > maxFs) {
phys->isSliding = true;
Real ratio = maxFs / shearForce.norm(); //Define the plastic work input and increment the total plastic energy dissipated
/*const*/ Vector3r trialForce = shearForce; //Store prev force for definition of plastic slip
shearForce *= ratio;
shearForce = shearForce; //FIXME: Check whether this line is necessary
if (allowBreakage == true) { phys->cohesionBroken = true; }
dampedShearForce = shearForce; /* no damping when it slides */
phys->shearForce = shearForce; //FIXME: Stop storing the shearForce in two places: dampedShearForce and phys->shearForce
/* Plastic dissipation due to friction */
/*const*/ Real dissip = ((1 / phys->ks) * (trialForce - shearForce)) /*plastic disp*/.dot(shearForce) /*active force*/;
if (traceEnergy) plasticDissipation += dissip;
else if (dissip > 0)
scene->energy->add(dissip, "plastDissip", plastDissipIx, /*reset at every timestep*/ false);
} else {
phys->shearViscous = Vector3r::Zero(); //cs*incidentVs; //For now we do not consider viscous damping in the shear direction
dampedShearForce = shearForce - phys->shearViscous;
phys->shearForce = shearForce
- phys->shearViscous; //FIXME: Stop storing the shearForce in two places: dampedShearForce and phys->shearForce
}
// ------------------------------------------------------------------------------------------------------------------------------
/* Elastic potential energy*/
//FIXME: Check whether we need to add the viscous forces to the elastic ones on the elastic potential energy below, since the normalForce is reduced by normalViscous
/* reduced+viscous */ //scene->energy->add(0.5*( (phys->normalForce + phys->normalViscous).squaredNorm()/phys->kn + (phys->shearForce + phys->shearViscous).squaredNorm()/phys->ks),"elastPotential",elastPotentialIx,/*reset at every timestep*/true);
/* reduced*/ scene->energy->add(
0.5 * (phys->normalForce.squaredNorm() / phys->kn + phys->shearForce.squaredNorm() / phys->ks),
"elastPotential",
elastPotentialIx,
/*reset at every timestep*/ true);
// ------------------------------------------------------------------------------------------------------------------------------
/* Dissipation due to viscous damping*/
if (phys->viscousDamping > 0.0) {
/*const*/ Real normDampDissipValue = phys->normalViscous.dot(incidentVn * dt);
if (traceEnergy) normDampDissip += normDampDissipValue; // calc dissipation of energy due to normal damping
else if (normDampDissipValue > 0)
scene->energy->add(normDampDissipValue, "normDampDissip", normDampDissipIx, /*reset at every timestep*/ false);
// Here, instead of checking shearViscous.norm(), I should consider a boolean variable "noShearDamp", like in HertzMindlin.cpp
if (phys->shearViscous.norm() > 0.0) {
/*const*/ Real shearDampDissipValue = phys->shearViscous.dot(incidentVs * dt);
if (traceEnergy) {
shearDampDissip += shearDampDissipValue; // calc dissipation of energy due to shear damping damping
} else {
scene->energy->add(
shearDampDissipValue, "shearDampDissip", shearDampDissipIx, /*reset at every timestep*/ false);
}
}
}
}
} else { //FIXME: The traceEnergy feature is yet to be implemented for this branch, where useIterativeMethod=True
Vector3r Fs_prev = oriShear; /* shear force before stress update */
Vector3r delta_us = -shearIncrement; /* increment of shear displacement */
//Real beta = 0.0; /* rate of plastic multiplier */
Real beta_prev = phys->cumulative_us; /* accumulated plastic mutliplier before stress update */
Real fN = phys->normalForce.norm(); //FIXME: We calculate this differently in the above branch. Check whether they lead to the same value
if (math::isnan(fN)) { fN = 0.0; }
Real phi = phys->phi_b;
Vector3r newFs(0, 0, 0);
Real plasticDisp = 0.0;
if (!Talesnick) {
plasticDisp = stressUpdateVec(ip /*contact physics */, Fs_prev, delta_us, beta_prev, phys->ks /*shear stiffness */, fN, phi, newFs);
} else {
Real upeak = 2.0 * pow(10.0, -6) * pow(phys->prevSigma, 0.213);
plasticDisp = stressUpdateVecTalesnick(
ip /*contact physics */, Fs_prev, delta_us, beta_prev, phys->ks /*shear stiffness */, fN, phi, newFs, upeak);
}
shearForce = newFs;
dampedShearForce = newFs;
phys->cumulative_us = phys->cumulative_us + plasticDisp; //beta*shearIncrement; /* add plastic displacements */
Real miu_peak = tan(phys->phi_b / 180.0 * Mathr::PI);
Real delta_miu = 0.059266;
tan_effective_phi = miu_peak - delta_miu * (1.0 - exp(-phys->cumulative_us / 0.35));
phys->effective_phi = atan(tan_effective_phi) / Mathr::PI * 180.0;
maxFs = fN * tan_effective_phi;
//if(shearForce.norm()/maxFs > 1.02) {std::cout<<"shearForce.norm()/maxFs: "<<shearForce.norm()/maxFs<<", shearForce-maxFs:"<<shearForce.norm()-maxFs<<", maxFs: "<<maxFs<<", shearForce: "<<shearForce<<endl;}
if (plasticDisp < pow(10, -15)) { /*elastic*/
phys->shearViscous = Vector3r::Zero(); //cs*incidentVs; //
dampedShearForce = shearForce - phys->shearViscous;
}
}
TIMING_DELTAS_CHECKPOINT("After Mohr-Coulomb");
/* ********************************************************************************************************************* */
/** APPLY FORCES */
Vector3r c1x = geom->contactPoint - de1->pos;
Vector3r c2x = geom->contactPoint - de2->pos;
Vector3r force = -phys->normalForce - dampedShearForce;
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
//Vector3r normal = geom->normal;
scene->forces.addTorque(id1, c1x.cross(force));
scene->forces.addTorque(id2, -(c2x).cross(force));
phys->prevNormal = geom->normal;
/* ********************************************************************************************************************* */
/** RECORDING VALUES AND DEBUGGING */
if (shearForce.norm() < pow(10, -11)) {
phys->mobilizedShear = 1.0;
} else {
phys->mobilizedShear = shearForce.norm() / maxFs;
}
if (s1->isLining == true) {
s1->liningTotalPressure = 1.0 / s1->liningLength * force;
s1->liningNormalPressure = -1.0 / s1->liningLength * phys->normalForce;
} else if (s2->isLining == true) {
s2->liningTotalPressure = -1.0 / s2->liningLength * force;
s2->liningNormalPressure = 1.0 / s2->liningLength * phys->normalForce;
}
if (math::isnan(force.norm())) {
std::cout << "shearForce: " << shearForce << ", normalForce: " << phys->normalForce << ", viscousNormal: " << phys->normalViscous
<< ", viscousShear: " << phys->shearViscous << /*", normal: "<<phys->normal<< */ ", geom normal: " << geom->normal
<< ", effective_phi: " << phys->effective_phi << ", shearIncrement: " << shearIncrement << ", cs: " << cs
<< ", incidentVs: " << incidentVs << ", id1: " << id1 << ", id2: " << id2 << ", debugShear: " << oriShear
<< /* " cyF: "<<cyF<<", cyR: "<<cyR<< */ ", phys->mobilizedShear: " << phys->mobilizedShear << endl;
}
return true;
}
/* ***************************************************************************************************************************** */
/** FUNCTION RETURNS PLASTIC MULTIPLIER RATE (beta) AND CURRENT SHEAR FORCE */
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::stressUpdateVec(
shared_ptr<IPhys>& /*ip*/,
const Vector3r Fs_prev /*prev shear force*/,
const Vector3r du /*shear displacement increment*/,
const Real beta_prev /* prev plastic displacements*/,
const Real Ks /*shear stiffness */,
const Real fN /*normal force*/,
const Real phi_b /*peak friction angle*/,
Vector3r& newFs /*new shear force*/)
{
newFs = Vector3r::Zero();
Real maxFs = 0.0;
// const Real PI = math::atan(1.0)*4;
// Define beta_prev as the cumulated plastic multiplier
// Define beta as the rate of plastic multiplier at the current time step
// Fs_new = Fs_prev + dF
// dF = Ks*du_elastic = Ks*(du - du_plastic) = Ks*(du - beta*du_p)
//Real beta = 0.0; //beta is the plastic multiplier
Real effective_phi = phi_b;
Real tan_effective_phi = tan(effective_phi / 180.0 * Mathr::PI);
Real miu_peak = tan_effective_phi;
Real delta_miu = 0.059266;
Real function = 0.0;
Real lambda = 0.0;
newFs = Fs_prev + Ks * du;
maxFs = fN * (miu_peak - delta_miu * (1.0 - exp(-1.0 * beta_prev / 0.35)));
//If new stress after elastic update is outside the previous yield surface
if (newFs.norm() - maxFs > pow(10, -11) && fN > pow(10, -11) && (Ks * du).norm() > pow(10, -11)) {
// Fs_new = Fs_prev + dF
// dF = Ks*du_elastic = Ks*(du - du_plastic) = Ks*(du - beta*du_p)
// where du_p is a unit vector whose sign is Sign((Fs_prev + Ks*du).dot(du))*Sign(du);
/* EQUATION TO SOLVE */
/* Solve for beta */
// Fs + Ks*(du - beta*du_p) = N*( miu_peak-delta_miu*(1-exp(beta_prev + beta) ) )
//beta = 0.0;
/* ************************************************************************************************************* */
/** ESTABLISH LOWER AND UPPER BOUNDS (positive and negative) FOR BRACKETING beta (plastic multiplier) */
/* Establish lower bound for lambda*/
/* Lower bound = 0.0, i.e. fully elastic */
/* f_lower_bound <0.0, because it is outside the yield surface */
Real lowerBound = 0.0;
Vector3r termA = (Fs_prev + Ks * du) / (Ks * lowerBound + 1.0);
Real beta = beta_prev + lowerBound * termA.norm();
Real f_lower_bound = termA.norm() - fN * (miu_peak - delta_miu * (1.0 - exp(-1.0 * beta / 0.35)));
/* Establish upper bound for lambda*/
Real upperBound = du.norm() / Fs_prev.norm();
if (math::isnan(upperBound) == true) { upperBound = 1.0; }
if (math::isinf(upperBound) == true || upperBound > pow(10.0, 12)) { upperBound = pow(10.0, 12); }
termA = (Fs_prev + Ks * du) / (Ks * upperBound + 1.0);
beta = beta_prev + upperBound * termA.norm();
Real f_upper_bound = termA.norm() - fN * (miu_peak - delta_miu * (1.0 - exp(-1.0 * beta / 0.35)));
int iterUpper = 0;
while (math::sign(f_upper_bound) * math::sign(f_lower_bound) > 0.0) {
upperBound = 5.0 * upperBound;
termA = (Fs_prev + Ks * du) / (Ks * upperBound + 1.0);
beta = beta_prev + upperBound * termA.norm();
f_upper_bound = termA.norm() - fN * (miu_peak - delta_miu * (1.0 - exp(-1.0 * beta / 0.35)));
iterUpper++;
if (iterUpper > 1000) { std::cout << "iterUpper: " << iterUpper << endl; }
}
Real oriUpperBound = upperBound;
Real orif_upper_bound = f_upper_bound;
Real orif_lower_bound = f_lower_bound;
Real midTrial = 0.5 * (lowerBound + upperBound);
int iter = 0;
function = 1.0;
/* Bisection to find beta*/
Real Fmid;
while (fabs(function) > pow(10, -14) && fabs(lowerBound - upperBound) > pow(10, -14)) {
midTrial = 0.5 * (lowerBound + upperBound);
lambda = midTrial;
termA = (Fs_prev + Ks * du) / (Ks * lambda + 1.0);
beta = beta_prev + lambda * termA.norm();
function = termA.norm() - fN * (miu_peak - delta_miu * (1.0 - exp(-1.0 * beta / 0.35)));
Fmid = function;
if (math::sign(Fmid) == math::sign(f_lower_bound)) {
lowerBound = midTrial;
f_lower_bound = function;
} else {
upperBound = midTrial;
f_upper_bound = function;
}
iter++;
if (iter > 98) {
if (fabs(function) > pow(10, -6) && fabs(lowerBound - upperBound) > pow(10, -6)) {
std::cout << "iter: " << iter << ", Fs_prev:" << Fs_prev << ", beta: " << beta << ", function: " << function
<< ", fN: " << fN << ", beta_prev: " << beta_prev << ", lowerBound: " << lowerBound
<< ", upperBound: " << upperBound << ", lowerBound-upperBound: " << lowerBound - upperBound
<< ", f_lower_bound: " << f_lower_bound << ", f_upper_bound: " << f_upper_bound
<< ", oriUpperBound: " << oriUpperBound << ", orif_upper_bound: " << orif_upper_bound
<< ", orif_lower_bound: " << orif_lower_bound << endl;
}
break;
}
}
newFs = termA;
maxFs = fN * (miu_peak - delta_miu * (1.0 - exp(-1.0 * beta / 0.35)));
if (newFs.norm() / maxFs > 1.05) {
std::cout << "newFs.norm()/maxFs: " << newFs.norm() / maxFs << ", newFs-maxFs: " << newFs.norm() - maxFs << ", newFs: " << newFs
<< ", maxFs: " << maxFs << ", beta_prev: " << beta_prev << ", newFs.dotFsprev: " << newFs.dot(Fs_prev)
<< "f_upper_bound: " << f_upper_bound << ", f_lower_bound: " << f_lower_bound << ", upperBound: " << upperBound
<< ", lowerBound: " << lowerBound << ", du: " << du.norm() << ", Ks (GPa): " << Ks * pow(10, -9) << endl;
}
if (math::isnan(beta) == true) {
std::cout << "beta: " << beta << ", oriUpperBound: " << oriUpperBound << ", lambda: " << lambda << ", lowerBound: " << lowerBound
<< ", upperBound: " << upperBound << ", termA,: " << termA << ", beta_prev: " << beta_prev
<< ", orif_upper_bound: " << orif_upper_bound << ", orif_lower_bound: " << orif_lower_bound << endl;
}
return beta - beta_prev;
} else {
// CASE1: FULLY ELASTIC
newFs = Fs_prev + Ks * du;
return 0.0;
}
}
/* ***************************************************************************************************************************** */
/** FUNCTION RETURNS PLASTIC MULTIPLIER RATE (beta) AND CURRENT SHEAR FORCE */
Real Law2_SCG_KnKsPBPhys_KnKsPBLaw::stressUpdateVecTalesnick(
shared_ptr<IPhys>& /*ip*/,
const Vector3r Fs_prev /*prev shear force*/,
const Vector3r du /*shear displacement increment*/,
const Real beta_prev /* prev plastic displacements*/,
const Real Ks /*shear stiffness */,
const Real fN /*normal force*/,
const Real phi_b /*peak friction angle*/,
Vector3r& newFs /*new shear force*/,
const Real upeak)
{
newFs = Vector3r::Zero();
Real maxFs = 0.0;
// const Real PI = math::atan(1.0)*4;
// Define beta_prev as the cumulated plastic multiplier
// Define beta as the rate of plastic multiplier at the current time step
// Fs_new = Fs_prev + dF
// dF = Ks*du_elastic = Ks*(du - du_plastic) = Ks*(du - beta*du_p)
//Real beta = 0.0; //beta is the plastic multiplier
Real effective_phi = phi_b;
Real tan_effective_phi = tan(effective_phi / 180.0 * Mathr::PI);
Real miu_peak = tan_effective_phi;
Real function = 0.0;
Real lambda = 0.0;
newFs = Fs_prev + Ks * du;
maxFs = fN * (miu_peak * (1.0 - exp(-1.0 * beta_prev / upeak)));
//If new stress after elastic update is outside the previous yield surface
if (newFs.norm() - maxFs > pow(10, -11) && fN > pow(10, -11) && (Ks * du).norm() > pow(10, -11)) {
// Fs_new = Fs_prev + dF
// dF = Ks*du_elastic = Ks*(du - du_plastic) = Ks*(du - beta*du_p)
// where du_p is a unit vector whose sign is Sign((Fs_prev + Ks*du).dot(du))*Sign(du);
/* EQUATION TO SOLVE */
/* Solve for beta */
// Fs + Ks*(du - beta*du_p) = N*( miu_peak-delta_miu*(1-exp(beta_prev + beta) ) )
//beta = 0.0;
/* ************************************************************************************************************* */
/** ESTABLISH LOWER AND UPPER BOUNDS (positive and negative) FOR BRACKETING beta (plastic multiplier) */
/* Establish lower bound for lambda*/
/* Lower bound = 0.0, i.e. fully elastic */
/* f_lower_bound <0.0, because it is outside the yield surface */
Real lowerBound = 0.0;
Vector3r termA = (Fs_prev + Ks * du) / (Ks * lowerBound + 1.0);
Real beta = beta_prev + lowerBound * termA.norm();
Real f_lower_bound = termA.norm() - fN * (miu_peak * (1.0 - exp(-1.0 * beta_prev / upeak)));
/* Establish upper bound for lambda*/
Real upperBound = du.norm() / Fs_prev.norm();
if (math::isnan(upperBound) == true) { upperBound = 1.0; }
if (math::isinf(upperBound) == true || upperBound > pow(10.0, 12)) { upperBound = pow(10.0, 12); }
termA = (Fs_prev + Ks * du) / (Ks * upperBound + 1.0);
beta = beta_prev + upperBound * termA.norm();
Real f_upper_bound = termA.norm() - fN * (miu_peak * (1.0 - exp(-1.0 * beta_prev / upeak)));
int iterUpper = 0;
while (math::sign(f_upper_bound) * math::sign(f_lower_bound) > 0.0) {
upperBound = 5.0 * upperBound;
termA = (Fs_prev + Ks * du) / (Ks * upperBound + 1.0);
beta = beta_prev + upperBound * termA.norm();
f_upper_bound = termA.norm() - fN * (miu_peak * (1.0 - exp(-1.0 * beta_prev / upeak)));
iterUpper++;
if (iterUpper > 1000) { std::cout << "iterUpper: " << iterUpper << endl; }
}
Real oriUpperBound = upperBound;
Real orif_upper_bound = f_upper_bound;
Real orif_lower_bound = f_lower_bound;
Real midTrial = 0.5 * (lowerBound + upperBound);
int iter = 0;
function = 1.0;
/* Bisection to find beta*/
Real Fmid;
while (fabs(function) > pow(10, -14) && fabs(lowerBound - upperBound) > pow(10, -14)) {
midTrial = 0.5 * (lowerBound + upperBound);
lambda = midTrial;
termA = (Fs_prev + Ks * du) / (Ks * lambda + 1.0);
beta = beta_prev + lambda * termA.norm();
function = termA.norm() - fN * (miu_peak * (1.0 - exp(-1.0 * beta_prev / upeak)));
Fmid = function;
if (math::sign(Fmid) == math::sign(f_lower_bound)) {
lowerBound = midTrial;
f_lower_bound = function;
} else {
upperBound = midTrial;
f_upper_bound = function;
}
iter++;
if (iter > 98) {
if (fabs(function) > pow(10, -6) && fabs(lowerBound - upperBound) > pow(10, -6)) {
std::cout << "iter: " << iter << ", Fs_prev:" << Fs_prev << ", beta: " << beta << ", function: " << function
<< ", fN: " << fN << ", beta_prev: " << beta_prev << ", lowerBound: " << lowerBound
<< ", upperBound: " << upperBound << ", lowerBound-upperBound: " << lowerBound - upperBound
<< ", f_lower_bound: " << f_lower_bound << ", f_upper_bound: " << f_upper_bound
<< ", oriUpperBound: " << oriUpperBound << ", orif_upper_bound: " << orif_upper_bound
<< ", orif_lower_bound: " << orif_lower_bound << endl;
}
break;
}
}
newFs = termA;
maxFs = fN * (miu_peak * (1.0 - exp(-1.0 * beta_prev / upeak)));
if (newFs.norm() / maxFs > 1.05) {
std::cout << "newFs.norm()/maxFs: " << newFs.norm() / maxFs << ", newFs-maxFs: " << newFs.norm() - maxFs << ", newFs: " << newFs
<< ", maxFs: " << maxFs << ", beta_prev: " << beta_prev << ", newFs.dotFsprev: " << newFs.dot(Fs_prev)
<< "f_upper_bound: " << f_upper_bound << ", f_lower_bound: " << f_lower_bound << ", upperBound: " << upperBound
<< ", lowerBound: " << lowerBound << endl;
}
if (math::isnan(beta) == true) {
std::cout << "beta: " << beta << ", oriUpperBound: " << oriUpperBound << ", lambda: " << lambda << ", lowerBound: " << lowerBound
<< ", upperBound: " << upperBound << ", termA,: " << termA << ", beta_prev: " << beta_prev
<< ", orif_upper_bound: " << orif_upper_bound << ", orif_lower_bound: " << orif_lower_bound << endl;
}
return beta - beta_prev;
} else {
// CASE1: FULLY ELASTIC
newFs = Fs_prev + Ks * du;
return 0.0;
}
}
/* ***************************************************************************************************************************** */
/** Ip2_FrictMat_FrictMat_KnKsPBPhys */
CREATE_LOGGER(Ip2_FrictMat_FrictMat_KnKsPBPhys);
void Ip2_FrictMat_FrictMat_KnKsPBPhys::go(const shared_ptr<Material>& b1, const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction)
{
// const Real PI = 3.14159265358979323846;
if (interaction->phys) return;
ScGeom* scg = YADE_CAST<ScGeom*>(interaction->geom.get());
assert(scg);
const shared_ptr<FrictMat>& sdec1 = YADE_PTR_CAST<FrictMat>(b1);
const shared_ptr<FrictMat>& sdec2 = YADE_PTR_CAST<FrictMat>(b2);
shared_ptr<KnKsPBPhys> contactPhysics(new KnKsPBPhys());
//interaction->interactionPhysics = shared_ptr<MomentPhys>(new MomentPhys());
//const shared_ptr<MomentPhys>& contactPhysics = YADE_PTR_CAST<MomentPhys>(interaction->interactionPhysics);
/* From interaction physics */
Real fa = sdec1->frictionAngle;
Real fb = sdec2->frictionAngle;
// /* calculate stiffness */
// Real Kn = Knormal;
// Real Ks = Kshear;
/* Pass values calculated from above to CSPhys */
contactPhysics->viscousDamping = viscousDamping;
// contactPhysics->useOverlapVol = useOverlapVol;
contactPhysics->knVol = Knormal; //Kn
contactPhysics->ksVol = Kshear; //Ks
contactPhysics->kn_i = kn_i;
contactPhysics->ks_i = ks_i;
// contactPhysics->u_peak = u_peak;
// contactPhysics->maxClosure = maxClosure;
contactPhysics->cohesionBroken = cohesionBroken;
contactPhysics->tensionBroken = tensionBroken;
contactPhysics->intactRock = intactRock;
if (intactRock) { contactPhysics->cohesion = cohesion; }
// contactPhysics->unitWidth2D = unitWidth2D;
contactPhysics->frictionAngle = math::min(fa, fb);
if (!useFaceProperties) {
contactPhysics->phi_r = math::min(fa, fb) / Mathr::PI * 180.0;
contactPhysics->phi_b = contactPhysics->phi_r;
}
// contactPhysics->tanFrictionAngle = math::tan(contactPhysics->frictionAngle);
//contactPhysics->initialOrientation1 = Body::byId(interaction->getId1())->state->ori;
//contactPhysics->initialOrientation2 = Body::byId(interaction->getId2())->state->ori;
contactPhysics->prevNormal = scg->normal; //This is also done in the Contact Law. It is not redundant because this class is only called ONCE!
// contactPhysics->calJointLength = calJointLength;
// contactPhysics->twoDimension = twoDimension;
contactPhysics->useFaceProperties = useFaceProperties;
// contactPhysics->brittleLength = brittleLength;
interaction->phys = contactPhysics;
}
/* ***************************************************************************************************************************** */
/** KnKsPBPhys */
CREATE_LOGGER(KnKsPBPhys);
/* KnKsPBPhys */
KnKsPBPhys::~KnKsPBPhys() { }
} // namespace yade
#endif // YADE_POTENTIAL_BLOCKS
|