1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
/*CWBoon 2015 */
#ifdef YADE_POTENTIAL_BLOCKS
//Polyhedral blocks formulated as in Boon et al (2012) using an inner potential particle (Houlsby, 2009) to calculate the contact normal.
#include "PotentialBlock.hpp"
namespace yade { // Cannot have #include directive inside.
YADE_PLUGIN((PotentialBlock));
PotentialBlock::~PotentialBlock() { }
void PotentialBlock::addPlaneStruct() { planeStruct.push_back(Planes()); }
//void PotentialBlock::addVertexStruct() { vertexStruct.push_back(Vertices()); }
//void PotentialBlock::addEdgeStruct() { edgeStruct.push_back(Edges()); }
//TODO: We need a check to merge duplicate faces during initialisation, so that when we write the plane coefficients a,b,c,d in the shape class, we don't allow duplicate combinations. This means that the planeNo will change, and we need to ensure it is updated everywhere, after we remove the duplicate faces
void PotentialBlock::postLoad(PotentialBlock&)
{
if (vertices.empty() and (not a.empty())) { // i.e. if the particle is not initialised
int planeNo = a.size();
/* Normalize the coefficients of the planes defining the particle faces */
Vector3r planeNormVec;
for (int i = 0; i < planeNo; i++) {
planeNormVec = Vector3r(a[i], b[i], c[i]);
if (math::abs(planeNormVec.norm() - 1.0) > 1e-3) { /* Normalize only if the normal vectors are not normalized already */
d[i] += r; // We need to add "r" and subtract it after normalisation takes place. The d[i] values represent the distances of the planes to the local origin only when the normal vectors (a[i],b[i],c[i] are normalised)
a[i] /= planeNormVec.norm();
b[i] /= planeNormVec.norm();
c[i] /= planeNormVec.norm();
d[i] /= planeNormVec.norm();
d[i] -= r;
}
}
/* Check that the defined planes have the same number of coefficients */
if (b.size() != a.size() or c.size() != a.size() or d.size() != a.size()) {
std::cout << "The planes do not have the same number of coefficients. Check the input geometry!" << endl;
}
/* Make sure r is positive */
assert(r > 0.0);
/* Make sure the d[i] values given by the user are positive (i.e. the normal vectors of the faces point outwards)
In Python we set d equal to d-r, so here, d reflects these reduced values, which can be negative for two reasons:
1. The normal vectors of one or more planes were initially oriented inwards (i.e. min(d)<0 and min(d)+r<0)
2. The chosen radius r is larger than the distance of one or more planes to the local origin (i.e. min(d)<=0 and min(d)+r>=0) -> This check is done after centering the particle to its centroid, later on
*/
auto dMin = *std::min_element(d.begin(), d.end());
if (dMin < 0 and dMin + r < 0) { // i.e. when r is not the problem, but the normal vector of at least one plane is oriented inwards
for (int i = 0; i < planeNo; i++) {
if (d[i] < 0 and d[i] + r < 0) {
d[i] += 2 * r;
a[i] *= -1;
b[i] *= -1;
c[i] *= -1;
d[i] *= -1;
}
}
}
/* Add a structure containing the vertices associated with each plane*/
for (int i = 0; i < planeNo; i++) {
addPlaneStruct();
}
// Calculate vertices
calculateVertices();
/* Calculate R as half the distance of the farthest vertices, if user hasn't set a positive value for R. */
/* A reminder that R in the Potential Blocks is meant to represent a reference length, used to calculate the initial bisection search employed to identify points on the particle surfaces. Here, R does not affect the curvature of the faces, like in the Potetial Particles code. The faces of a Potential Block are always flat. */
/* Although half the distance of the farthest vertices is in no case the circumradius, we just need a value around this order of magnitude for the bisection search code to run smoothly */
if (R == 0.0 and (not vertices.empty())) {
Real maxDistance = 0.0, Distance;
for (unsigned int i = 0; i < vertices.size() - 1; i++) {
for (unsigned int j = i + 1; i < vertices.size(); i++) {
Distance = (vertices[i] - vertices[j]).norm();
if (Distance > maxDistance) { maxDistance = Distance; }
}
}
if (maxDistance > 0.0) { R = maxDistance / 2.; }
calculateVertices(); //Recalculate vertices after calculating R to improve the check for duplicate vertices
if (R == 0) { std::cout << "R must be positive. Incorrect automatic calculation from the vertices." << endl; }
}
assert(R > 0.0);
// Calculate geometric properties: volume, centroid, inertia, principal orientation (inertia is calculated after the particle is centered to its centroid)
Vector3r centr = Vector3r::Zero();
Real Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
calculateInertia(centr, Ixx, Iyy, Izz, Ixy, Ixz, Iyz); //Calculate volume & centroid
// An attempt to eliminate rounding errors from the calculation of vertices/volume/inertia
if (math::abs(centr.x()) / R < 1e-6) { centr.x() = 0; }
if (math::abs(centr.y()) / R < 1e-6) { centr.y() = 0; }
if (math::abs(centr.z()) / R < 1e-6) { centr.z() = 0; }
// If the particle is not centered to its centroid, center (translate) the face equations around the centroid and recalculate vertices, volume & inertia
if (centr.norm() / R > 1e-6) {
for (int i = 0; i < planeNo; i++) {
d[i] = -(a[i] * centr.x() + b[i] * centr.y() + c[i] * centr.z() - d[i]);
// if (d[i]<0) { a[i] *= -1; b[i] *= -1; c[i] *= -1; d[i] *= -1; }
}
position = centr;
calculateVertices(); // Recalculate vertices for the centered particle faces
calculateInertia(centr, Ixx, Iyy, Izz, Ixy, Ixz, Iyz); // Calculate inertia for the centered particle
}
/* Reduce r if it results to negative d values, to ensure the existence of an inner potential particle */
dMin = *std::min_element(d.begin(), d.end());
if (dMin <= 0 and dMin + r >= 0) {
std::for_each(d.begin(), d.end(), [this](Real& dTemp) { dTemp += r; });
r = 0.5 * (dMin + r);
std::cout << "Reduced r to half the smallest d value (r=" << r << ") so that min(d)>0." << endl;
std::for_each(d.begin(), d.end(), [this](Real& dTemp) { dTemp -= r; });
}
/* ------------------------------------------------------------------------------------------------------------------------------ */
if (math::abs(Ixy) + math::abs(Ixz) + math::abs(Iyz) < 1e-15) {
inertia = Vector3r(Ixx, Iyy, Izz);
} else { //rotate the planes to the principal axes if they are not already rotated
// calculate eigenvectors of I
Matrix3r inertia_tensor(Matrix3r::Zero());
inertia_tensor << Ixx, -Ixy, -Ixz, -Ixy, Iyy, -Iyz, -Ixz, -Iyz, Izz;
Matrix3r I_rot(Matrix3r::Zero()), I_new(Matrix3r::Zero());
matrixEigenDecomposition(inertia_tensor, I_rot, I_new);
// Here I use the same convension for the positive direction of the principal orientations as for Polyhedra @vsangelidakis
// I_rot = eigenvectors of inertia_tensors in columns
// I_new = eigenvalues on diagonal
// set positive direction of vectors - otherwise reloading does not work
Matrix3r sign(Matrix3r::Zero());
Real max_v_signed = I_rot(0, 0);
Real max_v = std::abs(I_rot(0, 0));
if (max_v < std::abs(I_rot(1, 0))) {
max_v_signed = I_rot(1, 0);
max_v = std::abs(I_rot(1, 0));
}
if (max_v < std::abs(I_rot(2, 0))) {
max_v_signed = I_rot(2, 0);
max_v = std::abs(I_rot(2, 0));
}
sign(0, 0) = max_v_signed / max_v;
max_v_signed = I_rot(0, 1);
max_v = std::abs(I_rot(0, 1));
if (max_v < std::abs(I_rot(1, 1))) {
max_v_signed = I_rot(1, 1);
max_v = std::abs(I_rot(1, 1));
}
if (max_v < std::abs(I_rot(2, 1))) {
max_v_signed = I_rot(2, 1);
max_v = std::abs(I_rot(2, 1));
}
sign(1, 1) = max_v_signed / max_v;
sign(2, 2) = 1.;
I_rot = I_rot * sign;
// force the eigenvectors to be right-hand oriented
Vector3r third = (I_rot.col(0)).cross(I_rot.col(1));
I_rot(0, 2) = third[0];
I_rot(1, 2) = third[1];
I_rot(2, 2) = third[2];
inertia = Vector3r(I_new(0, 0), I_new(1, 1), I_new(2, 2));
orientation = Quaternionr(I_rot);
//rotate the particle so that x - is maximal inertia axis and z - is minimal inertia axis
//orientation.normalize(); //not needed
for (int i = 0; i < (int)vertices.size(); i++) {
vertices[i] = orientation.conjugate() * vertices[i];
}
Vector3r plane4;
for (unsigned int i = 0; i < a.size(); i++) {
plane4 = orientation.conjugate() * Vector3r(a[i], b[i], c[i]);
a[i] = plane4.x();
b[i] = plane4.y();
c[i] = plane4.z();
}
}
for (unsigned int j = 0; j < a.size(); j++) {
connectivity.push_back(planeStruct[j].vertexID);
}
}
}
Real PotentialBlock::getDet(const MatrixXr A) const
{
/* if positive, counter clockwise, 2nd point makes a larger angle */
/* if negative, clockwise, 3rd point makes a larger angle */
int rowNo = A.rows();
Real firstTerm = 0.0;
Real secondTerm = 0.0;
for (int i = 0; i < rowNo - 1; i++) {
firstTerm += A(i, 0) * A(i + 1, 1);
secondTerm += A(i, 1) * A(i + 1, 0);
}
return firstTerm - secondTerm;
}
Real PotentialBlock::getSignedArea(const Vector3r pt1, const Vector3r pt2, const Vector3r pt3) const
{
/* if positive, counter clockwise, 2nd point makes a larger angle */
/* if negative, clockwise, 3rd point makes a larger angle */
MatrixXr triangle(4, 2);
triangle(0, 0) = pt1.x();
triangle(0, 1) = pt1.y(); // triangle(0,2) = pt1.z();
triangle(1, 0) = pt2.x();
triangle(1, 1) = pt2.y(); // triangle(1,2) = pt2.z();
triangle(2, 0) = pt3.x();
triangle(2, 1) = pt3.y(); // triangle(2,2) = pt3.z();
triangle(3, 0) = pt1.x();
triangle(3, 1) = pt1.y(); // triangle(3,2) = pt1.z();
Real determinant = getDet(triangle);
return determinant; //triangle.determinant();
}
Real PotentialBlock::getVolume()
{
if (volume < 0) // that would be the case if calculateInertia has not executed yet and volume is still at its -1 default value
LOG_ERROR("PotentialBlock::getVolume() will return a negative value, probably calculateInertia could not execute yet");
return volume;
}
void PotentialBlock::calculateVertices()
{
std::vector<Real> D(3);
std::vector<Real> Ax(9);
Matrix3r Aplanes;
Real Distance;
int vertCount = 0;
Real minDistance;
int planeNo = a.size();
Vector3r plane1, plane2, plane3;
Real d1, d2, d3, detAplanes;
std::vector<int> ipiv(3);
int bColNo;
int info, three; //FIXME: bColNo, three could be defined as "const int", instead of "int"
bool inside;
Vector3r vertex;
Real plane;
int vertexID;
int closestVertex = 0;
vertices.clear();
for (int i = 0; i < planeNo; i++) {
planeStruct[i].vertexID.clear();
} //Empty the planeStruct every time calculateVertices is ran
for (int i = 0; i < planeNo - 2; i++) {
for (int j = i + 1; j < planeNo - 1; j++) {
for (int kk = j + 1; kk < planeNo; kk++) {
plane1 = Vector3r(a[i], b[i], c[i]);
plane2 = Vector3r(a[j], b[j], c[j]);
plane3 = Vector3r(a[kk], b[kk], c[kk]);
d1 = d[i] + r;
d2 = d[j] + r;
d3 = d[kk] + r;
D[0] = d1;
D[1] = d2;
D[2] = d3;
Ax[0] = plane1.x();
Ax[3] = plane1.y();
Ax[6] = plane1.z();
Aplanes(0, 0) = Ax[0];
Aplanes(0, 1) = Ax[3];
Aplanes(0, 2) = Ax[6];
Ax[1] = plane2.x();
Ax[4] = plane2.y();
Ax[7] = plane2.z();
Aplanes(1, 0) = Ax[1];
Aplanes(1, 1) = Ax[4];
Aplanes(1, 2) = Ax[7];
Ax[2] = plane3.x();
Ax[5] = plane3.y();
Ax[8] = plane3.z();
Aplanes(2, 0) = Ax[2];
Aplanes(2, 1) = Ax[5];
Aplanes(2, 2) = Ax[8];
detAplanes = Aplanes.determinant();
if (fabs(detAplanes) > pow(10, -15)) { //if (parallel == false) {
bColNo = 1;
info = 0; /* LU */
three = 3;
dgesv_(&three, &bColNo, Ax.data(), &three, ipiv.data(), D.data(), &three, &info);
if (info != 0) {
//std::cout<<"linear algebra error"<<endl;
} else {
inside = true;
vertex = Vector3r(D[0], D[1], D[2]);
for (int m = 0; m < planeNo; m++) {
plane = a[m] * vertex.x() + b[m] * vertex.y() + c[m] * vertex.z() - d[m] - r;
if (plane > pow(10, -3)) { inside = false; }
}
if (inside == true) {
/* Check for duplicate vertices: New vertices cannot be too close to existing ones */
if (vertCount == 0) { // Allow the first vertex to be written always
vertices.push_back(vertex);
vertCount++;
vertexID = vertices.size() - 1;
planeStruct[i].vertexID.push_back(vertexID);
planeStruct[j].vertexID.push_back(vertexID);
planeStruct[kk].vertexID.push_back(vertexID);
} else {
minDistance = 1.0e15;
for (int n = 0; n < vertCount; n++) {
Distance = (vertex - vertices[n]).norm();
if (Distance < minDistance) {
minDistance = Distance;
closestVertex = n;
}
}
if (minDistance > (R > 0.0 ? R * 1.0e-3 : 1.0e-6)) {
vertices.push_back(vertex);
vertCount++;
vertexID = vertices.size() - 1;
planeStruct[i].vertexID.push_back(vertexID); // If not duplicate, save new ID
planeStruct[j].vertexID.push_back(vertexID);
planeStruct[kk].vertexID.push_back(vertexID);
} else {
planeStruct[i].vertexID.push_back(closestVertex); // If duplicate save ID of duplicate
planeStruct[j].vertexID.push_back(closestVertex);
planeStruct[kk].vertexID.push_back(closestVertex);
}
}
/* Structs associating: Vertices-Edges-Planes: Could become useful in the future */
#if 0
/* vertexStruct */
vertexID = vertices.size()-1;
// addVertexStruct();
// int vertexID = vertexStruct.size()-1;
// vertexStruct[vertexID].planeID.push_back(i); /* Note that the planeIDs are arranged from small to large! */
// vertexStruct[vertexID].planeID.push_back(j); /* planeIDs are arranged in the same sequence as [a,b,c] and d */
// vertexStruct[vertexID].planeID.push_back(kk); /* vertices store information on planeIDs */
/* edgeStruct */
int vertexNo = vertices.size(); int edgeCount=0;
for (int i=0; i<vertexNo; i++ ){
for (int j=0; j<vertexNo; j++){
if(i==j){continue;}
int v1a = vertexStruct[i].planeID[0];
int v2a = vertexStruct[i].planeID[1];
int v3a = vertexStruct[i].planeID[2];
int v1b = vertexStruct[j].planeID[0];
int v2b = vertexStruct[j].planeID[1];
int v3b = vertexStruct[j].planeID[2];
if( (v1a != v1b && v2a == v2b && v3a == v3b) || (v1a == v1b && v2a != v2b && v3a == v3b) || (v1a == v1b && v2a == v2b && v3a != v3b) ){
Real length = ( vertices[i] - vertices[j] ).norm();
if(length<pow(10,-3) ){ continue; }
addEdgeStruct();
edgeStruct[edgeCount].vertexID.push_back(i); /* edges store information on vertexIDs */
edgeStruct[edgeCount].vertexID.push_back(j);
vertexStruct[i].edgeID.push_back(edgeCount); /* vertices store information on edgeIDs */
vertexStruct[j].edgeID.push_back(edgeCount);
edgeCount++;
}
}
}
/* planeStruct */
vertexID = vertices.size()-1;
planeStruct[i].vertexID.push_back(vertexID); /* planes store information on vertexIDs */
planeStruct[j].vertexID.push_back(vertexID);
planeStruct[kk].vertexID.push_back(vertexID);
#endif
}
}
}
}
}
}
//Remove duplicate vertices from each planeStruct[j] and record the IDs of planes with less than 3 vertices (these planes are redundant)
//This is done to guard the code against non-manifold geometrical inputs
std::vector<int> pWLTTV; //planes With Less Than Three Vertices
for (int j = 0; j < planeNo; j++) {
std::stable_sort(planeStruct[j].vertexID.begin(), planeStruct[j].vertexID.end());
planeStruct[j].vertexID.erase(std::unique(planeStruct[j].vertexID.begin(), planeStruct[j].vertexID.end()), planeStruct[j].vertexID.end());
if (planeStruct[j].vertexID.size() < 3) { pWLTTV.push_back(j); }
}
//Sort the IDs of the planes to be removed in descending order, in order to start removing from last to first, using the reverse iterators: rbegin(), rend()
std::stable_sort(pWLTTV.rbegin(), pWLTTV.rend());
int pWLTTVSize = pWLTTV.size();
for (int j = 0; j < pWLTTVSize; j++) {
a.erase(a.begin() + pWLTTV[j]);
b.erase(b.begin() + pWLTTV[j]);
c.erase(c.begin() + pWLTTV[j]);
d.erase(d.begin() + pWLTTV[j]);
if (not phi_b.empty()) { phi_b.erase(phi_b.begin() + pWLTTV[j]); }
if (not phi_r.empty()) { phi_r.erase(phi_r.begin() + pWLTTV[j]); }
if (not cohesion.empty()) { cohesion.erase(cohesion.begin() + pWLTTV[j]); }
if (not tension.empty()) { tension.erase(tension.begin() + pWLTTV[j]); }
if (not jointType.empty()) { jointType.erase(jointType.begin() + pWLTTV[j]); }
planeStruct.erase(planeStruct.begin() + pWLTTV[j]);
}
//Here we repeat this check, after the redundant faces are removed, just in case
if (b.size() != a.size() or c.size() != a.size() or d.size() != a.size()) {
std::cout << "The planes do not have the same number of coefficients. Check the input geometry!" << endl;
}
}
void PotentialBlock::calculateInertia(Vector3r& centroid, Real& Ixx, Real& Iyy, Real& Izz, Real& Ixy, Real& Ixz, Real& Iyz)
{
Vector3r pointInside(0, 0, 0), vertex, planeNormal, oriNormal(0, 0, 1), crossProd, rotatedCoord;
Vector3r pt1, pt2, pt3, baseOnPolygon, oriBaseOnPolygon, centroidPyramid, centroidTetra, tempVert1, tempVert2, tempVert3, tempVert4;
Real totalVolume = 0.0, /*plane,*/ det, area, height, vol, areaPyramid, volumePyramid, heightTetra, tempArea, areaTri, tetraVol;
Real detJ, x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4;
Quaternionr Qp;
unsigned int h, kk, m, counter;
int lastEntry;
MatrixXr B(4, 2), vertexOnPlane;
std::vector<Vector3r> verticesOnPlane, oriVerticesOnPlane, orderedVerticesOnPlane, oriOrderedVerticesOnPlane; //vector<int> oriOrderedVerticesOnplaneID;
centroid = Vector3r::Zero();
Ixx = 0.0;
Iyy = 0.0;
Izz = 0.0;
Ixy = 0.0;
Ixz = 0.0;
Iyz = 0.0;
for (unsigned int j = 0; j < a.size(); j++) {
if (not verticesOnPlane.empty()) {
verticesOnPlane.clear();
oriVerticesOnPlane.clear();
}
for (unsigned int i = 0; i < planeStruct[j].vertexID.size(); i++) { //iterate through the vertices of each face
vertex = vertices[planeStruct[j].vertexID[i]]; /*local coordinates*/
planeNormal = Vector3r(a[j], b[j], c[j]);
crossProd = oriNormal.cross(planeNormal);
Qp.w() = 1.0 + oriNormal.dot(planeNormal);
Qp.x() = crossProd.x();
Qp.y() = crossProd.y();
Qp.z() = crossProd.z();
Qp.normalize();
if (crossProd.norm() < pow(10, -7)) { Qp = Quaternionr::Identity(); }
rotatedCoord = Qp.conjugate() * vertex;
verticesOnPlane.push_back(rotatedCoord);
oriVerticesOnPlane.push_back(vertex);
}
if (verticesOnPlane.empty()) { continue; }
// if(verticesOnPlane.size()<3) {continue;} //Only calculate volume/inertia for faces with three or more vertices
if (verticesOnPlane.size() < 3) { std::cout << "Face: " << j << " has less than 3 vertices! Check particle geometry" << endl; }
/* REORDER VERTICES counterclockwise positive*/
h = 0;
kk = 1;
m = 2;
pt1 = verticesOnPlane[h];
pt2 = verticesOnPlane[kk];
pt3 = verticesOnPlane[m];
orderedVerticesOnPlane.push_back(pt1);
oriOrderedVerticesOnPlane.push_back(oriVerticesOnPlane[0]);
counter = 1;
while (counter < verticesOnPlane.size()) {
while (m < verticesOnPlane.size()) {
pt1 = verticesOnPlane[h];
pt2 = verticesOnPlane[kk];
pt3 = verticesOnPlane[m];
if (getSignedArea(pt1, pt2, pt3) < 0.0) {
/* clockwise means 3rd point is better than 2nd */
kk = m; /*3rd point becomes 2nd point */
pt2 = verticesOnPlane[kk];
} /* else counterclockwise is good. We need to find and see whether there is a point(3rd point) better than the 2nd point */
/* advance m */
m = m + 1;
while (m == h || m == kk) {
m = m + 1;
}
}
//std::cout<<"h: "<<h<<", kk :"<<kk<<", m: "<<m<<endl;
orderedVerticesOnPlane.push_back(pt2);
oriOrderedVerticesOnPlane.push_back(oriVerticesOnPlane[kk]);
h = kk;
/* advance kk */
kk = 0;
while (kk == h) {
kk = kk + 1;
}
/* advance m */
m = 0;
while (m == h || m == kk) {
m = m + 1;
}
counter++;
}
planeStruct[j].vertexID.clear();
for (unsigned int i = 0; i < oriOrderedVerticesOnPlane.size(); i++) {
for (unsigned int n = 0; n < vertices.size(); n++) {
if (vertices[n][0] == oriOrderedVerticesOnPlane[i][0] and vertices[n][1] == oriOrderedVerticesOnPlane[i][1]
and vertices[n][2] == oriOrderedVerticesOnPlane[i][2]) {
planeStruct[j].vertexID.push_back(n);
}
}
}
vertexOnPlane = MatrixXr(orderedVerticesOnPlane.size() + 1, 2);
baseOnPolygon = Vector3r(0, 0, 0);
oriBaseOnPolygon = Vector3r(0, 0, 0);
for (unsigned int i = 0; i < orderedVerticesOnPlane.size(); i++) {
vertexOnPlane(i, 0) = orderedVerticesOnPlane[i].x();
vertexOnPlane(i, 1) = orderedVerticesOnPlane[i].y(); //vertexOnPlane(i,2)=orderedVerticesOnPlane[i].z();
//std::cout<<"vertexOnPlane0: "<<vertexOnPlane(i,0)<<", vertexOnPlane1: "<<vertexOnPlane(i,1)<<endl;
baseOnPolygon += orderedVerticesOnPlane[i];
oriBaseOnPolygon += oriOrderedVerticesOnPlane[i];
}
baseOnPolygon = baseOnPolygon / static_cast<Real>(orderedVerticesOnPlane.size());
oriBaseOnPolygon = oriBaseOnPolygon / static_cast<Real>(oriOrderedVerticesOnPlane.size());
lastEntry = orderedVerticesOnPlane.size();
vertexOnPlane(lastEntry, 0) = orderedVerticesOnPlane[0].x();
vertexOnPlane(lastEntry, 1) = orderedVerticesOnPlane[0].y(); //vertexOnPlane(lastEntry,2)=orderedVerticesOnPlane[0].z();
//std::cout<<"vertexOnPlane0: "<<vertexOnPlane(lastEntry,0)<<", vertexOnPlane1: "<<vertexOnPlane(lastEntry,1)<<endl;
det = getDet(vertexOnPlane);
area = 0.5 * det; //(vertexOnPlane.determinant());
height = -1.0 * (a[j] * pointInside.x() + b[j] * pointInside.y() + c[j] * pointInside.z() - d[j] - r);
vol = 1.0 / 3.0 * area * height;
totalVolume += vol;
//std::cout<<"orderedVerticesOnPlane.size(): "<<orderedVerticesOnPlane.size()<<", volume: "<<volume<<", area: "<<area<<", height: "<<height<<endl;
areaPyramid = 0.0;
centroidPyramid = Vector3r(0, 0, 0);
volumePyramid = 0.0;
heightTetra = 0.0;
for (int i = 0; i < vertexOnPlane.rows() - 1; i++) {
B(0, 0) = vertexOnPlane(i, 0);
B(0, 1) = vertexOnPlane(i, 1);
B(1, 0) = vertexOnPlane(i + 1, 0);
B(1, 1) = vertexOnPlane(i + 1, 1);
B(2, 0) = baseOnPolygon.x();
B(2, 1) = baseOnPolygon.y();
B(3, 0) = vertexOnPlane(i, 0);
B(3, 1) = vertexOnPlane(i, 1);
tempArea = getDet(B);
areaTri = 0.5 * tempArea;
areaPyramid += areaTri;
heightTetra = fabs(orderedVerticesOnPlane[i].z());
tetraVol = 1.0 / 3.0 * areaTri * heightTetra;
volumePyramid += tetraVol;
// tempVert1,2,3,4: vertices of the tetrahedron
tempVert1 = oriOrderedVerticesOnPlane[i];
tempVert3 = oriBaseOnPolygon;
tempVert4 = pointInside;
if (i == vertexOnPlane.rows() - 2) {
tempVert2 = oriOrderedVerticesOnPlane[0];
} else {
tempVert2 = oriOrderedVerticesOnPlane[i + 1];
}
centroidTetra = 0.25 * (tempVert1 + tempVert2 + tempVert3 + tempVert4);
centroidPyramid += (tetraVol * centroidTetra);
// Calculation of the inertia tensor for each tetrahedron.
// See article F. Tonon, "Explicit Exact Formulas for the 3-D Tetrahedron Inertia Tensor in Terms of its Vertex Coordinates", http://www.scipub.org/fulltext/jms2/jms2118-11.pdf
// Tonon's formulae work for any coordinate system, so here we calculate the inertia of each tetrahedron directly to the local centroid of the particle, avoiding Steiner.
x1 = tempVert1.x();
y1 = tempVert1.y();
z1 = tempVert1.z();
x2 = tempVert2.x();
y2 = tempVert2.y();
z2 = tempVert2.z();
x3 = tempVert3.x();
y3 = tempVert3.y();
z3 = tempVert3.z();
x4 = tempVert4.x();
y4 = tempVert4.y();
z4 = tempVert4.z();
detJ = (x2 - x1) * (y3 - y1) * (z4 - z1) + (x3 - x1) * (y4 - y1) * (z2 - z1) + (x4 - x1) * (y2 - y1) * (z3 - z1)
- (x2 - x1) * (y4 - y1) * (z3 - z1) - (x3 - x1) * (y2 - y1) * (z4 - z1) - (x4 - x1) * (y3 - y1) * (z2 - z1);
detJ = math::abs(detJ);
Ixx += detJ
* (y1 * y1 + y1 * y2 + y2 * y2 + y1 * y3 + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4 + z1 * z1 + z1 * z2
+ z2 * z2 + z1 * z3 + z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
/ 60.;
Iyy += detJ
* (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + z1 * z1 + z1 * z2
+ z2 * z2 + z1 * z3 + z2 * z3 + z3 * z3 + z1 * z4 + z2 * z4 + z3 * z4 + z4 * z4)
/ 60.;
Izz += detJ
* (x1 * x1 + x1 * x2 + x2 * x2 + x1 * x3 + x2 * x3 + x3 * x3 + x1 * x4 + x2 * x4 + x3 * x4 + x4 * x4 + y1 * y1 + y1 * y2
+ y2 * y2 + y1 * y3 + y2 * y3 + y3 * y3 + y1 * y4 + y2 * y4 + y3 * y4 + y4 * y4)
/ 60.;
// a' in the article etc.
Iyz += detJ
* (2 * y1 * z1 + y2 * z1 + y3 * z1 + y4 * z1 + y1 * z2 + 2 * y2 * z2 + y3 * z2 + y4 * z2 + y1 * z3 + y2 * z3 + 2 * y3 * z3
+ y4 * z3 + y1 * z4 + y2 * z4 + y3 * z4 + 2 * y4 * z4)
/ 120.;
Ixz += detJ
* (2 * x1 * z1 + x2 * z1 + x3 * z1 + x4 * z1 + x1 * z2 + 2 * x2 * z2 + x3 * z2 + x4 * z2 + x1 * z3 + x2 * z3 + 2 * x3 * z3
+ x4 * z3 + x1 * z4 + x2 * z4 + x3 * z4 + 2 * x4 * z4)
/ 120.;
Ixy += detJ
* (2 * x1 * y1 + x2 * y1 + x3 * y1 + x4 * y1 + x1 * y2 + 2 * x2 * y2 + x3 * y2 + x4 * y2 + x1 * y3 + x2 * y3 + 2 * x3 * y3
+ x4 * y3 + x1 * y4 + x2 * y4 + x3 * y4 + 2 * x4 * y4)
/ 120.;
}
centroid += centroidPyramid;
orderedVerticesOnPlane.clear();
oriOrderedVerticesOnPlane.clear();
}
centroid = centroid / totalVolume;
volume = totalVolume;
verticesOnPlane.clear();
oriVerticesOnPlane.clear();
}
} // namespace yade
#endif // YADE_POTENTIAL_BLOCKS
|