File: _packPredicates.cpp

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (583 lines) | stat: -rw-r--r-- 22,928 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
// 2009 © Václav Šmilauer <eudoxos@arcig.cz>
#include <lib/base/AliasNamespaces.hpp>
#include <lib/base/Logging.hpp>
#include <lib/base/Math.hpp>
#include <lib/pyutil/doc_opts.hpp>

CREATE_CPP_LOCAL_LOGGER("_packPredicates.cpp");

namespace yade { // Cannot have #include directive inside.

/*
This file contains various predicates that say whether a given point is within the solid,
or, not closer than "pad" to its boundary, if pad is nonzero
Besides the (point,pad) operator, each predicate defines aabb() method that returns
(min,max) tuple defining minimum and maximum point of axis-aligned bounding box 
for the predicate.

These classes are primarily used for yade.pack.* functions creating packings.
See examples/regular-sphere-pack/regular-sphere-pack.py for an example.

*/

// aux functions
void ttuple2vvec(const py::tuple& t, Vector3r& v1, Vector3r& v2)
{
	v1 = py::extract<Vector3r>(t[0])();
	v2 = py::extract<Vector3r>(t[1])();
}
// do not use make_tuple directly on vector ops, since their type can be something like Eigen::CwiseBinaryOp<...>
py::tuple vvec2tuple(const Vector3r& a, const Vector3r& b) { return py::make_tuple(a, b); }

struct Predicate {
public:
	virtual bool      operator()(const Vector3r& pt, Real pad = 0.) const = 0;
	virtual py::tuple aabb() const                                        = 0;
	Vector3r          dim() const
	{
		Vector3r mn, mx;
		ttuple2vvec(aabb(), mn, mx);
		return (mx - mn).eval();
	}
	Vector3r center() const
	{
		Vector3r mn, mx;
		ttuple2vvec(aabb(), mn, mx);
		return .5 * (mn + mx);
	}
	virtual ~Predicate() { }
};

struct PredicateWrap : Predicate, py::wrapper<Predicate> {
	bool      operator()(const Vector3r& pt, Real pad = 0.) const override { return this->get_override("__call__")(pt, pad); }
	py::tuple aabb() const override { return this->get_override("aabb")(); }
};

/*********************************************************************************
****************** Boolean operations on predicates ******************************
*********************************************************************************/

const Predicate& obj2pred(py::object obj) { return py::extract<const Predicate&>(obj)(); }

class PredicateBoolean : public Predicate {
protected:
	const py::object A, B;

public:
	PredicateBoolean(const py::object _A, const py::object _B)
	        : A(_A)
	        , B(_B)
	{
	}
	const py::object getA() { return A; }
	const py::object getB() { return B; }
};

// http://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch16s03.html
class PredicateUnion : public PredicateBoolean {
public:
	PredicateUnion(const py::object _A, const py::object _B)
	        : PredicateBoolean(_A, _B)
	{
	}
	bool      operator()(const Vector3r& pt, Real pad) const override { return obj2pred(A)(pt, pad) || obj2pred(B)(pt, pad); }
	py::tuple aabb() const override
	{
		Vector3r minA, maxA, minB, maxB;
		ttuple2vvec(obj2pred(A).aabb(), minA, maxA);
		ttuple2vvec(obj2pred(B).aabb(), minB, maxB);
		return vvec2tuple(minA.cwiseMin(minB), maxA.cwiseMax(maxB));
	}
};
PredicateUnion makeUnion(const py::object& A, const py::object& B) { return PredicateUnion(A, B); }

class PredicateIntersection : public PredicateBoolean {
public:
	PredicateIntersection(const py::object _A, const py::object _B)
	        : PredicateBoolean(_A, _B)
	{
	}
	bool      operator()(const Vector3r& pt, Real pad) const override { return obj2pred(A)(pt, pad) && obj2pred(B)(pt, pad); }
	py::tuple aabb() const override
	{
		Vector3r minA, maxA, minB, maxB;
		ttuple2vvec(obj2pred(A).aabb(), minA, maxA);
		ttuple2vvec(obj2pred(B).aabb(), minB, maxB);
		return vvec2tuple(minA.cwiseMax(minB), maxA.cwiseMin(maxB));
	}
};
PredicateIntersection makeIntersection(const py::object& A, const py::object& B) { return PredicateIntersection(A, B); }

class PredicateDifference : public PredicateBoolean {
public:
	PredicateDifference(const py::object _A, const py::object _B)
	        : PredicateBoolean(_A, _B)
	{
	}
	bool      operator()(const Vector3r& pt, Real pad) const override { return obj2pred(A)(pt, pad) && !obj2pred(B)(pt, -pad); }
	py::tuple aabb() const override { return obj2pred(A).aabb(); }
};
PredicateDifference makeDifference(const py::object& A, const py::object& B) { return PredicateDifference(A, B); }

class PredicateSymmetricDifference : public PredicateBoolean {
public:
	PredicateSymmetricDifference(const py::object _A, const py::object _B)
	        : PredicateBoolean(_A, _B)
	{
	}
	bool operator()(const Vector3r& pt, Real pad) const override
	{
		bool inA = obj2pred(A)(pt, pad), inB = obj2pred(B)(pt, pad);
		return (inA && !inB) || (!inA && inB);
	}
	py::tuple aabb() const override
	{
		Vector3r minA, maxA, minB, maxB;
		ttuple2vvec(obj2pred(A).aabb(), minA, maxA);
		ttuple2vvec(obj2pred(B).aabb(), minB, maxB);
		return vvec2tuple(minA.cwiseMin(minB), maxA.cwiseMax(maxB));
	}
};
PredicateSymmetricDifference makeSymmetricDifference(const py::object& A, const py::object& B) { return PredicateSymmetricDifference(A, B); }

/*********************************************************************************
****************************** Primitive predicates ******************************
*********************************************************************************/


/*! Sphere predicate */
class inSphere : public Predicate {
	Vector3r center;
	Real     radius;

public:
	inSphere(const Vector3r& _center, Real _radius)
	{
		center = _center;
		radius = _radius;
	}
	bool      operator()(const Vector3r& pt, Real pad = 0.) const override { return ((pt - center).norm() <= radius - pad); }
	py::tuple aabb() const override
	{
		return vvec2tuple(
		        Vector3r(center[0] - radius, center[1] - radius, center[2] - radius),
		        Vector3r(center[0] + radius, center[1] + radius, center[2] + radius));
	}
};

/*! Axis-aligned box predicate */
class inAlignedBox : public Predicate {
	Vector3r mn, mx;

public:
	inAlignedBox(const Vector3r& _mn, const Vector3r& _mx)
	        : mn(_mn)
	        , mx(_mx)
	{
	}
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		return mn[0] + pad <= pt[0] && mx[0] - pad >= pt[0] && mn[1] + pad <= pt[1] && mx[1] - pad >= pt[1] && mn[2] + pad <= pt[2]
		        && mx[2] - pad >= pt[2];
	}
	py::tuple aabb() const override { return vvec2tuple(mn, mx); }
};

class inParallelepiped : public Predicate {
	Vector3r n[6];   // outer normals, for -x, +x, -y, +y, -z, +z
	Vector3r pts[6]; // points on planes
	Vector3r mn, mx;

public:
	inParallelepiped(const Vector3r& o, const Vector3r& a, const Vector3r& b, const Vector3r& c)
	{
		Vector3r A(o), B(a), C(a + (b - o)), D(b), E(c), F(c + (a - o)), G(c + (a - o) + (b - o)), H(c + (b - o));
		Vector3r x(B - A), y(D - A), z(E - A);
		n[0]   = -y.cross(z).normalized();
		n[1]   = -n[0];
		pts[0] = A;
		pts[1] = B;
		n[2]   = -z.cross(x).normalized();
		n[3]   = -n[2];
		pts[2] = A;
		pts[3] = D;
		n[4]   = -x.cross(y).normalized();
		n[5]   = -n[4];
		pts[4] = A;
		pts[5] = E;
		// bounding box
		Vector3r vertices[8] = { A, B, C, D, E, F, G, H };
		mn = mx = vertices[0];
		for (int i = 1; i < 8; i++) {
			mn = mn.cwiseMin(vertices[i]);
			mx = mx.cwiseMax(vertices[i]);
		}
	}
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		for (int i = 0; i < 6; i++)
			if ((pt - pts[i]).dot(n[i]) > -pad) return false;
		return true;
	}
	py::tuple aabb() const override { return vvec2tuple(mn, mx); }
};

/*! Arbitrarily oriented cylinder predicate */
class inCylinder : public Predicate {
	Vector3r c1, c2, c12;
	Real     radius, ht;

public:
	inCylinder(const Vector3r& _c1, const Vector3r& _c2, Real _radius)
	{
		c1     = _c1;
		c2     = _c2;
		c12    = c2 - c1;
		radius = _radius;
		ht     = c12.norm();
	}
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		Real u = (pt.dot(c12) - c1.dot(c12)) / (ht * ht);            // normalized coordinate along the c1--c2 axis
		if ((u * ht < 0 + pad) || (u * ht > ht - pad)) return false; // out of cylinder along the axis
		Real axisDist = ((pt - c1).cross(pt - c2)).norm() / ht;
		if (axisDist > radius - pad) return false;
		return true;
	}
	py::tuple aabb() const override
	{
		// see http://www.gamedev.net/community/forums/topic.asp?topic_id=338522&forum_id=20&gforum_id=0 for the algorithm
		const Vector3r& A(c1);
		const Vector3r& B(c2);
		Vector3r        k(
                        sqrt((pow(A[1] - B[1], 2) + pow(A[2] - B[2], 2))) / ht,
                        sqrt((pow(A[0] - B[0], 2) + pow(A[2] - B[2], 2))) / ht,
                        sqrt((pow(A[0] - B[0], 2) + pow(A[1] - B[1], 2))) / ht);
		Vector3r mn = A.cwiseMin(B), mx = A.cwiseMax(B);
		return vvec2tuple((mn - radius * k).eval(), (mx + radius * k).eval());
	}
};

/*! Oriented hyperboloid predicate (cylinder as special case).

See http://mathworld.wolfram.com/Hyperboloid.html for the parametrization and meaning of symbols
*/
class inHyperboloid : public Predicate {
	Vector3r c1, c2, c12;
	Real     R, a, ht, c;

public:
	inHyperboloid(const Vector3r& _c1, const Vector3r& _c2, Real _R, Real _r)
	{
		c1        = _c1;
		c2        = _c2;
		R         = _R;
		a         = _r;
		c12       = c2 - c1;
		ht        = c12.norm();
		Real uMax = sqrt(pow(R / a, 2) - 1);
		c         = ht / (2 * uMax);
	}
	// WARN: this is not accurate, since padding is taken as perpendicular to the axis, not the the surface
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		Real v = (pt.dot(c12) - c1.dot(c12)) / (ht * ht);            // normalized coordinate along the c1--c2 axis
		if ((v * ht < 0 + pad) || (v * ht > ht - pad)) return false; // out of cylinder along the axis
		Real u        = (v - .5) * ht / c;                           // u from the wolfram parametrization; u is 0 in the center
		Real rHere    = a * sqrt(1 + u * u);                         // pad is taken perpendicular to the axis, not to the surface (inaccurate)
		Real axisDist = ((pt - c1).cross(pt - c2)).norm() / ht;
		if (axisDist > rHere - pad) return false;
		return true;
	}
	py::tuple aabb() const override
	{
		// the lazy way
		return inCylinder(c1, c2, R).aabb();
	}
};

/*! Axis-aligned ellipsoid predicate */
class inEllipsoid : public Predicate {
	Vector3r c, abc;

public:
	inEllipsoid(const Vector3r& _c, const Vector3r& _abc)
	{
		c   = _c;
		abc = _abc;
	}
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		//Define the ellipsoid X-coordinate of given Y and Z
		Real x = sqrt((1 - pow((pt[1] - c[1]), 2) / ((abc[1] - pad) * (abc[1] - pad)) - pow((pt[2] - c[2]), 2) / ((abc[2] - pad) * (abc[2] - pad)))
		              * ((abc[0] - pad) * (abc[0] - pad)))
		        + c[0];
		Vector3r edgeEllipsoid(x, pt[1], pt[2]); // create a vector of these 3 coordinates
		//check whether given coordinates lie inside ellipsoid or not
		if ((pt - c).norm() <= (edgeEllipsoid - c).norm()) return true;
		else
			return false;
	}
	py::tuple aabb() const override
	{
		const Vector3r& center(c);
		const Vector3r& ABC(abc);
		return vvec2tuple(
		        Vector3r(center[0] - ABC[0], center[1] - ABC[1], center[2] - ABC[2]),
		        Vector3r(center[0] + ABC[0], center[1] + ABC[1], center[2] + ABC[2]));
	}
};

/*! Negative notch predicate.

Use intersection (& operator) of another predicate with notInNotch to create notched solid.


		
		geometry explanation:
		
			c: the center
			normalHalfHt (in constructor): A-C
			inside: perpendicular to notch edge, points inside the notch (unit vector)
			normal: perpendicular to inside, perpendicular to both notch planes
			edge: unit vector in the direction of the edge

		          ↑ distUp        A
		-------------------------
		                        | C
		         inside(unit) ← * → distInPlane
		                        |
		-------------------------
		          ↓ distDown      B

*/
class notInNotch : public Predicate {
	Vector3r c, edge, normal, inside;
	Real     aperture;

public:
	notInNotch(const Vector3r& _c, const Vector3r& _edge, const Vector3r& _normal, Real _aperture)
	{
		c    = _c;
		edge = _edge;
		edge.normalize();
		normal = _normal;
		normal -= edge * edge.dot(normal);
		normal.normalize();
		inside   = edge.cross(normal);
		aperture = _aperture;
		// LOG_DEBUG("edge="<<edge<<", normal="<<normal<<", inside="<<inside<<", aperture="<<aperture);
	}
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		Real distUp = normal.dot(pt - c) - aperture / 2, distDown = -normal.dot(pt - c) - aperture / 2, distInPlane = -inside.dot(pt - c);
		// LOG_DEBUG("pt="<<pt<<", distUp="<<distUp<<", distDown="<<distDown<<", distInPlane="<<distInPlane);
		if (distInPlane >= pad) return true;
		if (distUp >= pad) return true;
		if (distDown >= pad) return true;
		if (distInPlane < 0) return false;
		if (distUp > 0) return sqrt(pow(distInPlane, 2) + pow(distUp, 2)) >= pad;
		if (distDown > 0) return sqrt(pow(distInPlane, 2) + pow(distUp, 2)) >= pad;
		// between both notch planes, closer to the edge than pad (distInPlane<pad)
		return false;
	}
	// This predicate is not bounded, return infinities
	py::tuple aabb() const override
	{
		Real inf = std::numeric_limits<Real>::infinity();
		return vvec2tuple(Vector3r(-inf, -inf, -inf), Vector3r(inf, inf, inf));
	}
};

} // namespace yade


#ifdef YADE_GTS

#if PY_MAJOR_VERSION < 3
extern "C" {
#endif
// HACK
#include "../3rd-party/pygts-0.3.1/pygts.h"
#if PY_MAJOR_VERSION < 3
}
#endif

namespace yade { // Cannot have #include directive inside.

/* Helper function for inGtsSurface::aabb() */
static void vertex_aabb(GtsVertex* vertex, std::pair<Vector3r, Vector3r>* bb)
{
	GtsPoint* _p = GTS_POINT(vertex);
	Vector3r  p(_p->x, _p->y, _p->z);
	bb->first  = bb->first.cwiseMin(p);
	bb->second = bb->second.cwiseMax(p);
}

/*
This class plays tricks getting around pyGTS to get GTS objects and cache bb tree to speed
up point inclusion tests. For this reason, we have to link with _gts.so (see corresponding
SConscript file), which is at the same time the python module.
*/
class inGtsSurface : public Predicate {
	py::object  pySurf; // to hold the reference so that surf is valid
	GtsSurface* surf;
	bool        is_open, noPad, noPadWarned;
	GNode*      tree;

public:
	inGtsSurface(py::object _surf, bool _noPad = false)
	        : pySurf(_surf)
	        , noPad(_noPad)
	        , noPadWarned(false)
	{
		if (!pygts_surface_check(_surf.ptr())) throw std::invalid_argument("Ctor must receive a gts.Surface() instance.");
		surf = PYGTS_SURFACE_AS_GTS_SURFACE(PYGTS_SURFACE(_surf.ptr()));
		if (!gts_surface_is_closed(surf)) throw std::invalid_argument("Surface is not closed.");
		is_open = gts_surface_volume(surf) < 0.;
		if ((tree = gts_bb_tree_surface(surf)) == NULL) throw std::runtime_error("Could not create GTree.");
	}
	~inGtsSurface() { g_node_destroy(tree); }
	py::tuple aabb() const override
	{
		Real                          inf = std::numeric_limits<Real>::infinity();
		std::pair<Vector3r, Vector3r> bb;
		bb.first  = Vector3r(inf, inf, inf);
		bb.second = Vector3r(-inf, -inf, -inf);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wcast-function-type"
		gts_surface_foreach_vertex(surf, (GtsFunc)vertex_aabb, &bb);
#pragma GCC diagnostic pop
		return vvec2tuple(bb.first, bb.second);
	}
	bool ptCheck(const Vector3r& pt) const
	{
		GtsPoint gp;
		gp.x = static_cast<gdouble>(pt[0]);
		gp.y = static_cast<gdouble>(pt[1]);
		gp.z = static_cast<gdouble>(pt[2]);
		return (bool)gts_point_is_inside_surface(&gp, tree, is_open);
	}
	bool operator()(const Vector3r& pt, Real pad = 0.) const override
	{
		if (noPad) {
			if (pad != 0. && noPadWarned) LOG_WARN("inGtsSurface constructed with noPad; requested non-zero pad set to zero.");
			return ptCheck(pt);
		}
		return ptCheck(pt) && ptCheck(pt - Vector3r(pad, 0, 0)) && ptCheck(pt + Vector3r(pad, 0, 0)) && ptCheck(pt - Vector3r(0, pad, 0))
		        && ptCheck(pt + Vector3r(0, pad, 0)) && ptCheck(pt - Vector3r(0, 0, pad)) && ptCheck(pt + Vector3r(0, 0, pad));
	}
	py::object surface() const { return pySurf; }
};


} // namespace yade

#endif

// BOOST_PYTHON_MODULE cannot be inside yade namespace, it has 'extern "C"' keyword, which strips it out of any namespaces.
BOOST_PYTHON_MODULE(_packPredicates)
try {
	using namespace yade; // 'using namespace' inside function keeps namespace pollution under control. Alernatively I could add y:: in front of function names below and put 'namespace y  = ::yade;' here.
	namespace py                = ::boost::python;
	py::scope().attr("__doc__") = "Spatial predicates for volumes (defined analytically or by triangulation).";
	YADE_SET_DOCSTRING_OPTS;
	// base predicate class
	py::class_<PredicateWrap, /* necessary, as methods are pure virtual*/ boost::noncopyable>(
	        "Predicate",
	        "Spatial predicate base class.\nPredicates support boolean operations as described in `user's manual "
	        "<user.html#boolean-operations-on-predicates>`_")
	        .def("__call__", py::pure_virtual(&Predicate::operator()), (py::args("pt"), py::args("pad") = 0))
	        .def("containsPoint",
	             py::pure_virtual(&Predicate::operator()),
	             (py::args("pt"), py::args("pad") = 0),
	             "if given point is inside the predicate or not. ``pred.containsPoint(pt,pad)`` is equivalent to directly calling predicate itself "
	             "``pred(pt,pad)``")
	        .def("aabb", py::pure_virtual(&Predicate::aabb), "lower and upper corner of predicate's axis aligned bounding box")
	        .def("dim", &Predicate::dim, "axis aligned dimensions of the predicate")
	        .def("center", &Predicate::center, "center of the predicate")
	        .def("__or__", makeUnion)
	        .def("__and__", makeIntersection)
	        .def("__sub__", makeDifference)
	        .def("__xor__", makeSymmetricDifference);
	// boolean operations
	py::class_<PredicateBoolean, py::bases<Predicate>, boost::noncopyable>(
	        "PredicateBoolean", "Boolean operation on 2 predicates (abstract class)", py::no_init)
	        .add_property("A", &PredicateBoolean::getA)
	        .add_property("B", &PredicateBoolean::getB);
	py::class_<PredicateUnion, py::bases<PredicateBoolean>>(
	        "PredicateUnion",
	        "Union (non-exclusive disjunction) of 2 predicates. A point has to be inside any of the two predicates to be inside. Can be constructed using "
	        "the ``|`` operator on predicates: ``pred1 | pred2``.",
	        py::init<py::object, py::object>());
	py::class_<PredicateIntersection, py::bases<PredicateBoolean>>(
	        "PredicateIntersection",
	        "Intersection (conjunction) of 2 predicates. A point has to be inside both predicates. Can be constructed using the ``&`` operator on "
	        "predicates: ``pred1 & pred2``.",
	        py::init<py::object, py::object>());
	py::class_<PredicateDifference, py::bases<PredicateBoolean>>(
	        "PredicateDifference",
	        "Difference (conjunction with negative predicate) of 2 predicates. A point has to be inside the first and outside the second predicate. Can be "
	        "constructed using the ``-`` operator on predicates: ``pred1 - pred2``.",
	        py::init<py::object, py::object>());
	py::class_<PredicateSymmetricDifference, py::bases<PredicateBoolean>>(
	        "PredicateSymmetricDifference",
	        "SymmetricDifference (exclusive disjunction) of 2 predicates. A point has to be in exactly one predicate of the two. Can be constructed using "
	        "the ``^`` operator on predicates: ``pred1 ^ pred2``.",
	        py::init<py::object, py::object>());
	// primitive predicates
	py::class_<inSphere, py::bases<Predicate>>(
	        "inSphere", "Sphere predicate.", py::init<const Vector3r&, Real>(py::args("center", "radius"), "Ctor taking center (as a 3-tuple) and radius"));
	py::class_<inAlignedBox, py::bases<Predicate>>(
	        "inAlignedBox",
	        "Axis-aligned box predicate",
	        py::init<const Vector3r&, const Vector3r&>(py::args("minAABB", "maxAABB"), "Ctor taking minumum and maximum points of the box (as 3-tuples)."));
	py::class_<inParallelepiped, py::bases<Predicate>>(
	        "inParallelepiped",
	        "Parallelepiped predicate",
	        py::init<const Vector3r&, const Vector3r&, const Vector3r&, const Vector3r&>(
	                py::args("o", "a", "b", "c"),
	                "Ctor taking four points: ``o`` (for origin) and then ``a``, ``b``, ``c`` which define endpoints of 3 respective edges from ``o``."));
	py::class_<inCylinder, py::bases<Predicate>>(
	        "inCylinder",
	        "Cylinder predicate",
	        py::init<const Vector3r&, const Vector3r&, Real>(
	                py::args("centerBottom", "centerTop", "radius"), "Ctor taking centers of the lateral walls (as 3-tuples) and radius."));
	py::class_<inHyperboloid, py::bases<Predicate>>(
	        "inHyperboloid",
	        "Hyperboloid predicate",
	        py::init<const Vector3r&, const Vector3r&, Real, Real>(
	                py::args("centerBottom", "centerTop", "radius", "skirt"),
	                "Ctor taking centers of the lateral walls (as 3-tuples), radius at bases and skirt (middle radius)."));
	py::class_<inEllipsoid, py::bases<Predicate>>(
	        "inEllipsoid",
	        "Ellipsoid predicate",
	        py::init<const Vector3r&, const Vector3r&>(
	                py::args("centerPoint", "abc"), "Ctor taking center of the ellipsoid (3-tuple) and its 3 radii (3-tuple)."));
	py::class_<notInNotch, py::bases<Predicate>>(
	        "notInNotch",
	        "Outside of infinite, rectangle-shaped notch predicate",
	        py::init<const Vector3r&, const Vector3r&, const Vector3r&, Real>(
	                py::args("centerPoint", "edge", "normal", "aperture"),
	                "Ctor taking point in the symmetry plane, vector pointing along the edge, plane normal and aperture size.\nThe side inside the notch "
	                "is edge×normal.\nNormal is made perpendicular to the edge.\nAll vectors are normalized at construction time."));
#ifdef YADE_GTS
	py::class_<inGtsSurface, py::bases<Predicate>>(
	        "inGtsSurface",
	        "GTS surface predicate",
	        py::init<py::object, py::optional<bool>>(
	                py::args("surface", "noPad"),
	                "Ctor taking a gts.Surface() instance, which must not be modified during instance lifetime.\nThe optional noPad can disable padding "
	                "(if set to True), which speeds up calls several times.\nNote: padding checks inclusion of 6 points along +- cardinal directions in "
	                "the pad distance from given point, which is not exact."))
	        .add_property("surf", &inGtsSurface::surface, "The associated gts.Surface object.");
#endif

} catch (...) {
	LOG_FATAL("Importing this module caused an exception and this module is in an inconsistent state now.");
	PyErr_Print();
	PyErr_SetString(PyExc_SystemError, __FILE__);
	boost::python::handle_exception();
	throw;
}