File: potential_utils.py

package info (click to toggle)
yade 2026.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,448 kB
  • sloc: cpp: 97,645; python: 52,173; sh: 677; makefile: 162
file content (519 lines) | stat: -rw-r--r-- 20,310 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# encoding: utf-8
# 2022 © Vasileios Angelidakis <vasileios.angelidakis@ncl.ac.uk>
"""
Auxiliary functions for the Potential Blocks
"""

import math, random, doctest, geom, numpy
from yade import Vector3, Quaternion, utils
from yade.wrapper import *
from math import sin, cos, tan, sqrt, pi, radians  # atan, atan2

import logging

logging.basicConfig(level=logging.INFO)

from numpy import array
#from yade import utils	# FIXME: I only use utils._commonBodySetup
from yade.utils import _commonBodySetup, randomColor

try:  # use psyco if available
	import psyco
	psyco.full()
except ImportError:
	pass


#**********************************************************************************
#creates Potential Blocks, defining the coefficients of their faces
def potentialblock(material, a=[], b=[], c=[], d=[], r=0.0, R=0.0, mask=1, isBoundary=False, fixed=False, color=[-1, -1, -1]):
	"""creates potential block.

	:param Material material: material of new body
	:param [float] a,b,c,d: lists of plane coefficients of the particle faces (see PotentialBlock docs)
	:param float r: radius of inner Potential Particle (see PotentialBlock docs)
	:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
	:param bool isBoundary: whether this is a boundary body (see PotentialBlock docs)
	"""
	# TODO: In this function, I can introduce all the other attributes of the PBs, like: fixedNormal, boundaryNormal -> Naah, the invocation gets too long. I can use *kw!!!
	pb = Body()
	pb.mask = mask
	pb.aspherical = True

	pb.shape = PotentialBlock(
	        a=a, b=b, c=c, d=d, r=r, R=R, isBoundary=isBoundary, AabbMinMax=True
	)  #id=len(O.bodies) #FIXME: Check if I need id for vtk output
	if color[0] == -1:
		pb.shape.color = randomColor(seed=random.randint(0, int(1E6)))
	else:
		pb.shape.color = color
	utils._commonBodySetup(pb, pb.shape.volume, pb.shape.inertia, material, pos=pb.shape.position, fixed=fixed)
	pb.state.ori = pb.shape.orientation
	return pb


#**********************************************************************************
#creates cuboidal particle using the Potential Blocks
def cuboid(material, edges=Vector3(1, 1, 1), r=0.0, R=0.0, center=[0, 0, 0], mask=1, isBoundary=False, fixed=False, color=[-1, -1, -1]):
	"""creates cuboid using the Potential Blocks

	:param Vector3 edges: edges of the cuboid
	:param Material material: material of new body (FrictMat)
	:param Vector3 center: center of the new body
	"""
	aa = [1, -1, 0, 0, 0, 0]
	bb = [0, 0, 1, -1, 0, 0]
	cc = [0, 0, 0, 0, 1, -1]
	dd = [edges[0] / 2., edges[0] / 2., edges[1] / 2., edges[1] / 2., edges[2] / 2., edges[2] / 2.]

	if not r:
		r = min(dd) / 2.
	cuboid = potentialblock(material=material, a=aa, b=bb, c=cc, d=array(dd) - r, r=r, R=R, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
	cuboid.state.pos = center
	return cuboid


#**********************************************************************************
#creates Aabb boundary plates using the Potential Blocks, around a given cuboidal space
def aabbPlates(material, extrema=None, thickness=0.0, r=0.0, R=0.0, mask=1, isBoundary=False, fixed=True, color=None):
	"""Return 6 cuboids that will wrap existing packing as walls from all sides.			#FIXME: Correct this comment

	:param Material material: material of new bodies (FrictMat)
	:param [Vector3, Vector3] extrema: extremal points of the Aabb of the packing, as a list of two Vector3, or any equivalent type (will not be calculated if not specified)
	:param float thickness: wall thickness (equal to 1/10 of the smallest dimension if not specified)
	:param float r: radius of inner Potential Particle (see PotentialBlock docs)
	:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
	:param int mask: groupMask for the new bodies

	:returns: a list of 6 PotentialBlock Bodies enclosing the packing, in the order minX,maxX,minY,maxY,minZ,maxZ.
	"""
	walls = []
	#	if not extrema: extrema=aabbExtrema() #TODO: aabbExtrema() is not compatible with non-spherical particles yet
	if not thickness:
		thickness = min(extrema[1][0] - extrema[0][0], extrema[1][1] - extrema[0][1], extrema[1][2] - extrema[0][2]) / 10.

	randColor = False
	if not color:
		randColor = True

	for axis in [0, 1, 2]:
		mi, ma = extrema
		center = [(mi[i] + ma[i]) / 2. for i in range(3)]
		extents = [(ma[i] - mi[i]) for i in range(3)]
		extents[axis] = thickness / 2.
		if randColor:
			color = randomColor(seed=random.randint(0, 1E6))
		for j in [0, 1]:
			center[axis] = extrema[j][axis] + (j - .5) * thickness / 2.
			walls.append(
			        cuboid(material=material, edges=extents, r=r, R=R, center=center, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
			)
			walls[-1].shape.wire = True
	return walls


#**********************************************************************************
#creates cylindrical boundary plates using the Potential Blocks, using a given radius and around a given axis
def cylindricalPlates(
        material, radius=0.0, height=0.0, thickness=0.0, numFaces=3, r=0.0, R=0.0, mask=1, isBoundary=False, fixed=True, lid=[True, True], color=None
):
	"""Return numFaces cuboids that will wrap existing packing as walls from all sides. 			#FIXME: Correct this comment

	:param Material material: material of new bodies (FrictMat)
	:param float radius: radius of the cylinder
	:param float height: height of cylinder
	:param float thickness: thickness of cylinder faces (equal to 1/10 of the cylinder inradius if not specified)
	:param int numFaces: number of cylinder faces (>3)
	:param float r: radius of inner Potential Particle (see PotentialBlock docs)
	:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
	:param int mask: groupMask for the new bodies
	:param lid [bool]: list of booleans, whether to create the bottom and top  lids of the cylindrical plates

	:returns: a list of cuboidal Potential Blocks forming a hollow cylinder
	"""
	# TODO: Check facetCylinder for orientation of the cylinder
	# TODO: Add center of the cylinder

	walls = []
	if not thickness:
		thickness = min(radius, height / 2.) / 10.
	angle = radians(360) / numFaces
	axis = Vector3(0, 0, 1)  #TODO: To make it work for any axis - have to change: center, edges

	randColor = False
	if not color:
		randColor = True
	for i in range(0, numFaces):
		center = Vector3((radius + thickness / 2.) * cos(i * angle), (radius + thickness / 2.) * sin(i * angle), height / 2.)  #*(axis.asDiagonal())

		if randColor:
			color = [abs(cos(i * angle)), abs(sin(i * angle)), 1]
		walls.append(
		        cuboid(
		                material=material,
		                edges=Vector3(thickness, 2 * (radius) * tan(pi / numFaces), height),
		                r=r,
		                R=R,
		                center=center,
		                mask=mask,
		                isBoundary=isBoundary,
		                fixed=fixed,
		                color=color
		        )
		)
		walls[-1].state.ori = Quaternion(axis, i * angle)
		walls[-1].shape.wire = True

	color = [0.36, 0.54, 0.66]
	if lid[0] == True:
		# Create top plate
		walls.append(
		        prism(
		                material=material,
		                radius1=radius,
		                thickness=thickness,
		                numFaces=numFaces,
		                r=r,
		                R=R,
		                color=color,
		                mask=mask,
		                isBoundary=isBoundary,
		                fixed=fixed
		        )
		)
		walls[-1].state.pos = axis * (height + thickness / 2)
		walls[-1].state.ori = Quaternion(axis, i * angle)  #FIXME: Here I use i outside the loop?
	if lid[1] == True:
		# Create bottom plate
		walls.append(
		        prism(
		                material=material,
		                radius1=radius,
		                thickness=thickness,
		                numFaces=numFaces,
		                r=r,
		                R=R,
		                color=color,
		                mask=mask,
		                isBoundary=isBoundary,
		                fixed=fixed
		        )
		)
		walls[-1].state.pos = -axis * thickness / 2
		walls[-1].state.ori = Quaternion(axis, i * angle)  #FIXME: Here I use i outside the loop?

	return walls


##**********************************************************************************
#creates regular prism with N faces
def prism(material, radius1=0.0, radius2=-1, thickness=0.0, numFaces=3, r=0.0, R=0.0, center=None, color=[1, 0, 0], mask=1, isBoundary=False, fixed=False):
	"""Return regular prism with numFaces

	:param Material material: material of new bodies (FrictMat)
	:param float radius1: inradius of the start cross-section of the prism
	:param float radius2: inradius of the end cross-section of the prism (equal to radius1 if not specified)
	:param float thickness: thickness of the prism (equal to radius1 if not specified)
	:param int numFaces: number of prisms' faces (>3)
	:param float r: radius of inner Potential Particle (see PotentialBlock docs)
	:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
	:param Vector3 center: center of the Potential Blocks (not currently used)
	:param int mask: groupMask for the new bodies

	:returns: an axial-symmetric Potential Block with variable cross-section, which can become either a regular prism (radius1=radius2), a pyramid (radius2=0) or a cylinder or cone respectively, for a large enough numFaces value.
	"""
	aa = []
	bb = []
	cc = []
	dd = []
	if radius2 == -1:
		radius2 = radius1
	if not thickness:
		thickness = radius1
	angle = radians(360) / numFaces

	for i in range(0, numFaces):
		aTemp = cos(i * angle)
		bTemp = sin(i * angle)
		cTemp = (radius1 - radius2) / thickness
		dTemp = (radius1 + radius2) / 2

		magnitude = Vector3(aTemp, bTemp, cTemp).norm()

		aa.append(aTemp / magnitude)
		bb.append(bTemp / magnitude)
		cc.append(cTemp / magnitude)
		dd.append(dTemp / magnitude)

	aa.extend([0.0, 0.0])
	bb.extend([0.0, 0.0])
	cc.extend([1.0, -1.0])
	dd.extend([thickness / 2., thickness / 2.])

	if not r:
		r = min(dd) / 2.
	prism = potentialblock(material=material, a=aa, b=bb, c=cc, d=array(dd) - r, r=r, R=R, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
	#	if center: prism.state.pos=prism.state.pos+center; print(center) #FIXME: Maybe assign center if not (0,0,0), but add it to the local position, rather than overwriting it
	return prism


##**********************************************************************************
#TODO: export PotentialBlock to stl file: This would better fit in the export module

##**********************************************************************************
#TODO: creates masonry arch: I can do it in two ways:
#	1. Geometrically, using the angles or
#	2. Using BlockGen, demonstrating that we can do non-permanent joints
#	Explore multi-ring arches: For the inner ring, I must replicate the interlocking geometry

##**********************************************************************************
#TODO: creates a model for periodic and aperiodic masonry

##**********************************************************************************
#TODO: creates SAG mill with chosen: radius, width, optionally rigid boundaries or no boundaries, dent size

##**********************************************************************************
#creates PotentialBlock or PotentialParticle from polyhedra # FIXME: Unfinished
#def polyhedra2PotentialBlock(b,r=None,R=0.0): #maybe polyhedra2Potential or polyhedra2PotentialShape #FIXME: Haven't checked it yet
#	"""Calculate coefficients of the planes comprising the faces of a polyhedron, in the format used by the PotentialBlock and PotentialParticle shape classes

#	:param Body b:			Body with b.shape=Polyhedra
#	:param vector(Real) aa:	Coefficients 'a' of planes: ax+by+cz-d-r=0
#	:param vector(Real) bb:	Coefficients 'b' of planes: ax+by+cz-d-r=0
#	:param vector(Real) cc:	Coefficients 'c' of planes: ax+by+cz-d-r=0
#	:param vector(Real) dd:	Coefficients 'd' of planes: ax+by+cz-d-r=0
#	:param Real r:			Suggested radius of PotentialBlock or PotentialParticle to be generated

#	"""
#	Faces=b.shape.GetSurfaces()
#	Vertices = [b.state.ori*v for v in b.shape.v] # vertices in global coords

#	aa=[]
#	bb=[]
#	cc=[]
#	dd=[]
#	for fv in range(len(Faces)):
#		v1=Vertices[Faces[fv][0]] #1st vertex on plane fv
#		v2=Vertices[Faces[fv][1]] #2nd vertex on plane fv
#		v3=Vertices[Faces[fv][2]] #3rd vertex on plane fv

#		n1=v2-v1 #1st vector on face fv
#		n2=v3-v1 #2nd vector on face fv
#		nNormal=n1.cross(n2) #normal vector of face fv
#		nNormal.normalize()

#		aTemp=nNormal[0]
#		bTemp=nNormal[1]
#		cTemp=nNormal[2]

#		dTemp = (aTemp*v1[0] + bTemp*v1[1] + cTemp*v1[2])

#		aa.append(aTemp)
#		bb.append(bTemp)
#		cc.append(cTemp)
#		dd.append(dTemp)

##	if not r: r=0.5*abs(min(dd)) # Recommended value. This assignment here is only meaningful if the particle is centered to its centroid

#	pb=potentialblock(material=material,a=aa,b=bb,c=cc,d=array(dd)-r,r=r,R=R,mask=mask,isBoundary=isBoundary,fixed=fixed,color=color)
#	return pb

##	b2=Body()
##	b2.aspherical=True
##	color=Vector3(random.random(),random.random(),random.random())
##	b2.shape=PotentialBlock(k=0.0, r=r, R=0.0, a=aa, b=bb, c=cc, d=array(dd)-r, AabbMinMax=True, color=color)
##	utils._commonBodySetup(b2, b2.shape.volume, b2.shape.inertia, material='frictmat', pos=b1.state.pos, fixed=False)
##	b2.state.ori=b2.shape.orientation
##	O.bodies.append(b2)
#	return aa,bb,cc,dd,r

##**********************************************************************************
#TODO: creates polyhedra from PotentialBlock or PotentialParticle

#from numpy import arange
##**********************************************************************************
##TODO: creates ellipsoidal particle using the Potential Blocks # FIXME: Unfinished
#def ellipsoid(material, axes=Vector3(1,1,1), numFaces=20, r=0.0, R=None, center=[0,0,0], mask=1, isBoundary=False, fixed=False, color=[-1,-1,-1]):
#	"""creates polyhedral ellipsoid using the Potential Blocks

#	:param Vector3 axes: axes of the ellipsoid
#	:param int numFaces: number of particle faces (the total number of faces will be near this value, not exactly it)
#	:param Material material: material of new body (FrictMat)
#	:param Vector3 center: center of the new body
#	"""
#	thetaStep=pi/8.
#	phiStep=pi/8.

#	aa=[]; bb=[]; cc=[]; dd=[];
##	for theta in arange(0, 2*pi, thetaStep):
##		for phi in arange(-pi/2+pi/4., pi/2., phiStep):
##			aa.extend([cos(phi)*s(theta)])
##			bb.extend([cos(phi)*sin(theta)])
##			cc.extend([sin(phi)])
##			dd.extend([1.-r])

#	for theta in arange(0, pi+thetaStep, thetaStep):
#		for phi in arange(0, 2*pi, phiStep):
#			aa.extend([sin(theta)*cos(phi)])
#			bb.extend([sin(theta)*sin(phi)])
#			cc.extend([cos(theta)])
#			dd.extend([1.-r])

#	# FIXME: Here, I have to correct the edge size, using a scaleFactor
#	# FIXME: I also have to fix the shape itself

#	ellipsoid = potentialblock(material=material,a=aa,b=bb,c=cc,d=dd,r=r,R=R,mask=mask,isBoundary=isBoundary,fixed=fixed,color=color)
#	ellipsoid.state.pos = center
#	return ellipsoid


#**********************************************************************************
#creates platonic solids using the Potential Blocks
def platonic_solid(
        material,
        numFaces,
        edge=0.0,
        ri=0.0,
        rm=0.0,
        rc=0.0,
        volume=0.0,
        r=0.0,
        R=None,
        center=[0, 0, 0],
        mask=1,
        isBoundary=False,
        fixed=False,
        color=[-1, -1, -1]
):
	errors = 0
	"""creates platonic solids using the Potential Blocks
	User must specify either the edge, the inradius, the circumradius or the volume of the particle (only one of them)

	:param int numFaces: number of particle faces (regular 4: tetrahedron, 6: hexahedron (cube), 8: octahedron, 12: dodecahedron, 20: icosahedron)
	:param float edge: edge of the platonic solid
	:param float ri: inradius of the platonic solid
	:param float rm: midradius of the platonic solid
	:param float rc: circumradius of the platonic solid
	:param float volume: volume of the platonic solid
	:param Material material: material of new body (FrictMat)
	:param Vector3 center: center of the new body
	"""
	inputParams = [edge, ri, rm, rc, volume]
	count = sum(1 for i in inputParams if i > 0.0)
	if (count > 1):
		logging.error(' Assign only one of: edge - ri - rm - rc - volume')
		return (None)

	gamma = 1 / sqrt(3)

	delta = sqrt((5 - sqrt(5)) / 10.)
	epsilon = sqrt((5 + sqrt(5)) / 10.)

	zeta = sqrt((3 - sqrt(5)) / 6.)
	eta = sqrt((3 + sqrt(5)) / 6.)

	# Schläfli symbols {p,q}: https://en.wikipedia.org/wiki/Platonic_solid

	p = {4: 3, 6: 4, 8: 3, 12: 5, 20: 3}
	q = {4: 3, 6: 3, 8: 4, 12: 3, 20: 5}
	h = {4: 4, 6: 6, 8: 6, 12: 10, 20: 10}  # Coxeter number
	t = cos(pi / q[numFaces]) / sin(pi / h[numFaces])  # tan(theta/2)

	if (numFaces == 4):  #tetrahedron
		aa = array([+gamma, +gamma, -gamma, -gamma])
		bb = array([-gamma, +gamma, +gamma, -gamma])
		cc = array([+gamma, -gamma, +gamma, -gamma])

	elif (numFaces == 6):  #hexahedron (cube)
		aa = [1, -1, 0, 0, 0, 0]
		bb = [0, 0, 1, -1, 0, 0]
		cc = [0, 0, 0, 0, 1, -1]

	elif (numFaces == 8):  #octahedron
		aa = array([+gamma, -gamma, -gamma, +gamma, +gamma, -gamma, +gamma, -gamma])
		bb = array([+gamma, -gamma, +gamma, -gamma, -gamma, +gamma, +gamma, -gamma])
		cc = array([+gamma, -gamma, +gamma, -gamma, +gamma, -gamma, -gamma, +gamma])

	elif (numFaces == 12):  #dodecahedron
		aa = array([delta, -delta, delta, -delta, 0, 0, 0, 0, epsilon, -epsilon, -epsilon, epsilon])
		bb = array([epsilon, -epsilon, -epsilon, epsilon, delta, -delta, delta, -delta, 0, 0, 0, 0])
		cc = array([0, 0, 0, 0, epsilon, -epsilon, -epsilon, epsilon, delta, -delta, delta, -delta])

	elif (numFaces == 20):  #icosahedron: first 8 faces
		aa = [
		        +gamma,
		        -gamma,
		        -gamma,
		        +gamma,
		        +gamma,
		        -gamma,
		        +gamma,
		        -gamma,
		]
		bb = [
		        +gamma,
		        -gamma,
		        +gamma,
		        -gamma,
		        -gamma,
		        +gamma,
		        +gamma,
		        -gamma,
		]
		cc = [
		        +gamma,
		        -gamma,
		        +gamma,
		        -gamma,
		        +gamma,
		        -gamma,
		        -gamma,
		        +gamma,
		]

		# icosahedron: rest 12 faces
		aa.extend([+zeta, -zeta, +zeta, -zeta, 0, 0, 0, 0, +eta, -eta, +eta, -eta])
		bb.extend([+eta, -eta, -eta, +eta, +zeta, -zeta, +zeta, -zeta, 0, 0, 0, 0])
		cc.extend([0, 0, 0, 0, +eta, -eta, -eta, +eta, +zeta, -zeta, -zeta, +zeta])
	else:
		errors += 1
		logging.error('Invalid numFaces. Should be either: {4: tetrahedron, 6: cube, 8: octahedron, 12: dodecahedron, 20: icosahedron}')
		return (None)


#	if errors==0:
	if edge > 0.:
		ri = (edge / 2.) / tan(pi / p[numFaces]) * t
		rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
		rc = (edge / 2.) * tan(pi / q[numFaces]) * t
	elif ri > 0.:
		edge = 2 * ri * tan(pi / p[numFaces]) / t
		rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
		rc = (edge / 2.) * tan(pi / q[numFaces]) * t
	elif rm > 0.:
		edge = 2 * rm * sin(pi / h[numFaces]) / cos(pi / p[numFaces])
		ri = (edge / 2.) / tan(pi / p[numFaces]) * t
		rc = (edge / 2.) * tan(pi / q[numFaces]) * t
	elif rc > 0.:
		edge = 2 * rc / (tan(pi / q[numFaces]) * t)
		ri = (edge / 2.) / tan(pi / p[numFaces]) * t
		rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
	elif volume > 0.:
		edge = (24 * volume * (tan(pi / p[numFaces])**2) / (t * numFaces * p[numFaces]))**(1 / 3)
		ri = (edge / 2.) / tan(pi / p[numFaces]) * t
		rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
		rc = (edge / 2.) * tan(pi / q[numFaces]) * t

	dd = [ri] * numFaces
	if not r:
		r = min(dd) / 2.
	platonic = potentialblock(material=material, a=aa, b=bb, c=cc, d=array(dd) - r, r=r, R=R, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)

	platonic.shape.edge = edge
	platonic.shape.ri = ri  # Add inradius attribute from Python (visible only to Python objects/functions)
	platonic.shape.rm = rm  # Add midradius attribute from Python (visible only to Python objects/functions)
	platonic.shape.rc = rc  # Add circumradius attribute from Python (visible only to Python objects/functions)

	platonic.state.pos = center
	platonic.state.ori = platonic.shape.orientation
	return platonic