1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
# encoding: utf-8
# 2022 © Vasileios Angelidakis <vasileios.angelidakis@ncl.ac.uk>
"""
Auxiliary functions for the Potential Blocks
"""
import math, random, doctest, geom, numpy
from yade import Vector3, Quaternion, utils
from yade.wrapper import *
from math import sin, cos, tan, sqrt, pi, radians # atan, atan2
import logging
logging.basicConfig(level=logging.INFO)
from numpy import array
#from yade import utils # FIXME: I only use utils._commonBodySetup
from yade.utils import _commonBodySetup, randomColor
try: # use psyco if available
import psyco
psyco.full()
except ImportError:
pass
#**********************************************************************************
#creates Potential Blocks, defining the coefficients of their faces
def potentialblock(material, a=[], b=[], c=[], d=[], r=0.0, R=0.0, mask=1, isBoundary=False, fixed=False, color=[-1, -1, -1]):
"""creates potential block.
:param Material material: material of new body
:param [float] a,b,c,d: lists of plane coefficients of the particle faces (see PotentialBlock docs)
:param float r: radius of inner Potential Particle (see PotentialBlock docs)
:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
:param bool isBoundary: whether this is a boundary body (see PotentialBlock docs)
"""
# TODO: In this function, I can introduce all the other attributes of the PBs, like: fixedNormal, boundaryNormal -> Naah, the invocation gets too long. I can use *kw!!!
pb = Body()
pb.mask = mask
pb.aspherical = True
pb.shape = PotentialBlock(
a=a, b=b, c=c, d=d, r=r, R=R, isBoundary=isBoundary, AabbMinMax=True
) #id=len(O.bodies) #FIXME: Check if I need id for vtk output
if color[0] == -1:
pb.shape.color = randomColor(seed=random.randint(0, int(1E6)))
else:
pb.shape.color = color
utils._commonBodySetup(pb, pb.shape.volume, pb.shape.inertia, material, pos=pb.shape.position, fixed=fixed)
pb.state.ori = pb.shape.orientation
return pb
#**********************************************************************************
#creates cuboidal particle using the Potential Blocks
def cuboid(material, edges=Vector3(1, 1, 1), r=0.0, R=0.0, center=[0, 0, 0], mask=1, isBoundary=False, fixed=False, color=[-1, -1, -1]):
"""creates cuboid using the Potential Blocks
:param Vector3 edges: edges of the cuboid
:param Material material: material of new body (FrictMat)
:param Vector3 center: center of the new body
"""
aa = [1, -1, 0, 0, 0, 0]
bb = [0, 0, 1, -1, 0, 0]
cc = [0, 0, 0, 0, 1, -1]
dd = [edges[0] / 2., edges[0] / 2., edges[1] / 2., edges[1] / 2., edges[2] / 2., edges[2] / 2.]
if not r:
r = min(dd) / 2.
cuboid = potentialblock(material=material, a=aa, b=bb, c=cc, d=array(dd) - r, r=r, R=R, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
cuboid.state.pos = center
return cuboid
#**********************************************************************************
#creates Aabb boundary plates using the Potential Blocks, around a given cuboidal space
def aabbPlates(material, extrema=None, thickness=0.0, r=0.0, R=0.0, mask=1, isBoundary=False, fixed=True, color=None):
"""Return 6 cuboids that will wrap existing packing as walls from all sides. #FIXME: Correct this comment
:param Material material: material of new bodies (FrictMat)
:param [Vector3, Vector3] extrema: extremal points of the Aabb of the packing, as a list of two Vector3, or any equivalent type (will not be calculated if not specified)
:param float thickness: wall thickness (equal to 1/10 of the smallest dimension if not specified)
:param float r: radius of inner Potential Particle (see PotentialBlock docs)
:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
:param int mask: groupMask for the new bodies
:returns: a list of 6 PotentialBlock Bodies enclosing the packing, in the order minX,maxX,minY,maxY,minZ,maxZ.
"""
walls = []
# if not extrema: extrema=aabbExtrema() #TODO: aabbExtrema() is not compatible with non-spherical particles yet
if not thickness:
thickness = min(extrema[1][0] - extrema[0][0], extrema[1][1] - extrema[0][1], extrema[1][2] - extrema[0][2]) / 10.
randColor = False
if not color:
randColor = True
for axis in [0, 1, 2]:
mi, ma = extrema
center = [(mi[i] + ma[i]) / 2. for i in range(3)]
extents = [(ma[i] - mi[i]) for i in range(3)]
extents[axis] = thickness / 2.
if randColor:
color = randomColor(seed=random.randint(0, 1E6))
for j in [0, 1]:
center[axis] = extrema[j][axis] + (j - .5) * thickness / 2.
walls.append(
cuboid(material=material, edges=extents, r=r, R=R, center=center, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
)
walls[-1].shape.wire = True
return walls
#**********************************************************************************
#creates cylindrical boundary plates using the Potential Blocks, using a given radius and around a given axis
def cylindricalPlates(
material, radius=0.0, height=0.0, thickness=0.0, numFaces=3, r=0.0, R=0.0, mask=1, isBoundary=False, fixed=True, lid=[True, True], color=None
):
"""Return numFaces cuboids that will wrap existing packing as walls from all sides. #FIXME: Correct this comment
:param Material material: material of new bodies (FrictMat)
:param float radius: radius of the cylinder
:param float height: height of cylinder
:param float thickness: thickness of cylinder faces (equal to 1/10 of the cylinder inradius if not specified)
:param int numFaces: number of cylinder faces (>3)
:param float r: radius of inner Potential Particle (see PotentialBlock docs)
:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
:param int mask: groupMask for the new bodies
:param lid [bool]: list of booleans, whether to create the bottom and top lids of the cylindrical plates
:returns: a list of cuboidal Potential Blocks forming a hollow cylinder
"""
# TODO: Check facetCylinder for orientation of the cylinder
# TODO: Add center of the cylinder
walls = []
if not thickness:
thickness = min(radius, height / 2.) / 10.
angle = radians(360) / numFaces
axis = Vector3(0, 0, 1) #TODO: To make it work for any axis - have to change: center, edges
randColor = False
if not color:
randColor = True
for i in range(0, numFaces):
center = Vector3((radius + thickness / 2.) * cos(i * angle), (radius + thickness / 2.) * sin(i * angle), height / 2.) #*(axis.asDiagonal())
if randColor:
color = [abs(cos(i * angle)), abs(sin(i * angle)), 1]
walls.append(
cuboid(
material=material,
edges=Vector3(thickness, 2 * (radius) * tan(pi / numFaces), height),
r=r,
R=R,
center=center,
mask=mask,
isBoundary=isBoundary,
fixed=fixed,
color=color
)
)
walls[-1].state.ori = Quaternion(axis, i * angle)
walls[-1].shape.wire = True
color = [0.36, 0.54, 0.66]
if lid[0] == True:
# Create top plate
walls.append(
prism(
material=material,
radius1=radius,
thickness=thickness,
numFaces=numFaces,
r=r,
R=R,
color=color,
mask=mask,
isBoundary=isBoundary,
fixed=fixed
)
)
walls[-1].state.pos = axis * (height + thickness / 2)
walls[-1].state.ori = Quaternion(axis, i * angle) #FIXME: Here I use i outside the loop?
if lid[1] == True:
# Create bottom plate
walls.append(
prism(
material=material,
radius1=radius,
thickness=thickness,
numFaces=numFaces,
r=r,
R=R,
color=color,
mask=mask,
isBoundary=isBoundary,
fixed=fixed
)
)
walls[-1].state.pos = -axis * thickness / 2
walls[-1].state.ori = Quaternion(axis, i * angle) #FIXME: Here I use i outside the loop?
return walls
##**********************************************************************************
#creates regular prism with N faces
def prism(material, radius1=0.0, radius2=-1, thickness=0.0, numFaces=3, r=0.0, R=0.0, center=None, color=[1, 0, 0], mask=1, isBoundary=False, fixed=False):
"""Return regular prism with numFaces
:param Material material: material of new bodies (FrictMat)
:param float radius1: inradius of the start cross-section of the prism
:param float radius2: inradius of the end cross-section of the prism (equal to radius1 if not specified)
:param float thickness: thickness of the prism (equal to radius1 if not specified)
:param int numFaces: number of prisms' faces (>3)
:param float r: radius of inner Potential Particle (see PotentialBlock docs)
:param float R: distance R of the Potential Blocks (see PotentialBlock docs)
:param Vector3 center: center of the Potential Blocks (not currently used)
:param int mask: groupMask for the new bodies
:returns: an axial-symmetric Potential Block with variable cross-section, which can become either a regular prism (radius1=radius2), a pyramid (radius2=0) or a cylinder or cone respectively, for a large enough numFaces value.
"""
aa = []
bb = []
cc = []
dd = []
if radius2 == -1:
radius2 = radius1
if not thickness:
thickness = radius1
angle = radians(360) / numFaces
for i in range(0, numFaces):
aTemp = cos(i * angle)
bTemp = sin(i * angle)
cTemp = (radius1 - radius2) / thickness
dTemp = (radius1 + radius2) / 2
magnitude = Vector3(aTemp, bTemp, cTemp).norm()
aa.append(aTemp / magnitude)
bb.append(bTemp / magnitude)
cc.append(cTemp / magnitude)
dd.append(dTemp / magnitude)
aa.extend([0.0, 0.0])
bb.extend([0.0, 0.0])
cc.extend([1.0, -1.0])
dd.extend([thickness / 2., thickness / 2.])
if not r:
r = min(dd) / 2.
prism = potentialblock(material=material, a=aa, b=bb, c=cc, d=array(dd) - r, r=r, R=R, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
# if center: prism.state.pos=prism.state.pos+center; print(center) #FIXME: Maybe assign center if not (0,0,0), but add it to the local position, rather than overwriting it
return prism
##**********************************************************************************
#TODO: export PotentialBlock to stl file: This would better fit in the export module
##**********************************************************************************
#TODO: creates masonry arch: I can do it in two ways:
# 1. Geometrically, using the angles or
# 2. Using BlockGen, demonstrating that we can do non-permanent joints
# Explore multi-ring arches: For the inner ring, I must replicate the interlocking geometry
##**********************************************************************************
#TODO: creates a model for periodic and aperiodic masonry
##**********************************************************************************
#TODO: creates SAG mill with chosen: radius, width, optionally rigid boundaries or no boundaries, dent size
##**********************************************************************************
#creates PotentialBlock or PotentialParticle from polyhedra # FIXME: Unfinished
#def polyhedra2PotentialBlock(b,r=None,R=0.0): #maybe polyhedra2Potential or polyhedra2PotentialShape #FIXME: Haven't checked it yet
# """Calculate coefficients of the planes comprising the faces of a polyhedron, in the format used by the PotentialBlock and PotentialParticle shape classes
# :param Body b: Body with b.shape=Polyhedra
# :param vector(Real) aa: Coefficients 'a' of planes: ax+by+cz-d-r=0
# :param vector(Real) bb: Coefficients 'b' of planes: ax+by+cz-d-r=0
# :param vector(Real) cc: Coefficients 'c' of planes: ax+by+cz-d-r=0
# :param vector(Real) dd: Coefficients 'd' of planes: ax+by+cz-d-r=0
# :param Real r: Suggested radius of PotentialBlock or PotentialParticle to be generated
# """
# Faces=b.shape.GetSurfaces()
# Vertices = [b.state.ori*v for v in b.shape.v] # vertices in global coords
# aa=[]
# bb=[]
# cc=[]
# dd=[]
# for fv in range(len(Faces)):
# v1=Vertices[Faces[fv][0]] #1st vertex on plane fv
# v2=Vertices[Faces[fv][1]] #2nd vertex on plane fv
# v3=Vertices[Faces[fv][2]] #3rd vertex on plane fv
# n1=v2-v1 #1st vector on face fv
# n2=v3-v1 #2nd vector on face fv
# nNormal=n1.cross(n2) #normal vector of face fv
# nNormal.normalize()
# aTemp=nNormal[0]
# bTemp=nNormal[1]
# cTemp=nNormal[2]
# dTemp = (aTemp*v1[0] + bTemp*v1[1] + cTemp*v1[2])
# aa.append(aTemp)
# bb.append(bTemp)
# cc.append(cTemp)
# dd.append(dTemp)
## if not r: r=0.5*abs(min(dd)) # Recommended value. This assignment here is only meaningful if the particle is centered to its centroid
# pb=potentialblock(material=material,a=aa,b=bb,c=cc,d=array(dd)-r,r=r,R=R,mask=mask,isBoundary=isBoundary,fixed=fixed,color=color)
# return pb
## b2=Body()
## b2.aspherical=True
## color=Vector3(random.random(),random.random(),random.random())
## b2.shape=PotentialBlock(k=0.0, r=r, R=0.0, a=aa, b=bb, c=cc, d=array(dd)-r, AabbMinMax=True, color=color)
## utils._commonBodySetup(b2, b2.shape.volume, b2.shape.inertia, material='frictmat', pos=b1.state.pos, fixed=False)
## b2.state.ori=b2.shape.orientation
## O.bodies.append(b2)
# return aa,bb,cc,dd,r
##**********************************************************************************
#TODO: creates polyhedra from PotentialBlock or PotentialParticle
#from numpy import arange
##**********************************************************************************
##TODO: creates ellipsoidal particle using the Potential Blocks # FIXME: Unfinished
#def ellipsoid(material, axes=Vector3(1,1,1), numFaces=20, r=0.0, R=None, center=[0,0,0], mask=1, isBoundary=False, fixed=False, color=[-1,-1,-1]):
# """creates polyhedral ellipsoid using the Potential Blocks
# :param Vector3 axes: axes of the ellipsoid
# :param int numFaces: number of particle faces (the total number of faces will be near this value, not exactly it)
# :param Material material: material of new body (FrictMat)
# :param Vector3 center: center of the new body
# """
# thetaStep=pi/8.
# phiStep=pi/8.
# aa=[]; bb=[]; cc=[]; dd=[];
## for theta in arange(0, 2*pi, thetaStep):
## for phi in arange(-pi/2+pi/4., pi/2., phiStep):
## aa.extend([cos(phi)*s(theta)])
## bb.extend([cos(phi)*sin(theta)])
## cc.extend([sin(phi)])
## dd.extend([1.-r])
# for theta in arange(0, pi+thetaStep, thetaStep):
# for phi in arange(0, 2*pi, phiStep):
# aa.extend([sin(theta)*cos(phi)])
# bb.extend([sin(theta)*sin(phi)])
# cc.extend([cos(theta)])
# dd.extend([1.-r])
# # FIXME: Here, I have to correct the edge size, using a scaleFactor
# # FIXME: I also have to fix the shape itself
# ellipsoid = potentialblock(material=material,a=aa,b=bb,c=cc,d=dd,r=r,R=R,mask=mask,isBoundary=isBoundary,fixed=fixed,color=color)
# ellipsoid.state.pos = center
# return ellipsoid
#**********************************************************************************
#creates platonic solids using the Potential Blocks
def platonic_solid(
material,
numFaces,
edge=0.0,
ri=0.0,
rm=0.0,
rc=0.0,
volume=0.0,
r=0.0,
R=None,
center=[0, 0, 0],
mask=1,
isBoundary=False,
fixed=False,
color=[-1, -1, -1]
):
errors = 0
"""creates platonic solids using the Potential Blocks
User must specify either the edge, the inradius, the circumradius or the volume of the particle (only one of them)
:param int numFaces: number of particle faces (regular 4: tetrahedron, 6: hexahedron (cube), 8: octahedron, 12: dodecahedron, 20: icosahedron)
:param float edge: edge of the platonic solid
:param float ri: inradius of the platonic solid
:param float rm: midradius of the platonic solid
:param float rc: circumradius of the platonic solid
:param float volume: volume of the platonic solid
:param Material material: material of new body (FrictMat)
:param Vector3 center: center of the new body
"""
inputParams = [edge, ri, rm, rc, volume]
count = sum(1 for i in inputParams if i > 0.0)
if (count > 1):
logging.error(' Assign only one of: edge - ri - rm - rc - volume')
return (None)
gamma = 1 / sqrt(3)
delta = sqrt((5 - sqrt(5)) / 10.)
epsilon = sqrt((5 + sqrt(5)) / 10.)
zeta = sqrt((3 - sqrt(5)) / 6.)
eta = sqrt((3 + sqrt(5)) / 6.)
# Schläfli symbols {p,q}: https://en.wikipedia.org/wiki/Platonic_solid
p = {4: 3, 6: 4, 8: 3, 12: 5, 20: 3}
q = {4: 3, 6: 3, 8: 4, 12: 3, 20: 5}
h = {4: 4, 6: 6, 8: 6, 12: 10, 20: 10} # Coxeter number
t = cos(pi / q[numFaces]) / sin(pi / h[numFaces]) # tan(theta/2)
if (numFaces == 4): #tetrahedron
aa = array([+gamma, +gamma, -gamma, -gamma])
bb = array([-gamma, +gamma, +gamma, -gamma])
cc = array([+gamma, -gamma, +gamma, -gamma])
elif (numFaces == 6): #hexahedron (cube)
aa = [1, -1, 0, 0, 0, 0]
bb = [0, 0, 1, -1, 0, 0]
cc = [0, 0, 0, 0, 1, -1]
elif (numFaces == 8): #octahedron
aa = array([+gamma, -gamma, -gamma, +gamma, +gamma, -gamma, +gamma, -gamma])
bb = array([+gamma, -gamma, +gamma, -gamma, -gamma, +gamma, +gamma, -gamma])
cc = array([+gamma, -gamma, +gamma, -gamma, +gamma, -gamma, -gamma, +gamma])
elif (numFaces == 12): #dodecahedron
aa = array([delta, -delta, delta, -delta, 0, 0, 0, 0, epsilon, -epsilon, -epsilon, epsilon])
bb = array([epsilon, -epsilon, -epsilon, epsilon, delta, -delta, delta, -delta, 0, 0, 0, 0])
cc = array([0, 0, 0, 0, epsilon, -epsilon, -epsilon, epsilon, delta, -delta, delta, -delta])
elif (numFaces == 20): #icosahedron: first 8 faces
aa = [
+gamma,
-gamma,
-gamma,
+gamma,
+gamma,
-gamma,
+gamma,
-gamma,
]
bb = [
+gamma,
-gamma,
+gamma,
-gamma,
-gamma,
+gamma,
+gamma,
-gamma,
]
cc = [
+gamma,
-gamma,
+gamma,
-gamma,
+gamma,
-gamma,
-gamma,
+gamma,
]
# icosahedron: rest 12 faces
aa.extend([+zeta, -zeta, +zeta, -zeta, 0, 0, 0, 0, +eta, -eta, +eta, -eta])
bb.extend([+eta, -eta, -eta, +eta, +zeta, -zeta, +zeta, -zeta, 0, 0, 0, 0])
cc.extend([0, 0, 0, 0, +eta, -eta, -eta, +eta, +zeta, -zeta, -zeta, +zeta])
else:
errors += 1
logging.error('Invalid numFaces. Should be either: {4: tetrahedron, 6: cube, 8: octahedron, 12: dodecahedron, 20: icosahedron}')
return (None)
# if errors==0:
if edge > 0.:
ri = (edge / 2.) / tan(pi / p[numFaces]) * t
rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
rc = (edge / 2.) * tan(pi / q[numFaces]) * t
elif ri > 0.:
edge = 2 * ri * tan(pi / p[numFaces]) / t
rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
rc = (edge / 2.) * tan(pi / q[numFaces]) * t
elif rm > 0.:
edge = 2 * rm * sin(pi / h[numFaces]) / cos(pi / p[numFaces])
ri = (edge / 2.) / tan(pi / p[numFaces]) * t
rc = (edge / 2.) * tan(pi / q[numFaces]) * t
elif rc > 0.:
edge = 2 * rc / (tan(pi / q[numFaces]) * t)
ri = (edge / 2.) / tan(pi / p[numFaces]) * t
rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
elif volume > 0.:
edge = (24 * volume * (tan(pi / p[numFaces])**2) / (t * numFaces * p[numFaces]))**(1 / 3)
ri = (edge / 2.) / tan(pi / p[numFaces]) * t
rm = (edge / 2.) * cos(pi / p[numFaces]) / sin(pi / h[numFaces])
rc = (edge / 2.) * tan(pi / q[numFaces]) * t
dd = [ri] * numFaces
if not r:
r = min(dd) / 2.
platonic = potentialblock(material=material, a=aa, b=bb, c=cc, d=array(dd) - r, r=r, R=R, mask=mask, isBoundary=isBoundary, fixed=fixed, color=color)
platonic.shape.edge = edge
platonic.shape.ri = ri # Add inradius attribute from Python (visible only to Python objects/functions)
platonic.shape.rm = rm # Add midradius attribute from Python (visible only to Python objects/functions)
platonic.shape.rc = rc # Add circumradius attribute from Python (visible only to Python objects/functions)
platonic.state.pos = center
platonic.state.ori = platonic.shape.orientation
return platonic
|