1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
|
# -*- coding: utf-8 -*-
# This is the test of all C++ lib/high-precision/MathFunctions.hpp exported to python via py/high-precision/_math.cpp
# (C) 2015 Anton Gladky <gladk@debian.org>
# (C) 2019 Janek Kozicki
import unittest, math, sys
import yade
from yade import math as mth
import testMathHelper
if (yade.config.highPrecisionMpmath):
print('\n\033[92m' + "Using " + str(yade.math.getRealHPPythonDigits10()) + " decimal digits in python. Importing mpmath" + '\033[0m\n')
import mpmath
class SimpleTests(unittest.TestCase):
def needsMpmathAtN(self, N):
return yade.math.needsMpmathAtN(N)
def incompleteComplex(self):
return ('COMPLEX_MP' not in yade.config.features)
def hasMpfr(self):
return ('MPFR' in yade.config.features)
# flags: -Ofast -march=native -mtune=native -fno-associative-math -fno-finite-math-only -fsigned-zeros
def isFastNative(self):
return ('FAST_NATIVE' in yade.config.features)
def nowUsesBoostBinFloat(self, N):
return (not self.hasMpfr()) and ((yade.math.RealHPConfig.getDigits10(N) > 33) or (yade.math.RealHPConfig.getDigits10(N) in [24, 30]))
def setUp(self):
self.testRecordingMode = False # if 'True' then it will record 'self.newTolerances' maximum errors encountered, to be put later in place of 'self.defaultTolerances'. See function tearDown() below.
self.printedAlready = set()
self.nonBoostMPFR = False # I was testing non-boost MPFR before: /usr/include/eigen3/unsupported/Eigen/MPRealSupport. Might come handy later.
# If failures appear and function is not broken then increase tolerance a little.
# yapf: disable
self.defaultTolerances={
# function decimal places : tolerance factor. Each "10" corresponds to single wrong decimal place. But they are approximate and rounded up.
#
# float double long double float128 MPFR_100 MPFR_150 cpp_bin_float_100 cpp_bin_float_150
# Real C++ functions
"acos" : {"6": 100 , "15": 100 , "18": 100 , "33": 1000 , "100": 1000 , "150" : 1000 , "100_b" : 1000 , "150_b" : 1000 }
, "atanh" : {"6": 100 , "15": 100 , "18": 100 , "33": 1000 , "100": 1000 , "150" : 1000 , "100_b" : 1000 , "150_b" : 1000 }
, "atan" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "atan2" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "acosh" : {"6": 100 , "15": 100 , "18": 100 , "33": 1000 , "100": 1000 , "150" : 1000 , "100_b" : 1000 , "150_b" : 1000 }
, "asin" : {"6": 100 , "15": 100 , "18": 100 , "33": 1000 , "100": 1000 , "150" : 1000 , "100_b" : 1000 , "150_b" : 1000 }
, "asinh" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
# maybe the error lies in mpmath, because everything is compared with it.
, "sin" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "cos" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "tan" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "tanh" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "exp" : {"6": 10 , "15": 10 , "18": 10 , "33": 10 , "100": 10 , "150" : 10 , "100_b" : 100 , "150_b" : 100 }
, "exp2" : {"6": 10 , "15": 10 , "18": 10 , "33": 10 , "100": 10 , "150" : 10 , "100_b" : 100 , "150_b" : 100 }
, "expm1" : {"6": 10 , "15": 10 , "18": 10 , "33": 10 , "100": 10 , "150" : 10 , "100_b" : 100 , "150_b" : 100 }
, "cosh" : {"6": 10 , "15": 10 , "18": 10 , "33": 10 , "100": 10 , "150" : 10 , "100_b" : 100 , "150_b" : 100 }
, "sinh" : {"6": 10 , "15": 10 , "18": 10 , "33": 10 , "100": 10 , "150" : 10 , "100_b" : 100 , "150_b" : 100 }
, "log" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "log10" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "log1p" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "log2" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "pow" : {"6": 5 , "15": 10 , "18": 50 , "33": 50 , "100": 50 , "150" : 50 , "100_b" : 50 , "150_b" : 50 }
, "sqrt" : {"6": 5 , "15": 10 , "18": 50 , "33": 50 , "100": 50 , "150" : 50 , "100_b" : 50 , "150_b" : 50 }
, "lgamma" : {"6": 100 , "15": 500 , "18": 1000 , "33": 10000 , "100": 100000, "150" : 100000, "100_b" : 1000000 , "150_b" : 1000000}
, "tgamma" : {"6": 100 , "15": 100 , "18": 1000 , "33": 10000 , "100": 100000, "150" : 100000, "100_b" : 1000000 , "150_b" : 1000000}
, "erfc" : {"6": 100 , "15": 100 , "18": 2000 , "33": 20000 , "100": 200000, "150" : 200000, "100_b" : 4000000 , "150_b" : 8000000}
, "erf" : {"6": 100 , "15": 100 , "18": 5 , "33": 5 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "modf" : {"6": 10 , "15": 100 , "18": 5000 , "33": 300000 , "100": 10000 , "150" : 100000, "100_b" : 10000 , "150_b" : 10000 }
, "fmod" : {"6": 10 , "15": 100 , "18": 5000 , "33": 10000 , "100": 10000 , "150" : 100000, "100_b" : 10000 , "150_b" : 10000 }
, "remainder" : {"6": 100 , "15": 5000, "18": 5000 , "33": 10000 , "100": 10000 , "150" : 100000, "100_b" : 10000 , "150_b" : 10000 }
, "remquo" : {"6": 100 , "15": 5000, "18": 5000 , "33": 10000 , "100": 10000 , "150" : 100000, "100_b" : 10000 , "150_b" : 10000 }
, "fma" : {"6": 10 , "15": 100 , "18": 10 , "33": 10 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 1000 }
# Same order of functions as in #include <lib/high-precision/MathComplexFunctions.hpp>
# Complex C++ functions. Start names with "Complex " so that they can sit in the same defaultTolerances dictionary
, "Complex conj" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 1 }
, "Complex real" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 1 }
, "Complex imag" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 1 }
, "Complex abs" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 1 }
, "Complex arg" : {"6": 1 , "15": 1 , "18": 2 , "33": 4 , "100": 8 , "150" : 8 , "100_b" : 8 , "150_b" : 8 }
, "Complex norm" : {"6": 1 , "15": 1 , "18": 2 , "33": 4 , "100": 8 , "150" : 8 , "100_b" : 8 , "150_b" : 8 }
, "Complex proj" : {"6": 1 , "15": 1 , "18": 2 , "33": 4 , "100": 8 , "150" : 8 , "100_b" : 8 , "150_b" : 8 }
, "Complex polar": {"6": 1 , "15": 1 , "18": 2 , "33": 4 , "100": 8 , "150" : 8 , "100_b" : 8 , "150_b" : 8 }
, "Complex sin" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex sinh" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex cos" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex cosh" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex tan" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex tanh" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex asin" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex asinh": {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex acos" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex acosh": {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex atan" : {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex atanh": {"6": 100 , "15": 100 , "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "Complex exp" : {"6": 10 , "15": 10 , "18": 10 , "33": 10 , "100": 10 , "150" : 10 , "100_b" : 100 , "150_b" : 100 }
, "Complex log" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "Complex log10": {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "Complex pow" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
, "Complex sqrt" : {"6": 1000, "15": 1000, "18": 100 , "33": 100 , "100": 100 , "150" : 100 , "100_b" : 100 , "150_b" : 100 }
# MathSpecialFunctions
, "cylBesselJ" : {"6": 1000, "15": 1000, "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "factorial" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "laguerre" : {"6": 1000, "15": 1000, "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
, "sphericalHarmonic" : {"6": 1000, "15": 1000, "18": 20000, "33": 4000 , "100": 80000 , "150" : 80000 , "100_b" : 800000 , "150_b" : 800000 }
# these are not tolerances. These are EigenCostRealHP from lib/high-precision/EigenNumTraits.hpp
, "read" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 10000 , "150" : 10000 , "100_b" : 10000 , "150_b" : 10000 }
, "add" : {"6": 1 , "15": 1 , "18": 1 , "33": 2 , "100": 10000 , "150" : 10000 , "100_b" : 10000 , "150_b" : 10000 }
, "mul" : {"6": 1 , "15": 1 , "18": 1 , "33": 2 , "100": 10000 , "150" : 10000 , "100_b" : 10000 , "150_b" : 10000 }
, "cread" : {"6": 2 , "15": 2 , "18": 2 , "33": 2 , "100": 20000 , "150" : 20000 , "100_b" : 20000 , "150_b" : 20000 }
, "cadd" : {"6": 2 , "15": 2 , "18": 2 , "33": 4 , "100": 20000 , "150" : 20000 , "100_b" : 20000 , "150_b" : 20000 }
, "cmul" : {"6": 6 , "15": 6 , "18": 6 , "33": 12 , "100": 60000 , "150" : 60000 , "100_b" : 60000 , "150_b" : 60000 }
# Euler–Mascheroni and Pi constants need higher tolerance in boost cpp_bin_float at very high precisions
, "euler" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "pi" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "logE2" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
, "catalan" : {"6": 1 , "15": 1 , "18": 1 , "33": 1 , "100": 1 , "150" : 1 , "100_b" : 1 , "150_b" : 50 }
}
# yapf: enable
if (yade.libVersions.getArchitecture() in ['arm64', 's390x']):
for a in ["read", "add", "mul", "cread", "cadd", "cmul"]:
for b in ["18", "33"]:
self.defaultTolerances[a][b] = self.defaultTolerances[a]["100"]
if (yade.libVersions.getArchitecture() == 'ppc64el'):
self.defaultTolerances["asinh"]["100"] = 1e14 # NOTE: something seems to be off with asinh on ppc64el architecture
self.defaultTolerances["asinh"]["150"] = 1e14
self.testLevelsHP = mth.RealHPConfig.getSupportedByMinieigen()
self.baseDigits = mth.RealHPConfig.getDigits10(1)
self.use33or30 = (33 if mth.RealHPConfig.isFloat128Present else 30)
self.builtinHP = {
6: [6, 15, 18, 24, self.use33or30],
15: [15, self.use33or30]
} # higher precisions are multiplies of baseDigits, see NthLevelRealHP in lib/high-precision/RealHP.hpp
if (self.testRecordingMode):
self.startRecordingErrors()
def tearDown(self):
if (self.testRecordingMode):
if (self.totalCount != 0):
import pickle
fname = "/tmp/" + str(
self.id().split('.')[-1] + "_dig" + str(self.baseDigits) + self.extraName + "_ex" +
str(mth.RealHPConfig.extraStringDigits10) + "__" + str(self.totalCount)
) + ".pickle"
print(str(self.newTolerances) + "\n\n saving: " + fname)
pickle.dump(self.newTolerances, open(fname, "wb"))
# this is how I sort by error, to find the worst performing functions:
# d=pickle.load( open( "testMathFunctions_dig33_ex4__18000.pickle", "rb" ) );sorted([(d[key]['33'][0],key) for key in d], key=lambda tup: tup[0])
def getDefaultTolerance(self, name, multiplyByTolerance=True):
mult = self.tolerance
key = str(self.digs0) + self.extraName
if (self.testRecordingMode):
if (name in self.newTolerances and key in self.newTolerances[name] and self.getMpmath().isfinite(self.newTolerances[name][key][0])):
return self.newTolerances[name][key][0] * mult
if (not multiplyByTolerance):
mult = 1
dictForThisFunc = self.defaultTolerances[name]
if (key in dictForThisFunc):
return dictForThisFunc[key] * mult
## lower than 33 digits are all hardware precision: 6, 15, 18, 33 digits. But 4*float is 24 digits, and it can be achieved by MPFR only so add exception for 24 also.
if (yade.libVersions.getArchitecture() == 'ppc64el'): # long double on ppc64el has 31 digits10
self.assertTrue(self.digs0 > 33 or self.digs0 in [24, 30, 31])
else:
self.assertTrue(self.digs0 > 33 or self.digs0 in [24, 30]) ## 33 was here before
low = dictForThisFunc["100" + self.extraName]
high = dictForThisFunc["150" + self.extraName]
import numpy
return numpy.interp(self.digs0, [100, 150], [low, high]) * mult
def storeArgs(self, args):
self.storedArgs = args
def storeDefaultTolerance(self, error, name):
newFactor = (error / self.tolerance) * self.getMpmath().mpf(1.01)
oldFactor = newFactor
key = str(self.digs0) + self.extraName
if (name in self.newTolerances):
if (key in self.newTolerances[name] and self.getMpmath().isfinite(self.newTolerances[name][key][0])):
oldFactor = self.newTolerances[name][key][0]
else:
self.newTolerances[name] = {}
if (newFactor >= oldFactor):
self.newTolerances[name][key] = (newFactor, self.storedArgs)
def lgamma(self, r):
mpmath.mp.dps = mth.RealHPConfig.getDigits10(self.maxN) + mth.RealHPConfig.extraStringDigits10
return mpmath.log(abs(mpmath.gamma(r)))
def startRecordingErrors(self):
self.newTolerances = {}
self.maxN = mth.RealHPConfig.getSupportedByMinieigen()[-1]
if (mth.RealHPConfig.getDigits10(self.maxN) < 490):
print(
"\n*****\nWarning: recording errors uses less than 490 digits precision. See commits ef1fed55f 015292c0a, they were removed afer this error search was finished.\n*****\n"
)
self.maxHPn = getattr(mth, "HP" + str(self.maxN))
# make maxHPn very similar to mpmath - emulate it.
self.maxHPn.mpf = mpmath.mpf
self.maxHPn.mpc = mpmath.mpc
self.maxHPn.power = self.maxHPn.pow
self.maxHPn.pi = self.maxHPn.Pi()
self.maxHPn.euler = self.maxHPn.Euler()
self.maxHPn.catalan = self.maxHPn.Catalan()
if (
self.maxN > mth.RealHPConfig.workaroundSlowBoostBinFloat
): # these functions are unavailable in C++ (because 'import minieigenHP' is too slow for cpp_bin_float), so emulate them
self.maxHPn.lgamma = self.lgamma
self.maxHPn.tgamma = mpmath.gamma
self.maxHPn.gamma = mpmath.gamma
self.maxHPn.erf = mpmath.erf
self.maxHPn.erfc = mpmath.erfc
else:
self.maxHPn.gamma = self.maxHPn.tgamma
self.storeArgs((mpmath.mpf('nan'),))
self.totalCount = 0
def testBasicHP(self):
if (self.testRecordingMode):
return # skip this test if recording.
if (mth.RealHPConfig.isEnabledRealHP):
ec = (1, 2, 3, 4, 8, 10, 20) # (1,2,3,4,5,6,7,8,9,10,20) #
mn = (1, 2) # ec # use these if changed something in lib/high-precision/RealHPConfig.hpp
self.assertEqual(ec, mth.RealHPConfig.getSupportedByEigenCgal())
self.assertEqual(mn, mth.RealHPConfig.getSupportedByMinieigen())
if (not self.hasMpfr()):
self.assertEqual(2, mth.RealHPConfig.workaroundSlowBoostBinFloat)
else:
self.assertEqual(ec[-1], mth.RealHPConfig.workaroundSlowBoostBinFloat)
else:
self.assertEqual((1,), mth.RealHPConfig.getSupportedByEigenCgal())
self.assertEqual((1,), mth.RealHPConfig.getSupportedByMinieigen())
self.assertEqual(1, mth.RealHPConfig.workaroundSlowBoostBinFloat)
def getDigitsHP(self, N):
ret = None
if (self.baseDigits in self.builtinHP) and (N <= len(self.builtinHP[self.baseDigits])):
ret = self.builtinHP[self.baseDigits][N - 1]
else:
ret = self.baseDigits * N
self.assertEqual(ret, mth.RealHPConfig.getDigits10(N))
return ret
def adjustDigs0(self, N, HPn, MPn):
self.HPnHelper = HPn
self.digs0 = self.getDigitsHP(N)
# tolerance = 1.2×10⁻ᵈ⁺¹, where ᵈ==self.digs0
# so basically we store one more decimal digit, and expect one less decimal digit. That amounts to ignoring one (two, if the extra one is counted) least significant digits.
self.tolerance = HPn.Real((MPn.mpf(10)**(-self.digs0 + 1)) * MPn.mpf("1.2"))
#self.bits = MPn.ceil(MPn.mpf(self.digs0)/(MPn.log(2)/MPn.log(10)))+1 # Maybe a bug report against MPFR + cpp_bin_float? They don't use this formula for number of bits
self.bits = MPn.ceil(
MPn.mpf(self.digs0) / (0.301)
) + 1 # it is reproducing MPFR's formula for number of bits. Discovered by experiments. Adjustments are possible.
mpmathVsMpfrBits = int(
self.bits / 2085
) # adjust discrepency between mpmath and MPFR due to incorrect log10/log2 value (above line). The 2085 was found empirically.
# mpmath has 5 more internal bits, use its mechanisms to extract epsilon
self.getMpmath().mp.dps = self.digs0 + 1
self.expectedEpsilon = (2**5) * self.getMpmath().eps() / (2**mpmathVsMpfrBits)
# now go back to using extraStringDigits10
self.getMpmath().mp.dps = self.digs0 + mth.RealHPConfig.extraStringDigits10
if (self.digs0 == 6): # float case
self.bits = 24
self.expectedEpsilon = 1.1920928955078125e-07
if (self.digs0 == 15): # double case
self.bits = 53
self.expectedEpsilon = 2.220446049250313e-16
if (self.digs0 == 18): # long double case
self.bits = 64
self.expectedEpsilon = MPn.mpf('1.084202172485504433993e-19')
if ((self.digs0 == 31) and (yade.libVersions.getArchitecture() == 'ppc64el')): # long double on ppc64el
self.bits = 106
#self.expectedEpsilon = MPn.mpf('2.465190328815661891911651766508706967e-32') # value for 1 + epsilon
self.expectedEpsilon = MPn.mpf(
'4.9406564584124654417656879286822137013e-324'
) # note: ppc64el uses 0+epsilon, not 1+epsilon. This can be misleading.
if (self.digs0 == 33): # float128 case
self.bits = 113
self.expectedEpsilon = MPn.mpf('1.925929944387235853055977942584926994e-34')
if (self.needsMpmathAtN(N)):
self.maxval = (MPn.mpf(1) - self.expectedEpsilon) * MPn.power(2, HPn.max_exp2)
else:
import sys
self.maxval = sys.float_info.max
if (self.nowUsesBoostBinFloat(N)):
self.extraName = "_b"
else:
self.extraName = ""
def getMpmath(self):
if (self.needsMpmathAtN(self.currentN)):
return mpmath
else:
return testMathHelper
def runCheck(self, N, func):
if (self.testRecordingMode and N == self.maxN):
return # no need to test maxN against itself. It is for testing lower precisions against it.
self.currentN = N
# the same as the line 'std::string name = "HP" + boost::lexical_cast<std::string>(N)' in function registerInScope in _math.cpp
HPn = getattr(mth, "HP" + str(N))
if (not self.testRecordingMode):
MPn = self.getMpmath()
else:
MPn = self.maxHPn # we are recording the errors, do all the tests against the max precision available
if (N == 1):
self.adjustDigs0(N, mth, MPn)
func(N, mth, MPn) # test global scope functions with RealHP<1>
self.adjustDigs0(N, HPn, MPn)
func(N, HPn, MPn) # test scopes HP1, HP2, etc
def printOnce(self, functionName, a):
MPn = self.getMpmath()
if (functionName and (functionName not in self.printedAlready) and (not MPn.isnan(abs(a)))):
self.printedAlready.add(functionName)
print(functionName.ljust(15) + " : " + a.__repr__())
def checkRelativeError(self, a, b, tol=None, functionName=None, isComplex=False):
if (functionName and self.incompleteComplex() and functionName[0:7] == "Complex"):
# don't check complex functions
return
MPn = self.getMpmath()
prevDps = MPn.mp.dps
if (self.testRecordingMode):
MPn.mp.dps = mth.RealHPConfig.getDigits10(self.maxN) + mth.RealHPConfig.extraStringDigits10
denominator = max(abs(a), abs(b)) # avoid division by zero
if (denominator == 0): # they are both equal to zero
error = 0
else:
if isComplex:
error = abs((MPn.mpc(a) - MPn.mpc(b)) / MPn.mpc(denominator))
else:
error = abs((MPn.mpf(a) - MPn.mpf(b)) / MPn.mpf(denominator))
if (abs(b) <= self.maxval and abs(b) >= self.HPnHelper.smallest_positive()):
#print("a= ",a," b= ",b," smallest=",self.HPnHelper.smallest_positive(), " maxval=",self.maxval)
self.printOnce(functionName, a)
if ((not MPn.isfinite(a)) or (not MPn.isfinite(b))):
if ((functionName != "lgamma") and (not self.testRecordingMode)): # lgamma triggers this warning too often.
print(
"\033[93m Warning: \033[0m got NaN or Inf, cannot verify if: ", a, " == ", b,
" that was for function: \033[93m ", functionName, " \033[0m"
)
else:
if (tol != None):
#print("a=",a," b=",b," tol=",tol)
self.assertLessEqual(error, tol)
else:
if (functionName in self.defaultTolerances):
if (self.testRecordingMode):
self.storeDefaultTolerance(error, functionName)
defaultToleranceForThisFunction = self.getDefaultTolerance(functionName)
#print(defaultToleranceForThisFunction," ---- ",functionName)
self.assertLessEqual(error, defaultToleranceForThisFunction)
else:
self.assertLessEqual(error, self.tolerance)
elif (not self.testRecordingMode):
print(
"Skipping ", functionName, " check, the builtin number: ", a, " cannot have value outside of its possible repesentation: ", b,
", because it has only ", self.digs0, " digits."
)
MPn.mp.dps = prevDps
def checkRelativeComplexError(self, a, b, tol=None, functionName=None):
self.printOnce(functionName, a)
self.checkRelativeError(abs(a), abs(b), tol, functionName, True)
def oneArgMathCheck(self, N, HPn, MPn, r):
# note: cos, tan, sin, lgamma, tgamma get wildly inaccurrate when |arg| > 20. Errors are in the range log₁₀(8000000)≈7 decimal places for most of RealHP<…> types.
# these functions become more or less useless. So better to measure error in a usable range. I arbitrarily set it to 4*Pi and 20.
# This strange behavior is explained by the error in the remainder(…) for which I do not restrict arguments (so you can look up its error in the table). These trig
# functions try to remove periodicity by calculating remainder from division by Pi, but they can only be as good as the remainder calculation itself. And this calculation
# cannot produce more precision than the number already has, after its first few digits are cut-off by the remainder calculation.
cut1 = HPn.roundTrip(r % HPn.Real(self.getMpmath().pi * 4)) # the HPn.identity(…) call is to cut the digits to those representible in HPn
cut2 = HPn.roundTrip(r % 20)
self.checkRelativeError(HPn.sin(cut1), MPn.sin(cut1), functionName="sin")
self.checkRelativeError(HPn.sinh(r), MPn.sinh(r), functionName="sinh")
self.checkRelativeError(HPn.cos(cut1), MPn.cos(cut1), functionName="cos")
self.checkRelativeError(HPn.cosh(r), MPn.cosh(r), functionName="cosh")
self.checkRelativeError(HPn.tan(cut1), MPn.tan(cut1), functionName="tan")
self.checkRelativeError(HPn.tanh(r), MPn.tanh(r), functionName="tanh")
# check math functions, but ensure that input arguments produce real (not complex) results
self.checkRelativeError(HPn.abs(r), abs(r), functionName="abs")
self.checkRelativeError(HPn.acos(r % 1), MPn.acos(r % 1), functionName="acos")
self.checkRelativeError(HPn.acosh(abs(r) + 1), MPn.acosh(abs(r) + 1), functionName="acosh")
self.checkRelativeError(HPn.asin(r % 1), MPn.asin(r % 1), functionName="asin")
self.checkRelativeError(HPn.asinh(r), MPn.asinh(r), functionName="asinh")
self.checkRelativeError(HPn.atan(r), MPn.atan(r), functionName="atan")
self.checkRelativeError(HPn.atanh(r % 1), MPn.atanh(r % 1), functionName="atanh")
self.checkRelativeError(HPn.cbrt(abs(r)), MPn.cbrt(abs(r)), functionName="cbrt")
self.assertEqual(HPn.ceil(r), MPn.ceil(r))
self.checkRelativeError(HPn.exp(r), MPn.exp(r), functionName="exp")
self.checkRelativeError(HPn.sqrt(abs(r)), MPn.sqrt(abs(r)), functionName="sqrt")
self.checkRelativeError(HPn.exp2(r), MPn.power(2, r), functionName="exp2")
self.checkRelativeError(HPn.expm1(r), MPn.expm1(r), functionName="expm1")
self.assertEqual(HPn.floor(r), MPn.floor(r))
#print(HPn.ilogb(r).__repr__()) # ilogb is not present in mpmath
if (N <= mth.RealHPConfig.workaroundSlowBoostBinFloat):
#print(" N=",N , " digits10=", yade.math.RealHPConfig.getDigits10(N) ," self.expectedEpsilon = ",self.expectedEpsilon, " r=",r)
if (self.testRecordingMode):
self.checkRelativeError(HPn.lgamma(cut2), self.maxHPn.lgamma(cut2), functionName="lgamma")
self.checkRelativeError(HPn.tgamma(cut2), self.maxHPn.tgamma(cut2), functionName="tgamma")
else:
self.checkRelativeError(HPn.lgamma(cut2), MPn.log(abs(MPn.gamma(cut2))), functionName="lgamma")
self.checkRelativeError(HPn.tgamma(cut2), MPn.gamma(cut2), functionName="tgamma")
self.checkRelativeError(HPn.erf(r), MPn.erf(r), functionName="erf")
self.checkRelativeError(HPn.erfc(r), MPn.erfc(r), functionName="erfc")
self.checkRelativeError(HPn.log(abs(r) + self.tolerance), MPn.log(abs(r) + self.tolerance), functionName="log")
self.checkRelativeError(HPn.log10(abs(r) + self.tolerance), MPn.log10(abs(r) + self.tolerance), functionName="log10")
self.checkRelativeError(HPn.log1p(abs(r) + self.tolerance), MPn.log(1 + abs(r) + self.tolerance), functionName="log1p")
self.checkRelativeError(HPn.log2(abs(r) + self.tolerance), MPn.log(abs(r) + self.tolerance) / MPn.log(2), functionName="log2")
#print(HPn.logb(r).__repr__()) # logb is not present in mpmath
self.assertEqual(HPn.rint(r), round(r))
self.assertTrue((HPn.round(r) == round(r)) or (r % 1 == 0.5)) # ignore rounding 0.5 up or down.
self.assertEqual(HPn.trunc(abs(r)), int(abs(r)))
self.checkRelativeError(HPn.fabs(r), abs(r), functionName="fabs")
pair = HPn.frexp(abs(r))
self.checkRelativeError(abs(r), pair[0] * MPn.power(2, pair[1]), functionName="frexp")
pair = HPn.modf(abs(r))
self.checkRelativeError(pair[0], (abs(r)) % 1, functionName="modf")
self.assertEqual(pair[1], int(abs(r)))
#self.assertEqual(HPn.frexp(abs(r)),HPn.frexp_c_test(abs(r)))
#self.assertEqual(HPn.modf(abs(r)),HPn.modf_c_test(abs(r)))
if (r == 0):
self.assertEqual(HPn.sgn(r), 0)
self.assertEqual(HPn.sign(r), 0)
if (r > 0):
self.assertEqual(HPn.sgn(r), 1)
self.assertEqual(HPn.sign(r), 1)
if (r < 0):
self.assertEqual(HPn.sgn(r), -1)
self.assertEqual(HPn.sign(r), -1)
self.checkCgalNumTraits(HPn, MPn, r)
# One arg MathSpecialFunctions
self.checkRelativeError(HPn.factorial(int(abs(r))), MPn.factorial(int(abs(r))), functionName="factorial")
def checkCgalNumTraits(self, HPn, MPn, r):
if (HPn.testCgalNumTraits == False):
print("Skipping test of CgalNumTraits")
return
self.assertEqual(HPn.CGAL_Is_valid(r), True)
if (r != 0):
self.checkRelativeError(HPn.CGAL_Square(r), MPn.power(r, 2), functionName="pow")
self.checkRelativeError(HPn.CGAL_Sqrt(abs(r)), MPn.sqrt(abs(r)), functionName="sqrt")
for kk in range(5):
k = kk + 1
self.checkRelativeError(HPn.CGAL_Kth_root(k, abs(r)), MPn.power(abs(r), 1 / MPn.mpf(k)), functionName="pow")
# CGAL uses double for intervals
interval = HPn.CGAL_To_interval(r)
self.checkRelativeError(r, interval[0], 1e-14)
self.checkRelativeError(r, interval[1], 1e-14)
self.assertEqual(HPn.CGAL_Is_finite(r), True)
if (r == 0):
self.assertEqual(HPn.CGAL_Sgn(r), 0)
if (r > 0):
self.assertEqual(HPn.CGAL_Sgn(r), 1)
if (r < 0):
self.assertEqual(HPn.CGAL_Sgn(r), -1)
self.assertEqual(HPn.CGAL_Sgn(0), 0)
self.assertEqual(HPn.CGAL_Sgn(2.5), 1)
self.assertEqual(HPn.CGAL_Sgn(-2.3), -1)
def testInfinityNaN(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestInfinityNaN)
def HPtestInfinityNaN(self, N, HPn, MPn):
if (HPn.hasInfinityNan == False):
print("Skipping inf,nan regular test\n")
print("\033[91m *** Warning: usually YADE needs Inf and NaN for most of the calculations. *** \033[0m")
return
self.assertEqual(HPn.isinf(HPn.Real(1)), False)
self.assertEqual(HPn.isinf(HPn.Real('nan')), False)
self.assertEqual(HPn.isinf(HPn.Real('inf')), True)
self.assertEqual(HPn.isnan(HPn.Real(1)), False)
self.assertEqual(HPn.isnan(HPn.Real('nan')), True)
self.assertEqual(HPn.isnan(HPn.Real('inf')), False)
self.assertEqual(HPn.isfinite(HPn.Real(1)), True)
self.assertEqual(HPn.isfinite(HPn.Real('nan')), False)
self.assertEqual(HPn.isfinite(HPn.Real('inf')), False)
def testRealHPDiagnostics(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestRealHPDiagnostics)
def HPtestRealHPDiagnostics(self, N, HPn, MPn):
import random
source = '1'
for i in range(mth.getDigits2(N) - 1):
source += random.choice(['0', '1'])
for m in (
list(self.testLevelsHP) + list(reversed(self.testLevelsHP))
): # goes both directions, because that's how I discovered a small mistake in ToFromPythonConverter.hpp
if (m >= N):
HPm = getattr(mth, "HP" + str(m))
toHPn = getattr(HPm, "toHP" + str(N))
testNum = HPm.fromBits(source)
if (m == N):
source2 = source[:-1] + '1'
testNum2 = HPm.fromBits(source2)
self.assertLessEqual(HPm.getFloatDistanceULP(testNum, testNum2), 1)
source3 = source[:-2] + '11'
testNum3 = HPm.fromBits(source3)
self.assertLessEqual(HPm.getFloatDistanceULP(testNum, testNum3), 3)
if (mth.getDigits2(m) in [24, 53, 64, 113]): # don't check MPFR, cpp_bin_float.
self.assertTrue(
source in HPm.getRawBits(testNum)
) # checks only 'in', because sign+exponent (usually in front of raw bits) are architecture-specific.
self.assertEqual(HPm.getDecomposedReal(testNum)['bits'], source.ljust(mth.getDigits2(m), '0'))
self.assertEqual(HPn.fromBits(source), toHPn(testNum))
if (mth.getDigits2(N) == 24):
self.assertEqual(HPn.getDemangledName(), 'float')
if (mth.getDigits2(N) == 53):
self.assertEqual(HPn.getDemangledName(), 'double')
if (mth.getDigits2(N) == 64):
self.assertTrue('long double' in HPn.getDemangledName())
if (mth.getDigits2(N) in [113, 106]):
if (yade.libVersions.getArchitecture() == 'arm64'):
self.assertTrue('long double' in HPn.getDemangledName())
else:
self.assertTrue('float128' in HPn.getDemangledName())
def bitsToLevelHP(self, bits):
N = -1
for nn in self.testLevelsHP:
if (mth.getDigits2(nn) == bits):
N = nn
break
return N
def testRealHPErrors(self):
if (len(self.testLevelsHP) < 2):
return
testUlpRandom = yade.math.getRealHPErrors(
list(self.testLevelsHP), testCount=2000, minX=-100, maxX=100, useRandomArgs=True, printEveryNth=100000, extraChecks=False
)
testUlpLinear = yade.math.getRealHPErrors(
list(self.testLevelsHP), testCount=2000, minX=-100, maxX=100, useRandomArgs=False, printEveryNth=100000, extraChecks=False
)
self.showRealHPResults(testUlpRandom)
self.showRealHPResults(testUlpLinear)
self.processRealHPResults(testUlpRandom)
self.processRealHPResults(testUlpLinear)
def showRealHPResults(self, testULP):
#print(testULP)
for func in testULP:
for bits in testULP[func]:
ulp = testULP[func][bits][1]
if (ulp > 4):
N = self.bitsToLevelHP(bits)
print(
"\033[93mWarning:\033[0m ULP error of\033[91m", func, "\033[0musing RealHP<", N, ">, ", bits, "bits, with arg:",
testULP[func][bits][0], "is ULP=\033[93m", ulp, "\033[0m"
)
def getBoostComplexTolerance(self, func, tol, bits):
# g++ flags: -Ofast -march=native -mtune=native -fno-associative-math -fno-finite-math-only -fsigned-zeros
isFast = self.isFastNative()
mpfr = not self.nowUsesBoostBinFloat(self.bitsToLevelHP(bits))
longDouble = (bits == 64) # C++ double has 53
# The self.defaultTolerances is about errors found on python side. This one is more precise about ULP errors found on C++ side.
complexTolerancesInUnitsOfULP = {
"complex acos imag": 1e5,
"complex acos real": 3e5,
"complex asin imag": 3e5,
"complex asin real": 3e5,
"complex asinh imag": 3e5,
"complex asinh real": 1e5,
"complex atan imag": 6e6,
"complex atanh real": 5e5 if mpfr else 8e8, # boost::cpp_bin_float has larger error
"complex cos imag": 8 if mpfr else 4e5,
"complex cos real": 8 if mpfr else 2e5,
"complex cosh imag": 8 if mpfr else 6e5,
"complex cosh real": 8 if mpfr else 7e5,
"complex exp imag": 8 if mpfr else 4e5,
"complex exp real": 8 if mpfr else 7e5,
"complex polar imag": 8 if mpfr else 5e5,
"complex polar real": 8 if mpfr else 1e6,
"complex pow imag": 3e7 if isFast else
(9e6 if longDouble else
(4e6 if mpfr else 7e8)), # std::complex<double> -Ofast has 3e7 error then std::complex<long double> has 9e6.
"complex pow real": 5e7 if self.incompleteComplex() else (4e6 if mpfr else 2e7),
"complex sin imag": 8 if mpfr else 2e5,
"complex sin real": 8 if mpfr else 4e5,
"complex sinh imag": 8 if mpfr else 6e5,
"complex sinh real": 8 if mpfr else 7e5,
"complex tan imag": 8 if mpfr else 520,
"complex tan real": 8 if mpfr else 500,
"complex tanh imag": 8 if mpfr else 500,
"complex tanh real": 8 if mpfr else 500,
}
# FIXME: These tolerances ↑ also need to be reported to boost. But that's a smaller error anyway. the complex tan, tanh had error 1e38 ULP.
# The values here are chosen only for std::complex<long double>, complex_adaptor<cpp_bin_float_45>, mpc_complex_150.
# Other precisions may vary slightly.
if ((func in complexTolerancesInUnitsOfULP)):
tol = complexTolerancesInUnitsOfULP[func]
return tol
def getMathSpecialTolerance(self, func, tol, bits):
# The self.defaultTolerances is about errors found on python side. This one is more precise about ULP errors found on C++ side.
mpfr = not self.nowUsesBoostBinFloat(self.bitsToLevelHP(bits))
tolerancesInUnitsOfULP = {
"cylBesselJ": 6e5,
"laguerre": 1e6,
"complex sphericalHarmonic imag": 5e7,
"complex sphericalHarmonic real": 3e7 if mpfr else 2e8,
}
if ((func in tolerancesInUnitsOfULP)):
tol = tolerancesInUnitsOfULP[func]
return tol
def processRealHPResults(self, testULP):
for func in testULP:
for bits in testULP[func]:
tolerateErrorULP = 8
if (self.nowUsesBoostBinFloat(self.bitsToLevelHP(bits))):
tolerateErrorULP = 256 # cpp_bin_float has larger errors
if (func in ["tgamma", "acos", "erfc"]):
tolerateErrorULP = 50000
elif (func == "lgamma"):
tolerateErrorULP = 1e10
elif (func in ["sin", "cos", "tan", "fma"]):
tolerateErrorULP = 2e8
boostVer = yade.libVersions.getVersion('boost')
tolerateErrorULP = self.getBoostComplexTolerance(func, tolerateErrorULP, bits)
tolerateErrorULP = self.getMathSpecialTolerance(func, tolerateErrorULP, bits)
# Architecture specific workarounds.
if (yade.libVersions.getArchitecture() == 'i386'):
if (func == 'acosh'): # the failing function name is printed in red.
tolerateErrorULP = 32
if (yade.libVersions.getArchitecture() in ['ppc64el', 's390x']):
if ('sphericalHarmonic' in func or func in ['complex tan real', 'complex tanh imag', 'cylBesselJ']):
tolerateErrorULP = 2e19 # TODO: these migh need a fix later. Or it may be just older boost library
if (yade.math.RealHPConfig.getDigits10(1) == 31): # ppc64el with long double
tolerateErrorULP = 40000
if (func in ['asinh']):
tolerateErrorULP = 4e15 # NOTE: something seems to be off with asinh on ppc64el
if (func in ['complex pow imag', 'complex pow real']):
tolerateErrorULP = 2e6
if ('sphericalHarmonic' in func or func in ['complex tan real', 'complex tanh imag']):
tolerateErrorULP = 4e34
# DONE: file a bug report about higher precision versions of these two functions. They have large error: log2(300000000)≈28.1 incorrect bits.
# https://github.com/boostorg/multiprecision/issues/262
# https://github.com/boostorg/multiprecision/issues/264
# when it's fixed we can check boost version and skip this line below.
if ((func in ["complex tan real", "complex tanh imag"]) and (boostVer < (1, 76, 0))):
# for older boost there's nothing we can do. We have a large error: 1e38 ULP
pass
else:
ulp = testULP[func][bits][1]
if (ulp > tolerateErrorULP):
print("\n\033[91mError with: ", func, "\033[0m having ULP=", ulp)
self.assertLessEqual(ulp, tolerateErrorULP)
def testCgalNumTraits(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestCgalNumTraits)
def HPtestCgalNumTraits(self, N, HPn, MPn):
if (HPn.testCgalNumTraits == False):
print("Skipping test of CgalNumTraits")
return
self.checkCgalNumTraits(HPn, MPn, 0)
self.checkCgalNumTraits(HPn, MPn, 0.5)
self.checkCgalNumTraits(HPn, MPn, -1.5)
self.checkCgalNumTraits(HPn, MPn, 55.5)
self.assertEqual(HPn.CGAL_Is_valid(HPn.Real(1)), True)
self.assertEqual(HPn.CGAL_Is_valid(HPn.Real('nan')), False)
self.assertEqual(HPn.CGAL_Is_valid(HPn.Real('inf')), True)
self.assertEqual(HPn.CGAL_Is_finite(HPn.Real(1)), True)
self.assertEqual(HPn.CGAL_Is_finite(HPn.Real('nan')), False)
self.assertEqual(HPn.CGAL_Is_finite(HPn.Real('inf')), False)
self.assertEqual(HPn.CGAL_simpleTest(), MPn.mpf("3.0"))
def twoArgMathCheck(self, HPn, MPn, r1, r2):
# same order of complex functions as in lib/high-precision/MathComplexFunctions.hpp , py/high-precision/_math.cpp
self.checkRelativeComplexError(HPn.conj(HPn.Complex(r1, r2)), MPn.conj(MPn.mpc(r1, r2)), functionName="Complex conj")
self.checkRelativeComplexError(HPn.real(HPn.Complex(r1, r2)), r1, functionName="Complex real")
self.checkRelativeComplexError(HPn.imag(HPn.Complex(r1, r2)), r2, functionName="Complex imag")
self.checkRelativeComplexError(HPn.abs(HPn.Complex(r1, r2)), abs(MPn.mpc(r1, r2)), functionName="Complex abs")
self.checkRelativeError(HPn.arg(HPn.Complex(r1, r2)), MPn.phase(MPn.mpc(r1, r2)), functionName="Complex arg")
self.checkRelativeError(
HPn.squaredNorm(HPn.Complex(r1, r2)), MPn.norm(MPn.mpc(r1, r2)) * MPn.norm(MPn.mpc(r1, r2)), functionName="Complex norm"
)
# for now skip testing C++ std::proj, see note in py/tests/testMathHelper.py
self.checkRelativeComplexError(HPn.polar(r1, r2), MPn.rect(r1, r2), functionName="Complex polar")
self.checkRelativeComplexError(HPn.sin(HPn.Complex(r1, r2)), MPn.sin(MPn.mpc(r1, r2)), functionName="Complex sin")
self.checkRelativeComplexError(HPn.sinh(HPn.Complex(r1, r2)), MPn.sinh(MPn.mpc(r1, r2)), functionName="Complex sinh")
self.checkRelativeComplexError(HPn.cos(HPn.Complex(r1, r2)), MPn.cos(MPn.mpc(r1, r2)), functionName="Complex cos")
self.checkRelativeComplexError(HPn.cosh(HPn.Complex(r1, r2)), MPn.cosh(MPn.mpc(r1, r2)), functionName="Complex cosh")
self.checkRelativeComplexError(HPn.tan(HPn.Complex(r1, r2)), MPn.tan(MPn.mpc(r1, r2)), functionName="Complex tan")
self.checkRelativeComplexError(HPn.tanh(HPn.Complex(r1, r2)), MPn.tanh(MPn.mpc(r1, r2)), functionName="Complex tanh")
self.checkRelativeComplexError(HPn.asin(HPn.Complex(r1, r2)), MPn.asin(MPn.mpc(r1, r2)), functionName="Complex asin")
self.checkRelativeComplexError(HPn.asinh(HPn.Complex(r1, r2)), MPn.asinh(MPn.mpc(r1, r2)), functionName="Complex asinh")
self.checkRelativeComplexError(HPn.acos(HPn.Complex(r1, r2)), MPn.acos(MPn.mpc(r1, r2)), functionName="Complex acos")
self.checkRelativeComplexError(HPn.acosh(HPn.Complex(r1, r2)), MPn.acosh(MPn.mpc(r1, r2)), functionName="Complex acosh")
self.checkRelativeComplexError(HPn.atan(HPn.Complex(r1, r2)), MPn.atan(MPn.mpc(r1, r2)), functionName="Complex atan")
self.checkRelativeComplexError(HPn.atanh(HPn.Complex(r1, r2)), MPn.atanh(MPn.mpc(r1, r2)), functionName="Complex atanh")
self.checkRelativeComplexError(HPn.exp(HPn.Complex(r1, r2)), MPn.exp(MPn.mpc(r1, r2)), functionName="Complex exp")
self.checkRelativeComplexError(HPn.log(HPn.Complex(r1, r2)), MPn.log(MPn.mpc(r1, r2)), functionName="Complex log")
self.checkRelativeComplexError(HPn.log10(HPn.Complex(r1, r2)), MPn.log10(MPn.mpc(r1, r2)), functionName="Complex log10")
self.checkRelativeComplexError(
HPn.pow(HPn.Complex(r1, r2), HPn.Complex(r1 + r2, r1 - r2)), (MPn.mpc(r1, r2)**MPn.mpc(r1 + r2, r1 - r2)), functionName="Complex pow"
)
self.checkRelativeComplexError(HPn.sqrt(HPn.Complex(r1, r2)), MPn.sqrt(MPn.mpc(r1, r2)), functionName="Complex sqrt")
# Two argument MathSpecialFunctions
if (self.needsMpmathAtN(self.currentN)): # can test Bessel only if mpmath is available.
# first is yade.math function here ↓ , next is mpmath function here ↓
self.checkRelativeComplexError(HPn.cylBesselJ(int(abs(r1)), r2), MPn.besselj(int(abs(r1)), r2), functionName="cylBesselJ")
# Other, non complex functions
self.checkRelativeError(HPn.atan2(r1, r2), MPn.atan2(r1, r2), functionName="atan2")
self.checkRelativeError(HPn.fmod(abs(r1), abs(r2)), MPn.fmod(abs(r1), abs(r2)), functionName="fmod")
self.checkRelativeError(HPn.hypot(r1, r2), MPn.hypot(r1, r2), functionName="hypot")
self.checkRelativeError(HPn.max(r1, r2), max(r1, r2), functionName="max")
self.checkRelativeError(HPn.min(r1, r2), min(r1, r2), functionName="min")
self.checkRelativeError(HPn.pow(abs(r1), r2), MPn.power(abs(r1), r2), functionName="pow")
self.checkRelativeError(HPn.remainder(abs(r1), abs(r2)), abs(r1) - round(abs(r1) / abs(r2)) * abs(r2), functionName="remainder")
pair = HPn.remquo(abs(r1), abs(r2))
self.checkRelativeError(pair[0], abs(r1) - round(abs(r1) / abs(r2)) * abs(r2), functionName="remquo")
self.assertEqual(pair[1] % 8, round(abs(r1 / r2)) % 8)
self.checkRelativeError(HPn.ldexp(r1, int(r2)), MPn.mpf(r1) * MPn.power(2, int(r2)), functionName="ldexp")
def threeArgMathCheck(self, HPn, MPn, r1, r2, r3):
self.checkRelativeError(HPn.fma(r1, r2, r3), (MPn.mpf(r1) * r2) + r3, functionName="fma")
# Three argument MathSpecialFunctions
if (yade.config.highPrecisionMpmath == True): # can test Bessel and sphericalHarmonic only if mpmath is available.
# first is yade.math function here ↓ , next is mpmath function here ↓
self.checkRelativeComplexError(
HPn.laguerre(int(abs(r1)), int(abs(r2)), r3), mpmath.laguerre(int(abs(r1)), int(abs(r2)), r3), functionName="laguerre"
)
theta = r2 % self.getMpmath().pi
phi = r2 % (self.getMpmath().pi * 2)
self.checkRelativeComplexError(
HPn.sphericalHarmonic(int(abs(r1)), int(abs(r1)), theta, phi),
mpmath.spherharm(int(abs(r1)), int(abs(r1)), theta, phi),
functionName="sphericalHarmonic"
)
def testMathFunctions(self):
for N in self.testLevelsHP:
self.printedAlready = set()
self.runCheck(N, self.HPtestMathFunctions)
def HPtestMathFunctions(self, N, HPn, MPn):
self.assertEqual(HPn.defprec, self.bits)
zz = MPn.acos(0)
#print(zz.__repr__())
#print("zz:",hex(id(zz)))
#print("mpmath:",hex(id(mpmath)))
a = HPn.Var()
if (type(a.val) != float):
a.val = zz
if (not self.testRecordingMode):
self.assertEqual(MPn.mp.dps, self.digs0 + mth.RealHPConfig.extraStringDigits10)
#print("---- a.val=",a.val.__repr__())
#print("---- zz =",zz .__repr__())
#print("---- DPS =",mpmath.mp.dps)
#print("---- abs =",abs(MPn.mpf(a.val-zz)))
#print("---- 10** =",self.tolerance)
self.checkRelativeError(a.val, zz)
self.assertEqual(HPn.IsInteger, 0)
self.assertEqual(HPn.IsSigned, 1)
self.assertEqual(HPn.IsComplex, 0)
if (self.bits >= 64):
self.assertEqual(HPn.RequireInitialization, 1)
else:
self.assertEqual(HPn.RequireInitialization, 0)
self.assertGreaterEqual(HPn.ReadCost, 1)
self.assertGreaterEqual(HPn.AddCost, 1)
self.assertGreaterEqual(HPn.MulCost, 1)
self.checkRelativeError(HPn.highest(), self.maxval, 2.1)
self.checkRelativeError(-HPn.lowest(), self.maxval, 2.1)
self.checkRelativeError(HPn.Pi(), MPn.pi, functionName="pi")
print("HPn.Euler() ", HPn.Euler(), " N=", N, " MPn.euler = ", str(MPn.euler))
self.checkRelativeError(HPn.Euler(), MPn.euler, functionName="euler")
self.checkRelativeError(HPn.Log2(), MPn.log(2), functionName="logE2")
self.checkRelativeError(HPn.Catalan(), MPn.catalan, functionName="catalan")
#print("HPn.epsilon() ",HPn.epsilon(), " N=",N ," self.expectedEpsilon = ",self.expectedEpsilon)
self.checkRelativeError(HPn.epsilon(), self.expectedEpsilon, 10)
if (self.digs0 == 6): # exception for float
self.assertLessEqual(HPn.dummy_precision(), 10e-6)
else:
self.checkRelativeError(MPn.log(HPn.dummy_precision() / HPn.epsilon()) / MPn.log(10), MPn.mpf(self.digs0) / 10, 1.5)
for x in range(50):
if (self.nonBoostMPFR): # this looks like a bug in /usr/include/eigen3/unsupported/Eigen/MPRealSupport !
self.assertLessEqual(abs(HPn.random() - 0.5), 0.5)
else:
self.assertLessEqual(abs(HPn.random()), 1.0)
for aa in range(1000000 if self.testRecordingMode else 20):
m = 100 if self.testRecordingMode else 20
r = HPn.random(-m, m)
r2 = HPn.random(-m, m)
r3 = HPn.random(-m, m)
if (self.testRecordingMode):
self.totalCount = self.totalCount + 1
self.storeArgs((r, r2, r3))
#print("random=",r)
self.assertLessEqual(r, m)
self.assertGreaterEqual(r, -m)
self.assertFalse(HPn.isMuchSmallerThan(r, 1, HPn.epsilon()))
# NOTE: Below is a very sensitive test. If it starts failing, then see in function adjustDigs0, how expectedEpsilon is calculated.
# Maybe MPFR or cpp_bin_float changed the number of bits or changed their internal approximation of log10/log2.
self.assertTrue(HPn.isMuchSmallerThan(self.expectedEpsilon, 1 + abs(r), HPn.epsilon()))
self.assertTrue(HPn.isEqualFuzzy(r + self.expectedEpsilon * 0.01, r, HPn.epsilon()))
self.checkRelativeError(HPn.toLongDouble(r), float(r), 1e-14) # FIXME - should be 1e-17, but python does not support that
self.checkRelativeError(HPn.toDouble(r), float(r), 1e-14)
self.checkRelativeError(HPn.toDouble(r), float(r), 1e-14)
self.assertEqual(HPn.toLong(r), int(r))
self.assertEqual(HPn.toInt(r), int(r))
#
#print(r.__repr__(),r2.__repr__(),r3.__repr__())
self.oneArgMathCheck(N, HPn, MPn, r)
self.oneArgMathCheck(N, HPn, MPn, r2)
self.oneArgMathCheck(N, HPn, MPn, r3)
self.twoArgMathCheck(HPn, MPn, r, r2)
self.twoArgMathCheck(HPn, MPn, r, r3)
self.twoArgMathCheck(HPn, MPn, r2, r3)
self.threeArgMathCheck(HPn, MPn, r, r2, r3)
if (self.testRecordingMode and (self.totalCount % 20000 == 0)):
self.tearDown() # save progress
def testConstantsPythonSide(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestConstants)
def HPtestConstants(self, N, HPn, MPn):
HPn.testConstants()
def testArray(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestArray)
def HPtestArray(self, N, HPn, MPn):
HPn.testArray()
def testConstantsCppSide(self):
mth.testLoopRealHP()
def testRealConstructors(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestRealConstructors)
def HPtestRealConstructors(self, N, HPn, MPn):
a = HPn.Var()
a.val = 1
a.val = 1.
if (type(a.val) != float):
a.val = "1."
a.val = yade.math.Real(1)
a.val = yade.math.Real(1.)
a.val = yade.math.Real("1.")
a.val = MPn.mpf(1)
a.val = MPn.mpf(1.)
a.val = MPn.mpf("1.")
a.val = HPn.Real(1)
a.val = HPn.Real(1.)
a.val = HPn.Real("1.")
def testBasicVariable(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestBasicVariable)
def HPtestBasicVariable(self, N, HPn, MPn):
a = HPn.Var()
self.checkRelativeError(a.val, -71.23, 0.01)
a.val = 10
self.checkRelativeError(a.val, 10)
a.val = 1
self.checkRelativeError(a.val, 1)
a.val = 1.5
self.checkRelativeError(a.val, 1.5)
if (type(a.val) != float):
a.val = "1.5"
self.checkRelativeError(a.val, 1.5)
a.val = HPn.Real("1.5")
self.checkRelativeError(a.val, MPn.mpf(1.5))
self.checkRelativeComplexError(a.cpl, -71.23 + 33.23j, 0.01)
if (type(a.cpl) != complex):
a.cpl = MPn.mpc("1", "-1")
self.checkRelativeComplexError(a.cpl, 1 - 1j, 1e-15)
self.checkRelativeComplexError(a.cpl, MPn.mpc("1", "-1"))
def thisTestsExceptionReal1(self):
a = self.HPnHelper.Var()
a.val = "13123-123123*123"
def thisTestsExceptionComplex1(self):
a = self.HPnHelper.Var()
a.cpl = "13123-123123*123-50j"
def thisTestsExceptionReal2(self):
a = self.HPnHelper.Var()
a.val = "wrong number"
def thisTestsExceptionComplex2(self):
a = self.HPnHelper.Var()
a.cpl = "wrong number"
def thisTestsExceptionReal3(self):
a = self.HPnHelper.Var()
a.val = "-1.0 wrong"
def thisTestsExceptionComplex3(self):
a = self.HPnHelper.Var()
a.cpl = "-1.0 wrong"
def thisTestsExceptionReal4(self):
a = self.HPnHelper.Var()
a.val = "-1wrong"
def thisTestsExceptionComplex4(self):
a = self.HPnHelper.Var()
a.cpl = "-1wrong"
def thisTestsExceptionReal1r(self):
a = self.HPnHelper.Var()
a.val = self.HPnHelper.Real("13123-123123*123")
def thisTestsExceptionComplex1c(self):
a = self.HPnHelper.Var()
a.cpl = self.HPnHelper.Complex("13123-123123*123-50j")
def thisTestsExceptionReal2r(self):
a = self.HPnHelper.Var()
a.val = self.HPnHelper.Real("wrong number")
def thisTestsExceptionComplex2c(self):
a = self.HPnHelper.Var()
a.cpl = self.HPnHelper.Complex("wrong number")
def thisTestsExceptionReal3r(self):
a = self.HPnHelper.Var()
a.val = self.HPnHelper.Real("-1.0 wrong")
def thisTestsExceptionComplex3c(self):
a = self.HPnHelper.Var()
a.cpl = self.HPnHelper.Complex("-1.0 wrong")
def thisTestsExceptionReal4r(self):
a = self.HPnHelper.Var()
a.val = self.HPnHelper.Real("-1wrong")
def thisTestsExceptionComplex4c(self):
a = self.HPnHelper.Var()
a.cpl = self.HPnHelper.Complex("-1wrong")
def testWrongInput(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestWrongInput)
def HPtestWrongInput(self, N, HPn, MPn):
if (self.nonBoostMPFR): # this looks like another bug in /usr/include/mpreal.h
print("skipping this test for non-boost /usr/include/mpreal.h")
return
# depending on backed Real use it throws TypeError or RuntimeError
self.HPnHelper = HPn
# TODO: this won't work. In ToFromPythonConverter.hpp the ArbitraryComplex_from_python has to be rewritten like ArbitraryReal_from_python was.
#a = self.HPnHelper.Var()
#a.cpl = "-1"
self.assertRaises(Exception, self.thisTestsExceptionReal1)
self.assertRaises(Exception, self.thisTestsExceptionComplex1)
self.assertRaises(Exception, self.thisTestsExceptionReal2)
self.assertRaises(Exception, self.thisTestsExceptionComplex2)
self.assertRaises(Exception, self.thisTestsExceptionReal3)
self.assertRaises(Exception, self.thisTestsExceptionComplex3)
self.assertRaises(Exception, self.thisTestsExceptionReal4)
self.assertRaises(Exception, self.thisTestsExceptionComplex4)
self.assertRaises(Exception, self.thisTestsExceptionReal1r)
self.assertRaises(Exception, self.thisTestsExceptionComplex1c)
self.assertRaises(Exception, self.thisTestsExceptionReal2r)
self.assertRaises(Exception, self.thisTestsExceptionComplex2c)
self.assertRaises(Exception, self.thisTestsExceptionReal3r)
self.assertRaises(Exception, self.thisTestsExceptionComplex3c)
self.assertRaises(Exception, self.thisTestsExceptionReal4r)
self.assertRaises(Exception, self.thisTestsExceptionComplex4c)
def testEigenCost(self):
for N in self.testLevelsHP:
self.runCheck(N, self.HPtestEigenCost)
def HPtestEigenCost(self, N, HPn, MPn):
self.assertEqual(self.getDefaultTolerance("read", False), HPn.ReadCost)
self.assertEqual(self.getDefaultTolerance("add", False), HPn.AddCost)
self.assertEqual(self.getDefaultTolerance("mul", False), HPn.MulCost)
self.assertEqual(self.getDefaultTolerance("cread", False), HPn.ComplexReadCost)
self.assertEqual(self.getDefaultTolerance("cadd", False), HPn.ComplexAddCost)
self.assertEqual(self.getDefaultTolerance("cmul", False), HPn.ComplexMulCost)
def testDefReadonly(self):
# boost::python def_readonly(…) has problems with higher precision Real
# types: https://yade-dem.org/doc/prog.html#custom-converters
# The solution (already applied almost everywhere in Serializable.hpp)
# is to use ::boost::python::return_by_value in def_readonly(…) when
# exposing Real member variable.
t = yade.TriaxialStressController()
p = t.porosity
|