YAHA User Guide

Last updated: 28-Jan-2015
Current as of YAHA version 0.1.83

Gregory G. Faust and Ira M. Hall
University of Virginia

Contact: gf4ea@virginia.edu

Please Cite: Faust GG and Hall IM. YAHA: fast and flexible long-read alignment with optimal breakpoint
detection. Bioinformatics (2012) 28(19): 2417-2424. Epub 2012 Jul 24. doi:10.1093/bioinformatics.

Contents

1.
2.
3.
4.

o

o= o] = PO O PP TPPPPTON 3
INEFOTUCTION ..ttt et s bt e s et e s bt e e s bt e e s et e e sab e e e eabee e sab e e e sabeeesabeeesabeeesnbeeesabeean 4
RUN NN Y AH A ettt e e e e ettt s s e e e e e ta e s s e eetae b s eeeeetasa s aeaeeessaseeaeenesanseeeeesnen 4
YAHA PArameEters ...ceciiiiiiiiiiiiietieeeee ettt e et e e e e st e e e e e e 5
4.1, INdeX Creation Parameters. ... i ittt ettt et sae e et e e sabe e e ssbe e e sab e e e ear e e e nare e e nanes 6
4.2. Alignment INPUL/OULPUL PArameETers.cccuviiiiieiiiiee et ettt e ettt e e ettt e e e e taa e e e eeettaeeeeeenareeaeas 6
4.3. General AliIgNmMeNnt Parameters. ...t e e e e e et e e e e e e e e e e e rraaaaaaaaaaaaas 7
4.4, Affine Gap SCOMNG ParamMeterS...ccccciiieciiiiiieeeeee e e e e ettt e e e e e e e e e e e st beaaeeeeaaaeesessanstsraeaseaaaeaaeans 7
4.5. Optimal Query Coverage and Filter by Similarity Parameters.........cccccoiviieeeeeei e, 8
YAHA OUTPUL ittt e e e et e e e e et e et eeeeeeaa b s eeeeaeesaaseeeseesasasaeeaanssanseeaans 9
10 0] o] L= UUUR 10
U 1T = 5 1) o] oS UUUR 11
Current YAHA LimitationsS.....ueiiiiiiiiiiiiiiiii et 13

YAHA User Guide 2 Greg Faust and Ira Hall

1. License
YAHA is licensed under the MIT license (the "License"). You may not use YAHA except in compliance
with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT and its

current contents are included below.
The MIT License (MIT)
Copyright © 2009-2015 Gregory G. Faust

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

YAHA User Guide 3 Greg Faust and Ira Hall

2. Introduction

YAHA is an open-source, flexible, sensitive and accurate hash-based DNA aligner designed for relatively
long queries (approximately 100bp to 32Kbp). It supports three major modes of operation. In its default
“Optimal Query Coverage” (-0QC) mode, it will report the best set of alignments that cover the length of
each query. These alignments are called the “Optimal Coverage Set” (OCS) or “primary” alignments. In
the second mode, called “Filter By Similarity” (-FBS), along with the primary alignments for each query,
YAHA will also output any “secondary” alignment that is highly similar to one of the primary alignments
in both the region of the query it covers and its alignment score. Finally, it can output all the alignments
found for each query. Affine Gap Scoring is used to determine the degree to which the query matches a
given reference region. All these modes share a number of parameters that control the sensitivity of the
aligner, allowing the user to trade-off CPU runtimes for higher accuracy. These are described in detail
below.

The -0QC and -FBS modes are specifically tuned to form split read mappings that can be used to
accurately identify structural variation events (deletions, duplications, insertions or inversions) between
the subject query and the reference genome. The algorithms used in these modes are unique to YAHA.
Parameters control the size and genomic distance involved in reporting split alignments. These in turn

allow the user to tune the aligner for the types of SV event of interest.

3. Running YAHA

In order to use YAHA to align queries, one must first generate an index of the reference genome.
Depending on the size of the reference genome and index parameters used, the YAHA index can be
quite large. For example, using the default indexing parameters for a human genome will result in an
index size of about 16GB. Therefore, we recommend you run YAHA on a server class machine with
enough physical memory to avoid excessive paging. However, if the same index is used by more than
one YAHA process running on a machine, the memory for that index will be shared across those
processes. Smaller, but possibly less sensitive, indexes can be created by using different values for the
index creation parameters as described below.

The index is composed of two files, the names of which start with the root name of the input FASTA file
for the reference genome. The first file is a compressed version of the genome and has a “.nib2”
extension. The second file is the index itself. The name for this file will be of the form
“GenomeRoot.XLL_SS HHHHHS” where the “LL” represents the word-length used, “SS” represents the
skip-distance used, and “HHHHH" represents the max-hits used when creating the index (see below for a
description of these parameters). The compressed genome file will be shared by many indices made
from different parameter settings if all the files are kept in the same directory, with the same root
name. The index file has the word-length and max-hits parameters used during its creation stored in its
header.

When aligning queries, one must specify the index file to use with the —=x option. This will implicitly
select the reference file from which the index was made. In addition, the —q option must be used to

YAHA User Guide 4 Greg Faust and Ira Hall

specify the sequence reads to align. This must be either a FASTA or FASTQ file. See the Examples
section at the end of this document for sample parameter settings for index creation and usage.

YAHA currently is supported on 64 bit Linux derived UNIX platforms. If you have any problems running
YAHA in such an environment, do not hesitate to contact us at the email address given above.

4. YAHA Parameters

Most YAHA parameters are key-value pairs. In what follows, we will use bold face to indicate parameter
keys, and italics to indicate parameter values. Also, parameters that control the operation of YAHA as a
whole have lower case key names, while those that act as input to the various algorithms in YAHA have
upper case key names. YAHA uses no positional parameters. Parameter order is completely
meaningless except that if a parameter is specified twice on the command line, the right-most value will
be used. Parameters of type “bool” will accept any of “Y”, “y”, “T”, or “t” to mean yes or true, and “N”,
“n”, “F”, or “f” for no or false. Parameters of type “int” must have a positive integer value. Parameters
of type “float” must take a value in the range O<value<1.0;

YAHA User Guide 5 Greg Faust and Ira Hall

4.1. Index Creation Parameters.

These parameters specify characteristics of the hash table index used by YAHA. To create an index,
simply supply YAHA with a genome file (—g option), but do not specify a query file (-q option) or index
file (-x option). For example, to create an index using default parameters, simply type:

yaha —g hgl8 full.fasta

Key | Value Type Default | Usage

-g genome- required | The reference genome to be indexed. It can be a FASTA file, or a
file-name .nib2 file. If it is a FASTA file, the .nib2 is automatically created.

-H max-Hits int<65525 65525 During index creation, k-mers that appear more than max-Hits

number of times in the reference genome will be randomly
sampled down to max-Hits reference locations.

-L seed- int<15 15 The length of k-mer seeds in the index.
Length

-S Skip- 1<int<seed- | 1 The distance to skip ahead on the reference before forming the
distance length next k-mer to index.

4.2. Alignment Input/Output Parameters.

These parameters control the input/output behavior of the alighment run. At most one of —osh, -oss, or
—08 can be specified. The value for any of these three output parameters can be ‘stdout’ in which case
the output will be sent to stdout. By default, the output will sent to stdout in hard clipped SAM

format. For example, to use all default parameters, type the following:

yaha —g myqueries.fasta —-x hgl8 full.X15 01 6552585

Key Value Default Usage

-q query-file-name required This is the name of the file containing sequence data to be aligned.
It can be a FASTA or FASTQ file.

-osh sam-file-name Output the alignments in SAM format with hard clipping.
sam-file-name can be stdout.

-0ss sam-file-name Output the alignments in SAM format with soft clipping.
sam-file-name can be stdout.

-08 blast8-file-name Output the alignments in BLAST8 format.
blast8-file-name can be stdout.

-t numThreads 1 Number of threads to use.

-v Output more verbose information to stderr.

-X index-file-name required Specifies the name of an index file previously created by YAHA.

YAHA User Guide 6 Greg Faust and Ira Hall

4.3. General Alignment Parameters.
In what follows, we will use the term “gap” to refer to a small insertion or deletion (indel). We use the
term “desert” to refer to stretches of an alignment between seed matches.

Key Value Type Default | Usage

-BW BandWidth int 5 The width on either side of the diagonal of the banded Smith-Waterman
calculations during alignment. YAHA only uses SW to align between seed hits
and for extensions. When aligning between seeds, the band will be the size of
the gap between seeds (if any) + 2 *BandWidth. During alighment extensions,
the band will be 1 + 4 * BandWidth.

-G max-Gap int 50 The maximum size of an insertion/deletion allowed within an alignhment.
Gaps larger than this will result in a split alignment.
-H max-Hits int 650 During query alignment, k-mers that appear more than max-Hits number of

times will be ignored. For an alignment run, the max-Hits value used will be
the minimum of the value specified in the alignment run and the value
specified at index creation. To use YAHA's reference sampling capability, use
the same value for max-Hits during index creation and alignment.

-M min-Match int 25 The minimum total number of bases in seed matches to initiate an alignment.

-MD Max-Desert | int 50 The maximum stretch along a potential alignment without seed matches
before the alignment will be broken into two. This filter is applied before SW is
run in the “desert” to see what matching bases may be there. It helps to
eliminate “bar-bell” alignments that have a high score on both ends, a low
score in the middle, but the middle negative score is not sufficient to make an
invalid local alignment. This can occur, for example, with a local inversion
embedded in a long read.

-P %-min- O<float<1 | 0.9 The minimum ratio of matches/alignment-length.
identity Alignments that fall below this threshold are not output.
-X X-dropoff int 25 When the score for an alignment extension falls more than X-dropoff below

the best extension, the search for a longer extension will cease.

4.4. Affine Gap Scoring Parameters.
Note that the cost parameters (-GEC, -GOC, and -RC) are all specified as positive integers.

Key Value Type | Default | Usage

-AGS | use-AGS bool Y This parameter controls use of Affine Gap Scoring (AGS).
If AGS is turned off, all cost/score parameters below are ignored, and a
simple edit distance (Levenschtein) score calculation will be used.

-GEC Gap-Extension-Cost | int 2 The cost of opening a new insertion or deletion.
-GOC | Gap-Open-Cost int 5 The cost for each base in an insertion or deletion.
-Ms Match-Score int 1 The positive score added for each matching base.
-RC Replacement-Cost int 3 The cost of a mis-matched base.

YAHA User Guide 7 Greg Faust and Ira Hall

4.5. Optimal Query Coverage and Filter by Similarity Parameters.
Some comment about why this is useful for SV detection.
Some comment about how the breakpoint penalty is calculated.

Key Value Type Default | Usage

-0QC use-0QC bool Y This parameter controls use of the optional “Optimal Query Coverage”
algorithm. If this is turned off, all alignments meeting other threshold
parameters will be output, and all parameters below will be ignored. With
this turned on, the aligner will search for the best collection of alignments
that cover the length of each query; the Optimal Coverage Set (OCS).

-BP Breakpoint- int 5 This is one of the two factors that determine the total penalty for including
Penalty an additional alignment in the OCS. See notes above.

-MGDP | Max- 1<int<9 5 The second of the two factors that determines the total penalty for
Genomic- including an additional alignment in the OCS. This controls the maximum
Distance- genomic distance penalty that can be assessed on a logyq scale. For
Penalty example, -MGDP 5 indicates the genomic distance penalty will be maxed

out at 100K base pairs.

-MNO Min-Non- int min- Two adjoining alignments must each cover at least this amount of non-
Overlap match overlapping region on the query to be included in the OCS.

-FBS use-FBS bool N This parameter (ignored if -0QC is off) controls use of the “Filter By

Similarity” algorithm. When on, alignments “similar” to the OCS are also
included in the output. The selection of similar alignments is controlled by
the following parameters, which are ignored when -FBS is off.

A similar alignment must satisfy BOTH of the following thresholds.

-PRL %-Reciprocal- | 0<float<1 | 0.9 An alignment will be considered similar to another only if their lengths are
Length > this percent reciprocally overlapping. That is, the overlapping region of

the two alignments must cover at least this percentage of the length of
BOTH of the alignments.

-PSS %-Similar- O<float<1 | 0.9 An alignment will be considered similar to another only if the score of the
Score secondary alignment is > this percentage of the primary alignment score.

YAHA User Guide 8 Greg Faust and Ira Hall

5. YAHA Output
The primary output format is SAM, although there is also an option to output Blast8 format. The

standard SAM output is augmented with four YAHA specific tag fields described below. All tag ids start

with the letter Y to indicate YAHA. The majority of the tags help to identify primary alignments, their

position along the query, and their corresponding secondary alignments. As the SAM format standard

evolves, there may be ways of expressing this information in a standardized way. If and when that

happens, YAHA will comply with such standards.

Tagld | Type Mnemonic | Usage
This tag is composed of a number of status bits (ala the SAM FLAG field). The only bit
YAHA currently of interest to users is 0x20. When YAHA is run in -O0QC mode, this bit will be set
YF X FLAGS for primary alignments, but not for secondary alignments. When outputting all
alignments, this bit is never set.
THIS TAG FIELD HAD TAG ID “YS” IN YAHA RELEASES PRIOR TO 0.1.78.
Indicates which position a primary or secondary alignment falls along the query from left
YAHA to right, starting with 1 for the left most. Note that this takes strand into account, so it is
Yi i INDEX the part of the query that is covered that determines order. This can be used to determine
which alignments are adjacent, and therefore could define a breakpoint. For secondary
alignments, this will also indicate which primary it corresponds to.
YAHA Indicates the total number of primary alignments for this query. Taken together with YI,
YP i one can tell if an alignment is in position, say, number 2 of 3. This is also very useful to pull
PRIMARIES o .
split alignments out of a file (if YP > 1).
As of now, this tag only appears on primary alignments and tells how many secondary
alignments pass the FilterBySimilarity criteria. If FBS is on, then this will tell you how many
YAHA secondaries to look for in the file that correspond to this primary. If FBS off, it still gives
YS i you the count of secondaries that WOULD have been output if FBS on. This can be useful

SECONDARIES

to determine uniqueness (or lack thereof) for a primary alignment, using the tunable FBS
parameters for % reciprocal overlap and minimum %score.
THIS TAG FIELD HAD TAG ID “YC” IN YAHA RELEASES PRIOR TO 0.1.78.

YAHA User Guide

9 Greg Faust and Ira Hall

6.
1.

10.

11.

Examples
To create an index with the default, maximally sensitive parameters:
$ yaha -g hgl8 full.fa
This will create two files called hg18 full.nib2 andhgl8 full.X15 01 65525S inthe same
directory that the input genome file was located.
To use the above index to find only primary alignments for a queries in a FASTA file, and create hard
clipped sam output to stdout:
$ yaha —-g myqueries.fa —-x hgl8 full.X15 01 655258
To output the primary alignments as well any secondary alignments similar to them:
$ yaha -g myqueries.fa —-x hgl8 full.X15 01 65525S -FBS Y
To do the same as 2 above, but use soft clipping and create a bam file for the alignments
(Note: this requires SAMtools):
$ yaha —-g myqueries.fa —-x hgl8 full.X15 01 65525S -oss stdout
| samtools view —-Sb - > myqueries.bam
To do the same as 2 above, but input from a gzipped input file.
$ zcat myqueries.fa.gz | yaha —-g stdin -x hgl8 full.X15 01 65525S
To create an index with a seed-size of 13 a skip-distance of 13, and a max-hits of 10,000, such as is
used by default by SSAHA2:
$ yaha -g hgl8 full.fa -L 13 -S 13 -H 10000
To use the default index created above to output all alignments for queries in a FASTA file, and
create a sam file with hard clipping:
$ yaha —-g myqueries.fa —-x hgl8 full.X15 01 655255 -osh myqueries.sam
-00C N
To do the same as in 7 above but increase sensitivity to repetitive regions:
$ yaha —-g myqueries.fa —-x hgl8 full.X15 01 655255 -osh myqueries.sam
-H 2000 -0QC N
To maximize sensitivity to repetitive regions, use the power of the sampled index by using the same
max-hits as is used while creating the index:
$ yaha —-g myqueries.fa —-x hgl8 full.X15 01 655255 -osh myqueries.sam
-H 65525 -0QC N
$ yaha —-g myqueries.fa —-x hgl8 full.X13 13 10000S -osh myqueries.sam
-H 10000 -0QC N
To do the same as in 7 above, but instead lower the min-identity to include in the output alignments
with less similarity with the reference genome:
$ yaha —-g myqueries.fa —-x hgl8 full.X15 01 655255 -osh myqueries.sam
-0QC N -P 0.8
To do the same as in 1 above using 16 threads.
$ yaha -t 16 —-g myqueries.fa —-x hgl8 full.X15 01 655258

YAHA User Guide 10 Greg Faust and Ira Hall

7. Release History
Version 0.1.83, January 28, 2105

1. YAHA has been made available as an open source project on https://github.com/GregoryFaust/yaha.
2. Licensing terms have been added for use of YAHA.

Version 0.1.82, November 14, 2013

Algorithmic Update:

Improved a heuristic that in rare cases produces better primary alignments in complex genomic regions.

Bug Fix:
1. Fixed a bug that caused YAHA to give incorrect YP and Y| tag values is very rare cases.

Version 0.1.79, July 11, 2013

Bug Fix:

1. Fixed a bug that caused YAHA to create invalid compressed genome (.nib2) files and index files from
reference fasta files that contain certain non-base characters such as carriage-return. This is
particularly important for reference genomes from Windows that use carriage-return and line-feed
for the end of line indicator. If you have such a reference genome, please delete the .nib2 file and
all of your indexes for it, and recreate them using this YAHA release.

Version 0.1.78, June 6, 2013

New Features:

1. YAHA nows works with reference genomes containing an indefinite number of sequences. This can
be useful, for example, when you wish to align to a set up contigs or scaffolds that have not yet been
fully assembled into chromosomes. To provide this feature, it was necessary to update the format
of the .nib2 file which stores the compressed reference genome. However, YAHA can use either the
old or new format, so there is no need to recreate the .nib2 file or any indexes you already have.

2. The YAHA specific SAM tag fields have been upgraded in an INCOMPATIBLE way. The changes make
it much easier to process primary alignments for reads that produce split-read mappings to find
breakpoints, as well as processing their corresponding secondary alignments when using FBS mode.

Please read Section 4 for details.

Bug Fixes:

1. Fixed a bug that caused incorrect calculation of alignment mapping quality in rare circumstances.

2. Fixed another bug that crashed YAHA in rare circumstances with alignments mapping near to offset
0 in the reference.

YAHA User Guide 11 Greg Faust and Ira Hall

Version 0.1.72, Feb 14, 2013

New Feature:

Added the ability to use multiple threads during alignment. All of the alignments for a given query will
be in contiguous lines of the resultant sam file, but not necessarily in the same order that they appear in
the input fasta/fastq file.

Bug Fixes:

1. Changed index creation to truncate reference sequence names at the first whitespace character.
For example, in the hgl9 reference genome, chromosome 1 is labeled with “1 dna:chromosome
chromosome:GRCh37:1:1:249250621:1” in the fasta file, but alignments to chromosome 1 will have
the sequence name truncated to “1”.

2. Fixed a few bugs that crashed YAHA in rare circumstances.

Version 0.1.64, Dec 3, 2012

Algorithmic Update:

Improved heuristics leading to increased sensitivity with approximately 1% more generated alignments
for comparable parameter settings. These additional alignments are all reported when not using OQC.
When using OQC, they are used to potentially generate better primary alignment sets. These changes

marginally improved essentially all statistics reported in the original paper.

New Features:

1. Added ability to read fasta and fastq files with newlines in the query and/or quality strings.

2. Added ability to read query files from stdin. In particular, one can now pipe gzipped fasta or fastq
files into YAHA using zcat.

3. Improved error messages throughout.

Bug Fixes:
1. Alignments at offset 0 in the reference genome should no longer crash YAHA. Such alignments are

particularly common in bacterial genomes due to the break in the circular chromosome.

2. Fixed a bug that incorrectly reported starting reference offsets for soft clipped alignments.

3. Fixed a bug in which seed-Length was taken from the parameter settings during alignment. YAHA
now properly loads seed-Length from the index file.

4. Fixed a bug that crashed YAHA if given an index filename with no extension.

Version 0.1.38, May 3, 2012
Initial Release

YAHA User Guide 12 Greg Faust and Ira Hall

8. Current YAHA Limitations

1. YAHA is a long read DNA alignment tool. It does not take advantage of the insert distance between
paired-end reads. That is, both ends of the pair-end read will be aligned separately. It also does not
align protein sequences, but of course can be used to map cDNA reads.
YAHA is currently available for 64-bit LINUX based systems.
YAHA cannot index reference genomes greater than 4 billion base pairs in length.
YAHA currently cannot align read of greater than 32 kilobases in length. We expect to remove this

restriction in the near future.

YAHA User Guide 13 Greg Faust and Ira Hall

