File: FileHelpers.c

package info (click to toggle)
yaha 0.1.83-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 117,148 kB
  • sloc: ansic: 3,816; cpp: 1,742; makefile: 44
file content (317 lines) | stat: -rw-r--r-- 9,568 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/* -*- Mode: C ; indent-tabs-mode: nil ; c-file-style: "stroustrup" ; column-number-mode: t -*-

    Project: YAHA, DNA alignment tool designed to find optimal split-read mappings on single-end queries.
    Author:  Greg Faust (gf4ea@virginia.edu)

    File:    FileHelpers.c     Helper routines for both mempory mapped and stream file IO, and outputting time.
                               Key elements of the file processing use GNU extensions, and not portable.

    License Information:

    Copyright 2009-2015 Gregory G. Faust

    Licensed under the MIT license (the "License");
    You may not use this file except in compliance with the License.
    You may obtain a copy of the License at http://opensource.org/licenses/MIT

*/

#include <time.h>
#include <stdlib.h>
#include <stdio_ext.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include "Math.h"

// This is the function used in ASSERT.
#ifdef DEBUG
void outputDebugString (char * str)
{
    fprintf(stderr, str);
}
#endif

// Call this for fatal run time errors.
void fatalError(const char * errorStr)
{
    fprintf(stderr, "%s\n", errorStr);
    exit(1);
}

// Find the next occurrence of the char in the str.
// Assumes the char will exist, since it doesn't know when end of string will be reached.
// The contract is that offset + retval will point to the search char.
int findChar(char * str, FSIZE offset, char search)
{
    // Make sure we move at least one char ahead.
    int count = 1;
    while (TRUE)
    {
        if (str[offset+count] == search) return count;
        count += 1;
    }
}

static inline int fputchar(FILE * out, char outchar)
{
    return putc_unlocked(outchar, out);
}

void printChars(FILE * out, char * str, int start, int len)
{
    int i;
    for (i=start; i<(start+len); i++) fputchar(out, str[i]);
}

// A convenience function for outputing time is seconds in a more useful metric.
void fprintTimeSeconds (FILE * out, double seconds, int precision)
{
    double totalseconds = seconds;
    int hours = seconds/3600.;
    if (hours > 0)
    {
        seconds -= hours * 3600;
        fprintf(out, "%dH", hours);
    }
    int minutes = seconds/60.;
    if (minutes > 0)
    {
        seconds -= minutes * 60;
        fprintf(out, "%dM", minutes);
    }
    if (hours + minutes > 0)
    {
        fprintf(out, "%.0fS", seconds);
        fprintf(out, "(%.*fS)", precision, totalseconds);
    }
    else fprintf(out, "%.*fS", precision, totalseconds);
}

void fprintTimeMicroSeconds (FILE * out, UINT64 microSeconds, int precision)
{
    fprintTimeSeconds(out, ((double)microSeconds/1000000.0), precision);
}

// Check for a file system error.  If present, output message on stderr.
void checkFSerr (SFSIZE returnCode)
{
    if (returnCode == -1)
    {
        fprintf(stderr, "File system error: %d.\n", errno);
        exit(1);
    }
}

// Check for a file system error.  If present, output better message on stderr.
void checkFSerrWithFilename (SFSIZE returnCode, char * filename)
{
    if (returnCode == -1)
    {
        if (errno == ENOENT)
            fprintf(stderr, "File '%s' does not exist.\n", filename);
        else if (errno == ENOMEM)
            if (filename != NULL)
                fprintf(stderr, "Insufficient memory available to open '%s'.\n", filename);
            else
                fprintf(stderr, "Insufficient memory available to satisfy allocation request.\n");
        else
            fprintf(stderr, "File system error %d on file '%s'.\n", errno, filename);
        exit(1);
    }
}

// Check if one file is newer than another.
BOOL fileNewerThan (char * file1Name, char * file2Name)
{
    struct stat file1stat;
    struct stat file2stat;
    int retcode;
    retcode = stat(file2Name, &file2stat);
    // If file2 does not exist, then we will say file1 is newer.
    if (retcode == -1 && errno == ENOENT) return TRUE;
    checkFSerrWithFilename(retcode, file2Name);
    retcode = stat(file1Name, &file1stat);
    checkFSerrWithFilename(retcode, file1Name);
    // Both files exist, and we have the stats.
    // Now compare the modification times.
    struct timespec file1ts = file1stat.st_mtim;
    struct timespec file2ts = file2stat.st_mtim;
    if (file1ts.tv_sec < file2ts.tv_sec) return FALSE;
    if (file1ts.tv_sec > file2ts.tv_sec) return TRUE;
    if (file1ts.tv_nsec > file2ts.tv_nsec) return TRUE;
    return FALSE;
}


/////
//     INPUT FILES
/////

// Open the file for read.
// We will use memory mapped IO.
// And also check file stats to get the file size.
FDES openForRead(char * filename, FSIZE *fileSize, char **contentPtr, BOOL preload)
{
    // First open the file.
    FDES file;
    file = open(filename, O_RDONLY);
    checkFSerrWithFilename(file, filename);
    // Now get its size.
    struct stat * sbuf = (struct stat *)malloc(sizeof(struct stat));
    int err;
    err = fstat(file, sbuf);
    checkFSerrWithFilename(err, filename);
    FSIZE size = sbuf->st_size;
#ifdef DEBUG
    fprintf(stderr, "File %s is %d bytes long.\n", filename, size);
#endif
    // Now memory map the IO.
    char * filePtr = (char *)mmap(NULL, sbuf->st_size, PROT_READ, MAP_SHARED, file, 0);
    checkFSerrWithFilename((SFSIZE)filePtr, filename);

    if (preload)
    {
        // Try reading in each page to pre-load the page tables in sequential order.
        // This seems to vastly speed virtual page table creation or something
        //     relative to paging in things as they are used.
        int count = 0;
        for (char * ptr=filePtr; ptr<filePtr+size; ptr+=sbuf->st_blksize) count += ptr[0];
        // We call a silly function here to avoid the loop being optimized out for having no effect.
        emptyFunction(count);
    }
    // If we are here, we have successfully opened and mapped the file.
    // Fill in OUT parameters, and return.
    free(sbuf);
    *fileSize = size;
    *contentPtr = filePtr;
    return file;
}

// We will close the file, and unmap the memory mapped IO.
void closeForRead(FDES ifp, FSIZE fileSize, char *contentPtr)
{
    // First unmap the IO.
    int err = munmap(contentPtr, fileSize);
    checkFSerr(err);
    err = close(ifp);
    checkFSerr(err);
}

// Open the file for seq read, such as query files.
// We will not use memory mapped IO.
// We will use char IO.
FILE * openForSeqRead(char * filename)
{
    FILE * inFile;
    if (strcmp(filename, "stdin") == 0 || strcmp(filename, "-") == 0)
    {
        fprintf(stderr, "Reading queries from stdin.\n");
        inFile = stdin;
    }
    else
        inFile = fopen(filename, "r");
    if (inFile == NULL)
    {
        fprintf(stderr, "Failure to open input file: %s.  Error number:%d\n", filename, errno);
        exit(1);
    }

    // We will tell the OS that we will do our own locking and unlocking to improve input speed.
    __fsetlocking (inFile, FSETLOCKING_BYCALLER);

    return inFile;
}

void closeForSeqRead(FILE * inFile)
{
    fclose(inFile);
}

/////
//     OUTPUT FILES
/////
//     Output files are much more complicated in the flag settings and in the closing operation.
//     All of our output files are now either stream (for alignment output) or require a preamble.
//     Therefore, we will no longer mmap as part of opening the file, nor unmap or write as part of closing.
//     Instead we will provide some helper functions for mmapping and writing.
/////

// Allocate a big block of memory as anonymous memory mapped "file".
char * blockMalloc(FSIZE size, char * string)
{
    char * retval = (char *)mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0);
    checkFSerrWithFilename((SFSIZE)retval, string);
    return retval;
}

// Free big blocks of memory.  Note the size is needed.
void blockFree(char * ptr, FSIZE size)
{
    int err = munmap(ptr, size);
    checkFSerrWithFilename(err, NULL);
}

// Write blocks of memory.
// As write may not always write out all the buffer in one call, repeat until success.
void blockWrite(FDES ofp, char * ptr, FSIZE size)
{
    FSIZE done = 0;
    while (done < size)
    {
        SFSIZE curr = write(ofp, ptr+done, size-done);
        checkFSerr(curr);
        done += curr;
    }
}

// Open for write will now only open the file and return the file descriptor.
FDES openForWrite(char * filename)
{
    // First we will open the file
    // Create it if it doesn't already exist.
    // Truncate it to zero length.
    // If it is created, set the permission bits.
    // User can RWX.  Everyone can read.
    FDES file;
    file = open(filename, O_RDWR | O_CREAT | O_TRUNC, S_IRWXU | S_IRGRP | S_IROTH);
    checkFSerrWithFilename(file, filename);
    return file;
}

// Just close the file and check for errors.
void closeForWrite(FDES ofp)
{
    // Now we can close the file.
    int err = close(ofp);
    checkFSerr(err);
}

// Open for stream IO.
FILE * openForPrint(char * filename)
{
    FILE * outFile;
    if (strcmp(filename, "stdout") == 0)
        outFile = stdout;
    else
        outFile = fopen(filename, "w");
    if (outFile == NULL)
    {
        fprintf(stderr, "Failure to open output file: %s.  Error number:%d\n", filename, errno);
        exit(1);
    }

    // We will tell the OS that we will do our own locking and unlocking to improve output speed.
    // By doing it here we presumably also speed up calls to functions such as fprintf and fputs,
    //     not just the calls to putc_unlocked.
    __fsetlocking (outFile, FSETLOCKING_BYCALLER);

    return outFile;
}

void closeForPrint(FILE * outFile)
{
    fclose(outFile);
}