1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
/*
* linop.i --
*
* General linear operator class for Yeti.
*
*-----------------------------------------------------------------------------
*
* Copyright (C) 2007 Eric Thi�baut <thiebaut@obs.univ-lyon1.fr>
*
* This file is free software; as a special exception the author gives
* unlimited permission to copy and/or distribute it, with or without
* modifications, as long as this notice is preserved.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, to the extent permitted by law; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE.
*
*-----------------------------------------------------------------------------
*
* History:
* $Id: linop.i,v 1.9 2008/07/12 06:51:13 eric Exp $
* $Log: linop.i,v $
* Revision 1.9 2008/07/12 06:51:13 eric
* - Changed final comment for setting local variables of Emacs.
*
* Revision 1.8 2007/10/31 09:27:46 eric
* - New functions: linop_cast_real_as_complex to
* linop_cast_complex_as_real cast 2-by-any real
* arrays as complex arrays and vice-versa.
* - New function linop_reshape to change an array
* dimension list and type without conversion.
* - New function linop_make_matrix to build the matrix
* representation of a linear operator.
*
* Revision 1.7 2007/05/11 12:02:02 eric
* - New function: `is_linop`.
*
* Revision 1.6 2007/04/30 06:08:33 eric
* - Fixed function linop_new for a sparse matrix (thanks to
* Thierry Michel).
*
* Revision 1.5 2007/04/26 14:04:00 eric
* - Minor change in linop_new_fftw documentation.
*
* Revision 1.4 2007/03/28 18:11:53 eric
* - Make use of hash table evaluator is implemented.
* - Fixed bug in management of cache for FFTW.
* - Documentation fixed and updated.
*
* Revision 1.3 2007/03/21 21:57:58 eric
* New FFT and FFTW wrappers.
*
* Revision 1.2 2007/03/21 18:08:31 eric
* Now JOB can indicate inverse and inverse transpose linear
* transform.
*
* Revision 1.1 2007/03/14 16:06:16 eric
* Initial revision.
*/
/* Yeti is required for this package. */
if (noneof(is_func(h_new) == [1,2])) {
include, "yeti.i", 1;
}
local _linop_identity, _linop_diagonal, _linop_sparse, _linop_full;
local _linop_function, _linop_parametric_function;
local LINOP_DIRECT, LINOP_TRANSPOSE, LINOP_INVERSE;
local LINOP_INVERSE_TRANSPOSE, LINOP_TRANSPOSE_INVERSE;
local LINOP_AUTO, LINOP_IDENTITY;
local LINOP_DIAGONAL, LINOP_SPARSE, LINOP_FULL;
local linop_new, linop_apply, _linop_type_table;
/* DOCUMENT obj = linop_new();
* -or- obj = linop_new(id);
* -or- obj = linop_new(id, a);
* -or- obj = linop_new(other);
* -or- obj = linop_new(s);
* -or- obj = linop_new(f);
* -or- obj = linop_new(f, p);
* -or- obj(x);
* -or- obj(x, job);
* -or- linop_apply(obj, x);
* -or- linop_apply(obj, x, job);
*
* The function `linop_new` creates a new linear operator object OBJ
* which can be used as a function (or with the `linop_apply` function)
* to compute the dot product of the 'vector' X by the 'matrix' (or its
* transpose if TR is true) which corresponds to the linear operator.
* The different possibilities to define a linear operator object are
* described in the following.
*
* The function `linop_apply` applies the linear operator OBJ to a
* 'vector' X according to the value of JOB as follows:
*
* JOB = 0 or unspecified - apply direct operator
* 1 - apply transpose operator
* 2 - apply inverse operator
* 3 - apply inverse transpose operator
*
* If you have a recent version of Yeti (which implements hash-table
* evaluators), then it is not necessary to use `linop_apply` and the
* usage of the linear operator object is simplified as follows:
*
* OBJ(x) is the same as: linop_apply(OBJ, x)
* OBJ(x, job) is the same as: linop_apply(OBJ, x, job)
*
*
* RECURSION
*
* If `linop_new` is called with a single argument which is already a
* linear operator object, then this object is returned (not a copy).
* Hence:
*
* obj = linop_new(other);
*
* where OTHER is already a linear operator object, simply creates a new
* reference to the object OTHER. (FIXME: we should have the possibility
* to 'clone' such an object).
*
*
* IDENTITY MATRIX
*
* A linear operator object implementing the identity operation can be
* defined one of:
*
* obj = linop_new();
* obj = linop_new(LINOP_IDENTITY);
* obj = linop_new("identity");
*
*
* DIAGONAL MATRIX
*
* A linear operator object implementing the multiplication by a diagonal
* matrix can be defined by one of:
*
* obj = linop_new(LINOP_DIAGONAL, a);
* obj = linop_new("diagonal", a);
*
* where A gives the coefficients of the diagonal of the 'matrix'; A can
* be multi-dimensional, it must howver be conformable with the 'vector'
* X when `linop_apply` is used.
*
*
* FULL MATRIX
*
* A linear operator object can be implemented given a full matrix as:
*
* obj = linop_new(LINOP_FULL, a);
* obj = linop_new("full", a);
*
* where A is the array of matrix coefficients which are used as with
* `mvmult` function (which to see).
*
*
* SPARSE MATRIX
*
* A linear operator object can be implemented as a sparse matrix:
*
* obj = linop_new(s);
*
* where S is a sparse matrix object (see sparse_matrix).
*
*
* USER DEFINED FUNCTION
*
* The linear operator object functionalities (dot product with the
* corresponding 'matrix' or its transpose) can be implemented by a user
* defined function F. There are two different possibilities depending
* whether or not the function needs aditional data (for instance to
* store the coefficients of the 'matrix').
*
* If argument P is omitted, the pseudo-code for F must be:
*
* func f(x, job) {
* if (! job) return A.x;
* else if (job == 1) return A'.x;
* else if (job == 2) return (1/A).x;
* else if (job == 3) return (1/A)'.x;
* error, "unsupported value for JOB";
* }
*
* where A is the 'matrix' corresponding to the linear operator, where
* the dot and the prime indicate dot product and matrix transposition
* respectively and where (1/A) indicates matrix inverse. Note that,
* depending on your needs, not all operations must be implemented in the
* function F. For instance, if only direct and matrix transpose
* products are implemented, the function can be something like:
*
* func f(x, job) {
* if (! job) return A.x;
* else if (job == 1) return A'.x;
* error, "unsupported value for JOB";
* }
*
* If argument P is specified, the pseudo-code for F must be:
*
* func f(p, x, job) {
* if (! job) return A(p).x;
* else if (job == 1) return A(p)'.x;
* else if (job == 2) return (1/A(p)).x;
* else if (job == 3) return (1/A(p))'.x;
* error, "unsupported value for JOB";
* }
*
* where A(p) is the 'matrix' which depends on the 'parameters' P. Note
* that this is purely a notation: P can be anything needed by the
* user-defined operator.
*
*
* SEE ALSO:
* is_linop, sparse_matrix, mvmult, h_new, linop_new_fft, linop_new_fftw.
*/
/*
* IMPLEMENTATION NOTES
*
* Layout of a linear operator object as build by the linop_new function:
* obj.f = user-defined function
* obj.p = client data for f (or nil)
* obj.a = coefficients of the matrix
* obj.s = sparse matrix object
* obj.w = wrapper function
*/
func linop_new(a1, a2) /* DOCUMENTED */
{
t1 = identof(a1);
t2 = identof(a2);
if (is_scalar(a1)) {
if (t1 == T_STRING) {
id = _linop_type_table(a1);
} else if (T_CHAR <= t1 && t1 <= T_LONG) {
id = long(a1);
}
if (id == LINOP_IDENTITY) {
if (t2 != T_VOID) {
error, "exceeding argument to define identity operator";
}
return _linop_finalize(h_new(class="linop"), "_linop_identity");
} else if (id == LINOP_DIAGONAL) {
// FIXME: optimize if all coefficients are zero or one
if (t2 < T_CHAR || T_COMPLEX < t2) {
error, "non-numerical diagonal coefficients";
}
return _linop_finalize(h_new(class="linop", a=a2), "_linop_diagonal");
} else if (id == LINOP_FULL) {
if (t2 < T_CHAR || T_COMPLEX < t2) {
error, "non-numerical matrix coefficients";
}
return _linop_finalize(h_new(class="linop", a=a2), "_linop_full");
} else if (id == LINOP_AUTO) {
t1 = t2;
a1 = unref(a2);
t2 = T_VOID;
} else {
error, "invalid linear operator identifier";
}
}
if (t1 == T_FUNCTION || t1 == T_BUILTIN) {
if (t2 == T_VOID) {
return _linop_finalize(h_new(class="linop", f=a1), "_linop_function");
} else {
return _linop_finalize(h_new(class="linop", f=a1, p=a2),
"_linop_parametric_function");
}
} else if (t1 == T_VOID) {
if (t2 == T_VOID) {
return _linop_finalize(h_new(class="linop"), "_linop_identity");
}
} else if (t1 == T_OPAQUE) {
if (is_sparse_matrix(a1)) {
if (t2 != T_VOID) {
error, "exceeding argument to define sparse linear operator";
}
// FIXME: not needed for sparse matrix?
return _linop_finalize(h_new(class="linop", s=a1), "_linop_sparse");
} else if (is_linop(a1)) {
if (t2 != T_VOID) {
error, "exceeding argument";
}
return a1;
}
}
error, "bad argument(s) to define sparse linear operator";
}
/* Job values for linear operators: */
LINOP_DIRECT = 0;
LINOP_TRANSPOSE = 1;
LINOP_INVERSE = 2;
LINOP_INVERSE_TRANSPOSE = 3;
LINOP_TRANSPOSE_INVERSE = 3;
/* Type of linear operators: */
LINOP_AUTO = 0;
LINOP_IDENTITY = 1;
LINOP_DIAGONAL = 2;
LINOP_SPARSE = 3;
LINOP_FULL = 4;
_linop_type_table = h_new(auto=LINOP_AUTO,
identity=LINOP_IDENTITY,
diagonal=LINOP_DIAGONAL,
sparse=LINOP_SPARSE,
full=LINOP_FULL);
func linop_apply(this, x, job) /* DOCUMENTED */
{
/* Call the wrapper. */
return this.w(this, x, job);
}
func is_linop(this)
/* DOCUMENT is_linop(this)
* Check whether object THIS is a linear operator.
*
* SEE ALSO: linop_new.
*/
{
return (is_sparse_matrix(this) ||
(is_hash(this) && is_string(this.class) && is_scalar(this.class)
&& this.class == "linop"));
}
func _linop_finalize(this, evalname)
{
if (is_func(h_evaluator)) {
h_evaluator, this, evalname;
}
return h_set(this, w=symbol_def(evalname));
}
func _linop_identity(this, x, job)
{
return x;
}
func _linop_diagonal(this, x, job)
{
if (! job || job == 1) {
return this.a*x;
} else {
/* Speed-up: compute/get fast matrix inverse. */
local ainv; eq_nocopy, ainv, this.ainv;
if (is_void(ainv)) {
ainv = 1.0/this.a;
h_set, this, ainv = ainv;
}
return ainv*x;
}
}
func _linop_sparse(this, x, job)
{
if (! job || job == 1) {
return this.s(x, job);
}
error, "unsupported value for JOB in sparse linear operator";
}
func _linop_function(this, x, job)
{
return this.f(x, job);
}
func _linop_parametric_function(this, x, job)
{
return this.f(this.p, x, job);
}
func _linop_full(this, x, job)
{
if (! job || job == 1) {
return mvmult(this.a, x, job);
}
error, "unsupported value for JOB for full matrix linear operator";
}
/*---------------------------------------------------------------------------*/
/* WRAPPERS FOR FFT AND FFTW */
func linop_new_fftw(nil, dims=, measure=, real=)
/* DOCUMENT obj = linop_new_fftw(...)
*
* Return a new new linear operator object which can be used to compute
* FFT by means of FFTW, the "fastest FFT in the world".
*
* Keyword DIMS can be used to pre-specify the dimension list of the
* arrays to be transformed. If left unspecified, the actual
* dimension list will be initialized the first time the linear
* operator is applied. In any cases, a given operator can only be
* used onto arrays with same dimension lists.
*
* Keywords REAL and MEASURE have the same meaning as for fftw_plan
* (which to see). Note that fftw_plan is only called as needed and
* cached into OBJ to save computation time. Also note that if you
* use REAL=1, you must correctly initialize the dimension list of
* array to be transformed either when linop_new_fftw is called
* or by computing the first FFTW with JOB=0 or 3 (*not* 1 or 2).
*
* Examples:
*
* OBJ = linop_new_fftw();
* linop_apply(OBJ, x) // compute FFT of X
* linop_apply(OBJ, x, 0) // idem
* linop_apply(OBJ, x, 1) // apply conjugate transpose FFT to X
* linop_apply(OBJ, x, 2) // compute inverse FFT of X
* linop_apply(OBJ, x, 3) // apply conjugate transpose inverse FFT to X
*
* OBJ.nevals = number of FFT computed so far by OBJ
*
* If you have a recent version of Yeti (which implements hash-table
* evaluators), then it is not necessary to use linop_apply and the
* usage of the linear operator object is simplified as follows:
*
* OBJ(x) is the same as: linop_apply(OBJ, x)
* OBJ(x, job) is the same as: linop_apply(OBJ, x, job)
*
*
* SEE ALSO: linop_new, fftw, fftw_plan, linop_new_fft.
*/
{
if (! is_func(fftw_plan)) {
include, "yeti_fftw.i", 1;
}
if (! is_void(nil)) error, "no non-keyword argument allowed";
if (is_void(dims)) {
state = 0;
} else {
state = 1;
for (k=numberof(dims), number=1; k >= 2; --k) {
number *= dims(k);
}
scl = (1.0/number);
}
this = h_new(w=_linop_fftw_wrapper, real=(real ? 1n : 0n),
dims=dims, scl=scl, measure=measure, nevals=0, state=state);
if (is_func(h_evaluator)) {
h_evaluator, this, "_linop_fftw_wrapper";
}
return this;
}
func _linop_fftw_wrapper(this, x, job)
{
if (! job || job == 3) {
/* forward transform or backward conjugate transpose */
if (! ((state = this.state) & 2)) {
/* compute forward FFTW plan */
if (! (state & 1)) {
h_set, this, dims=dimsof(x), scl=(1.0/numberof(x));
}
h_set, this, state=(state |= 3),
fwd=fftw_plan(this.dims, +1, real=this.real, measure=this.measure);
}
z = fftw(x, this.fwd);
h_set, this, nevals = this.nevals + 1;
return (job == 3 ? this.scl*z : z);
} else if (job == 1 || job == 2) {
/* forward conjugate transpose or backward transform */
if (! ((state = this.state) & 4)) {
/* compute backward FFTW plan */
if (! (state & 1)) {
if (this.real) {
error, "you must initialize dimension list first (see doc)";
}
h_set, this, dims=dimsof(x), scl=(1.0/numberof(x));
}
h_set, this, state=(state |= 5),
bck=fftw_plan(this.dims, -1, real=this.real, measure=this.measure);
}
z = fftw(x, this.bck);
h_set, this, nevals = this.nevals + 1;
return (job == 2 ? this.scl*z : z);
}
error, "unsupported value for JOB in FFTW linear operator";
}
func linop_new_fft(dims, ldir, rdir, real=)
/* DOCUMENT obj = linop_new_fft(dims, ldir, rdir)
*
* Return a new new linear operator object which can be used to compute
* FFT by means of Swarztrauber's FFT. DIMS is the dimension list of the
* arrays to be transformed and optional arguments LDIR and RDIR indicate
* the dimensions to transform and in which directions (see fft and
* fft_setup for more detailed explanations). The returned operator can
* only be used onto arrays with same dimension lists.
*
* Keyword REAL can be set true to specify a real to complex transform.
*
* The FFT linear operator is more flexible than the FFTW one (can
* transform for only a subset of the dimensions and with different
* directions) but is slower. Otherwise the two should behave the same
* and you can see the documentation of linop_new_fftw for examples.
*
*
* SEE ALSO: linop_new, fft, linop_new_fftw.
*/
{
real = (real ? 1n : 0n);
if (is_void(dims)) {
dims = [0];
} else if (! is_integer(dims) || ! is_vector(dims) ||
numberof(dims) != dims(1) + 1 || min(dims) <= 0) {
error, "invalid dimension list";
}
ndims = numberof(dims) - 1;
dims = long(dims);
ltyp = _linop_fft_get_dir(ldir);
rtyp = _linop_fft_get_dir(rdir);
if (! ltyp && ! rtyp) {
ltyp = 1;
ldir = 1;
} else if (ltyp < 0 || rtyp < 0) {
error, "bad FFT directions";
}
llen = numberof(ldir);
rlen = numberof(rdir);
if (llen + rlen > ndims) {
error, "more FFT directions than number of dimensions";
}
if (noneof(ltyp) && noneof(rdir)) {
wrapper = _linop_fft_noop;
ndirs = 0;
scale = 1.0;
setup = list = length = dirs = top = [];
} else {
/* compute stride and number of elements */
stride = array(long, ndims);
length = dims(2:0);
stride(1) = 1;
for (j = 1; j < ndims; ++j) {
stride(j + 1) = stride(j)*length(j);
}
number = stride(ndims)*length(ndims);
/* select directions of transform */
dirs = array(long, ndims);
if (ltyp == 1 && ! rtyp) {
dirs(*) = ldir;
} else {
if (llen) dirs(1:llen) = ldir;
if (rlen) dirs(1-rlen:0) = rdir;
}
list = where(dirs);
ndirs = numberof(list);
length = length(list);
stride = stride(list);
/* compute FFT workspaces */
top = number/(stride*length);
number = 1;
setup = array(pointer, ndirs);
for (j = 1 ; j <= ndirs; ++j) {
len = length(j);
number *= len;
if (j > 1 && (k = where(len == length)(1)) < j) {
setup(j) = setup(k);
} else {
ws = array(double, 6*len + 15);
fft_init, len, ws;
setup(j) = &ws;
}
}
scale = 1.0/number; /* scale for inverse FFT */
wrapper = _linop_fft_wrapper;
}
this = h_new(w=_linop_fft_wrapper, dims=dims, nevals=0, real=real,
scale=scale, list=list, ndirs=ndirs, dirs=dirs,
stride=stride, length=length, top=top, setup=setup);
if (is_func(h_evaluator)) {
h_evaluator, this, "_linop_fft_wrapper";
}
return this;
}
func _linop_fft_get_dir(dir)
{
if (is_void(dir)) return 0;
if (is_integer(dir) && min(dir) >= -1 && max(dir) <= +1) {
if (is_scalar(dir)) return 1;
if (is_vector(dir)) return 2;
}
return -1;
}
func _linop_fft_wrapper(this, x, job)
{
local dims, dirs, setup, length, stride, top;
if (! job || job == 3) {
real = 0n;
} else if (job == 1 || job == 2) {
real = this.real;
} else {
error, "unsupported value for JOB in FFT linear operator";
}
if ((type = identof(x)) > T_COMPLEX) {
error, "non-numerical argument";
}
eq_nocopy, dims, this.dims;
if((xdims = dimsof(x))(1) != dims(1) || anyof(xdims != dims)) {
error, "incompatible dimensions of argument";
}
h_set, this, nevals = (this.nevals + 1);
if (! (ndirs = this.ndirs)) {
if (real) {
if (type == T_DOUBLE) {
x = x; /* make a copy */
return x;
}
return double(x);
} else {
if (type == T_COMPLEX) {
x = x; /* make a copy */
return x;
}
return complex(x);
}
}
if (type == T_COMPLEX) {
x = x; /* make a copy for in-place FFT */
} else {
x = complex(x);
}
/* do the requested transforms in-place */
if (job == 1 || job == 2) {
dirs = -this.dirs;
} else {
eq_nocopy, dirs, this.dirs;
}
eq_nocopy, setup, this.setup;
eq_nocopy, length, this.length;
eq_nocopy, stride, this.stride;
eq_nocopy, top, this.top;
for (j = 1; j <= ndirs; ++j) {
fft_raw, dirs(j), x, stride(j), length(j), top(j), setup(j);
}
if (real) {
x = double(x);
}
return ((job == 3 || job == 2) ? this.scale*x : x);
}
/*---------------------------------------------------------------------------*/
/* UTILITIES */
func linop_make_matrix(op, x, job, multi=)
/* DOCUMENT a = linop_make_matrix(op, x);
* -or- a = linop_make_matrix(op, x, job);
*
* Use linear operator OP (see linop_new) with input "vectors" of same
* data type (real or complex) and dimension list as X to build a "matrix"
* A with the same coefficients as the linear operator OP(x, JOB) -- see
* linop_new for the meaning of optional argument JOB. The result A is
* always a regular array. By default, A is a real M-by-N array where:
*
* M = numberof(Y) if Y is real,
* 2*numberof(Y) if Y is complex,
*
* where Y = OP(X, JOB), and
*
* N = numberof(X) if X is real,
* 2*numberof(X) if X is complex.
*
* If keyword MULTI is true, the dimension list of A is 2, if Y is
* complex, followed by dimsof(Y), followed by 2, if X is complex,
* followed by dimsof(X).
*
*
* SEE ALSO: mvmult.
*/
{
xident = identof(x);
if (xident == T_COMPLEX) {
xcast = linop_cast_real_as_complex;
xdims = make_dimlist(2, dimsof(x));
n = 2*numberof(x);
} else if (xident <= T_DOUBLE) {
xcast = double;
xdims = dimsof(x);
n = numberof(x);
} else {
error, "invalid data type for X";
}
x = array(double, xdims);
for (j = 1; j <= n; ++j) {
x(j) = 1.0;
if (j == 1) {
y = op(xcast(x), job);
yident = identof(y);
if (yident == T_COMPLEX) {
ycast = linop_cast_complex_as_real;
} else if (yident <= T_DOUBLE) {
ycast = double;
} else {
error, "invalid data type for Y";
}
y = ycast(y);
ydims = dimsof(y);
m = numberof(y);
a = array(double, m, n);
a(,j) = y(*);
} else {
a(,j) = ycast(op(xcast(x), job))(*);
}
x(j) = 0.0;
}
if (multi) {
return linop_reshape(unref(a), ydims, xdims);
}
return a;
}
local linop_cast_real_as_complex, linop_cast_complex_as_real;
/* DOCUMENT z = linop_cast_real_as_complex(x);
* -or- x = linop_cast_complex_as_real(z);
*
* The first function converts a 2-by-any real array X into a complex
* array Z such that:
*
* Z.re = X(1,..)
* Z.im = X(2,..)
*
* the second function does the inverse operation.
*
* SEE ALSO: reshape, linop_reshape.
*/
func linop_cast_real_as_complex(x)
{
local z;
if ((ndims = (dimlist = dimsof(x))(1)) < 1 || dimlist(2) != 2) {
error, "expecting leading dimension equals to 2";
}
if (structof(x) != double) {
if (! is_real(x) && ! is_integer(x)) {
error, "bad data type (expecting real or integer)";
}
x = double(unref(x));
}
reshape, z, &x, complex, (ndims == 1 ? [0] : grow(ndims - 1, dimlist(3:0)));
return z;
}
func linop_cast_complex_as_real(z)
{
local x;
if (structof(z) != complex) {
error, "bad data type (expecting complex)";
}
reshape, x, &z, double, make_dimlist(2, dimsof(z));
return x;
}
func linop_reshape(a, type_or_dims, ..)
/* DOCUMENT linop_reshape(a, type, dim1, dim2, ...);
* -or- linop_reshape(a, dim1, dim2, ...);
*
* Make input array A into an array with dimension list DIM1, DIM2, ...
* If TYPE is specified, the result will be of that data type
* _w_i_t_h_o_u_t___c_o_n_v_e_r_s_i_o_n_.
*
* SEE ALSO:
* make_dimlist, reshape, linop_cast_real_as_complex,
* linop_cast_complex_as_real.
*/
{
local ref;
if (typeof(type_or_dims) == "struct_definition") {
type = type_or_dims;
dims = [0];
} else {
type = structof(a);
dims = type_or_dims;
make_dimlist, dims;
}
while (more_args()) {
make_dimlist, dims, next_arg();
}
number = 1;
for (k = dims(1) + 1; k >= 2; --k) {
number *= dims(k);
}
if (sizeof(a) != sizeof(type)*number) {
error, "size mismatch";
}
reshape, ref, &a, type, dims;
return ref;
}
/*---------------------------------------------------------------------------*
* Local Variables: *
* mode: Yorick *
* tab-width: 8 *
* fill-column: 75 *
* c-basic-offset: 2 *
* coding: latin-1 *
* End: *
*---------------------------------------------------------------------------*/
|