File: random_et.i

package info (click to toggle)
yorick-yutils 1.3.0-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 604 kB
  • ctags: 17
  • sloc: makefile: 105; python: 12
file content (276 lines) | stat: -rw-r--r-- 9,199 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* random_et.i: random number for Yorick
 * 
 * Copyright (c) 1996, Eric THIEBAUT (thiebaut@obs.univ-lyon1.fr, Centre de
 * Recherche Astrophysique  de Lyon, 9 avenue Charles  Andre, F-69561 Saint
 * Genis Laval Cedex).
 *
 * This program is free software; you can redistribute it and/or  modify it
 * under the terms of the GNU General Public License  as  published  by the
 * Free Software Foundation; either version 2 of the License,  or  (at your
 * option) any later version.
 *
 * This program is distributed in the hope  that  it  will  be  useful, but
 * WITHOUT  ANY   WARRANTY;   without   even   the   implied   warranty  of
 * MERCHANTABILITY or  FITNESS  FOR  A  PARTICULAR  PURPOSE.   See  the GNU
 * General Public License for more details (to receive a  copy  of  the GNU
 * General Public License, write to the Free Software Foundation, Inc., 675
 * Mass Ave, Cambridge, MA 02139, USA).
 * 
 * HISTORY
 *   Nov. 22, 1995 by Eric THIEBAUT:
 *	- random_normal
 *	- random_poisson
 *	- kolmogorov
 *   Nov. 27, 1995 by Eric THIEBAUT:
 *	- fixed a bug for the borders in kolmogorov
 * 	$Id: random_et.i,v 1.1.1.1 2007/12/11 23:55:12 frigaut Exp $
 */

require, "gamma.i";

local random_normal_prev;
/* DOCUMENT random_normal_prev= []
     if not nil, is the previous value computed by random_normal.
 */
random_normal_prev= [];

func random_uniform(dims, seed=)
/* DOCUMENT random_uniform(dimemsion_list, seed=)
     returns an array of uniformly distributed random double values with
     the given DIMENSION_LIST (nil for a scalar result).
     Keyword SEED is a scalar between 0.0 and 1.0 non-inclusive and is
     used to reinitialized the random sequence. If SEED is out of range,
     the sequence is reinitialized as when Yorick starts.

   SEE ALSO: random, random_poisson, random_normal_prev.
*/
{
    if (!is_void(seed))
	random_seed, seed;
    return random(dims);
}
func random_normal(dims, seed=)
/* DOCUMENT random_normal(dimemsion_list)
     returns an array of normally distributed random double values with
     the given DIMENSION_LIST (nil for a scalar result).
     Keyword SEED is a scalar between 0.0 and 1.0 non-inclusive and is
     used to reinitialized the random sequence. If SEED is out of range,
     the sequence is reinitialized as when Yorick starts.
     The algorithm follows the Box-Muller method (see Numerical Recipes
     by Press et al.).

   SEE ALSO: random, random_poisson, random_normal_prev.
*/
{
    if (!is_void(seed))
	random_seed, seed;
    if (is_void(dims)) {
	if (is_void(random_normal_prev)) {
	    while (!(v1= random()));
	    v1= sqrt(-2.*log(v1));
	    v2= (2.*pi)*random();
	    random_normal_prev= v1*sin(v2);
	    return v1*cos(v2);
	} else {
	    a= random_normal_prev;
	    random_normal_prev= [];
	}
    } else {
	a= array(0., dims);
	if ((n= numberof(a)) % 2)
	    a(0)= random_normal();
	if ((n /= 2)) {
	    i= where(!(v1= random(n)));
	    while ((ni= numberof(i))) {
		j= where(!(v1(i)= random(ni)));
		i= numberof(j) ? i(j) : [];
	    }
	    v1= sqrt(-2.*log(v1));
	    v2= (2.*pi)*random(n);
	    a(1:n)= v1*cos(v2);
	    a(n+1:2*n)= v1*sin(v2);
	}
    }
    return a;
}

func random_poisson(xm, seed=, threshold=)
/* DOCUMENT random_poisson(mean)
     returns an array of random double values which follow a Poisson law
     of parameter MEAN (the output has the same geometry of the input).
     Keyword SEED is a scalar between 0.0 and 1.0 non-inclusive and is
     used to reinitialized the random sequence. If SEED is out of range,
     the sequence is reinitialized as when Yorick starts.
     The code is adapted from `POIDEV' an IDL routine by Wayne Landsman
     and the algorithm is from Numerical Recipes by Press et al.
     
   SEE ALSO: random, random_normal.
*/
{
    if (is_void(threshold)) threshold= 20;
    if (!is_void(seed))
	random_seed, seed;
    
    if (!(N= numberof(xm)))
	error, "ERROR - Poisson mean vector is undefined";
    if (N == 1 && dimsof(xm)(1) == 0) {
	output_is_scalar= 1n;
	xm= [xm];
    } else {
	output_is_scalar= 0n;
    }
    Ni= numberof((i= where(xm <= threshold)));

    if (Ni > 0) {
	g= exp(-xm(i));		// To compare with exponential distribution
	em= array(-1, Ni);	// Counts number of events
	t= array(1., Ni);	// Counts (log) of total time
	Nk= Nj= Ni;		// J indexes the original array,
	k= j= indgen(Ni);	// K indexes the J vector
	
	for (;;) {
	    em(j)++;		// Increment event counter
	    t= t(k)*random(Nk);	// Add exponential deviate, equivalent
				// to multiplying random deviate
	    k= where(t > g(j));	// Has sum of exponential deviates 
				//exceeded specified mean?
	    if (!(Nk= numberof(k)))
		break;
	    j= j(k);
	    Nj= Nk;
	}
    }
    output= array(double, dimsof(xm));
    if (Ni > 0) output(i)= em;
    if (Ni == N) return (output_is_scalar ? output(1) : output);

    Ni= numberof((i = where(xm > threshold)));
    xi= xm(i);
    sq = sqrt(2.*xi);
    alxm= log(xi);
    g= xi * alxm - ln_gamma(xi+1.);

    k= j= indgen((Nk= Nj= Ni));
    em= y= array(double, Nj);

    for (;;) {
	for (;;) {
	    y(j)= tan(pi * random(Nj));
	    l= where((em(j)= floor(sq(j)*y(j) + xi(j))) < 0.);
	    if (!(Nj= numberof(l)))
		break;
	    j= j(l);
	}
	
	t = 0.9*(1.+y(k)^2)*exp(em(k)*alxm(k)-ln_gamma(em(k)+1.)-g(k));
	l = where(random(Nk) > t);
	if (!(Nk= numberof(l)))
	    break;
	j= k= k(l);
	Nj= Nk;
    }
    
    output(i)= em;
    return (output_is_scalar ? output(1) : output);
}

func kolmogorov(diam, r0, all=, orig=, seed=)
/* DOCUMENT kolmogorov(diam, r0, all=, orig=, seed=)
            kolmogorov(diam, all=, orig=, seed=)
     returns an array of random phases which follow Kolmogorov  law on
     a square pupil of DIAM pixels per side with  a  Fried's parameter
     equal to R0 (in pixels, default is to set R0=DIAM).   If  a Point
     Spread Function is to  be  calculated  from  the  generated phase
     screen, it should be conveniently sampled  (i.e.,  R0  greater or
     equal 2 or 3 pixels).
         The  algorithm  is  the  mid-point  method  of  R.G.    Lane,
     A. Glindemann and J.C. Dainty (``Simulation of a Kolmogorov phase
     screen'' in Waves in Random Media, 2, 209-224, 1992).
         Keyword ORIG is a flag which  indicates  whether  or  not the
     original method by Lane et al. should be used (default is  to use
     the original algorithm).
         Keyword ALL is a flag which indicates whether or not  all the
     computed phase screen should be returned.  The  default behaviour
     is to return the smallest array into which a pupil  with diameter
     DIAM can fit.  The computed  phase  screen  is  a (2^N+1)*(2^N+1)
     array.
         Keyword SEED is a scalar between  0.0  and  1.0 non-inclusive
     and is used to reinitialized the random sequence.  If SEED is out
     of range, the sequence is reinitialized as when Yorick starts.

   SEE ALSO: random_normal.
*/
{
    diam= double(diam);
    if (is_void(r0)) r0= diam;	// default is to have R0=DIAM
    
    if (is_void(orig)) orig=1n;	// default is to use original algorithm
    if (is_void(all)) all=0n;	// default is to return a DIAM*DIAM array
    if (!is_void(seed)) random_seed, seed;

    n=2^long(ceil(log(diam-1.)/log(2.)));
    delta = sqrt(6.88*(diam/double(r0))^(5./3.));
    diam= long(ceil(diam));	// size of the minimum array which holds the
    				// phase screen over the pupil
    beta  = 1.7817974;
    c1 = 3.3030483e-1*delta;
    c2 = 6.2521894e-1*delta;
    c3 = 5.3008502e-1*delta;
    c4 = 3.9711507e-1*delta;
    if (orig) {
        c5 = 4.5420202e-1*delta;
    } else {
        c5 = 4.4355177e-1*delta;
        l5 = 4.5081546e-1;
        m5 = 9.8369088e-2;
    }
    a = random_normal([2,n+1,n+1]);
    b = c2*random_normal(2);
    
    // 4 first corners
    a(1,1) = c1*a(1,1)+b(1);
    a(0,0) = c1*a(0,0)-b(1);
    a(0,1) = c1*a(0,1)+b(2);
    a(1,0) = c1*a(1,0)-b(2);
    
    // all other points
    h = n;
    while (h >= 2) {
        s = h;		// step size
        h  /= 2;	// half the step size
        c3 /= beta;
        c4 /= beta;
        c5 /= beta;
        
	i= indgen(h+1:n+1-h:s);	// mid-point coordinates
	ip= i-h;		// coordinates of previous point
	in= i+h;		// coordinates of next point

	// centre of squares
        a(i,i) = c3*a(i,i) + .25*(a(ip,ip)+a(ip,in)+a(in,ip)+a(in,in));

	if (2*s <= n) {
	    // centre of losanges
	    j= indgen(s+1:n+1-s:s);	// vertice coordinates
	    jp= j-h;			// coordinates of previous point
	    jn= j+h;			// coordinates of next point
	    a(i,j) = c4*a(i,j) + .25*(a(i,jp)+a(i,jn)+a(ip,j)+a(in,j));
	    a(j,i) = c4*a(j,i) + .25*(a(j,ip)+a(j,in)+a(jp,i)+a(jn,i));
        }

	// borders
        if (orig) {
            a(1,i) = c5*a(1,i) + .5*(a(1,ip)+a(1,in));
            a(0,i) = c5*a(0,i) + .5*(a(0,ip)+a(0,in));
            a(i,1) = c5*a(i,1) + .5*(a(ip,1)+a(in,1));
	    a(i,0) = c5*a(i,0) + .5*(a(ip,0)+a(in,0));
        } else {
            a(1,i) = c5*a(1,i) + l5*(a(1,ip)+a(1,in))+m5*a(h,i);
	    a(0,i) = c5*a(0,i) + l5*(a(0,ip)+a(0,in))+m5*a(-h,i);
            a(i,1) = c5*a(i,1) + l5*(a(ip,1)+a(in,1))+m5*a(i,h);
	    a(i,0) = c5*a(i,0) + l5*(a(ip,0)+a(in,0))+m5*a(i,-h);
        }
    }
    
    return (all ? a : a(1:diam, 1:diam));
}