1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
/*
ARRAY.C
$Id: array.c,v 1.1 1993/08/27 18:32:09 munro Exp $
Implement Yorick array indexing. This is one half of the Yorick
Eval instruction -- the other half of Eval is function invocation,
which is handled in fnctn.c. An expression of the form:
expr(index_list)
where index_list is a comma delimited list of indices, is an indexed
array if expr is any array data type (or a function invocation if
expr is any function data type). The following index types are
handled here:
(1) nil - the corresponding dimension is copied to the result
(2) any integer scalar - reduces the rank of the result
(3) any integer array - replaces the corresponding dimension by
(index list) a copy of the index list dimensions
(4) start:stop:step - replaces the corresponding dimension by
(range) a 0-origin dimension 1+(stop-start)/step
(5) rf:start:stop:step - as (4), but the specified range function
is applied after gathering the result
(6) - or -:start:stop:step - "pseudo index" adds a dimension to
the result not in the original array
(7) + or +:start:stop:step - "marked index" is a special form for
matrix multiplication, pushes the
result index number onto the stack
(8) .. - "rubber index" causes any subsequent indices to be right
justified, copying as many dimensions to the result as
required in order to do this
(9) where(0) - "nuller index" causes result to be nil, a special
case of the index list for a zero length list
Index values may fall into 3 ranges. For a 0-origin dimension of
length n, these ranges are:
(A) wrap around [-n, -1], which are mapped to [0, n-1] by adding n.
(B) ordinary [0, n-1]
(C) overreach [n, infinity], which effectively specify offsets in
subsequent dimensions. No index may overreach beyond the
end of the entire array.
All 3 ranges are supported for Range indices and scalar indices, but
wrap around indexing is not supported for index lists.
Note that a Range index or a rank-preserving range function (see
range.c) always produces a 0-origin dimension in the result.
A nil index or rubber index produces result dimension(s) with the
same origin as the input array, and an index list produces result
dimensions with origins copied from the index list dimensions.
*/
/* Copyright (c) 1994. The Regents of the University of California.
All rights reserved. */
#include "ydata.h"
extern VMaction Eval2;
extern UnaryOp EvalAY, EvalLV;
extern Operand *FormOperandDB(Symbol *owner, Operand *op);
#define MAX_INDICES 10
/*
For several types of DataBlock, the Eval operation means to index
into an array. This operation proceeds in several steps:
1. ArrayDims
Count the dummy indices, accumulating the corresponding strides.
The result of this operation is the static values:
nDummy - number of dimensions in dummy dimension list
dims[] - Dimension* for each dimension
2. EvalSetup
Scan through the actual indices to set:
overreach - 1 if any actual index beyond range of
corresponding dummy index
overOrigin - maximum origin of current actual index due to
overreach from previous actual indices
offsets[] - offset from beginning for each actual index
for rubber index, number of actual indices after,
for index list, -origin (so index values correct)
numbers[] - number of elements for each actual index
steps[] - index increments for each actual index
rangeFlags[] - range->nilFlags for each actual index
indexLists[] - index list for each actual index
Builder[] - function to build result is one of
BuildScalar - long scalar (offsets)
BuildList - long array (offsets, indexLists)
BuildRange - min:max:inc or rf:min:max:inc
(offsets, numbers, steps, rangeFlags)
The arrays actually used by each Builder are shown in
parentheses. BuildRange also uses strides from step 1.
rsltIndex - index in result array for current actual index
nRF - number of range functions encountered
rfs[] - nRF range function pointers
rfIndices[] - index in result array for each range function
markedIndex - index in result array for marked index, or -1
tmpDims - Dimension list for result Array or LValue
After all actual indices have been processed, EvalSetup checks
for any overreach errors.
3. ArrayStrides (called from BuildResult) or LValueStrides
Compute the stride associated with each dummy index
strides[] - stride (in bytes) for each dimension
4. loop on BuildScalar, BuildList, BuildRange (from BuildResult or EvalLV)
Process the indices from fastest to slowest varying. The resulting
LValue is built on the top of the stack by successive calls to the
Builder routines set in step 2.
5. DoRangeFuncs (called from BuildResult)
Apply any range functions. If the LValue produced in (3) is
disk data, it is gathered before further processing.
6. (end of BuildResult)
Push number of marked index onto stack after result, if any.
This is a special form used by the matrix multiply routines.
*/
extern void FormEvalOp(int nArgs, Operand *obj);
extern DataBlock *ForceToDB(Symbol *s);
static int EvalSetup(Symbol *stack, int n);
static void SetupScalar(long index);
static void DotdotScan(Symbol *stack, int singleIndex);
static void ArrayDims(Dimension *adims);
static void ArrayStrides(long stride);
static int LValueStrides(Strider *strider);
static void DoRangeFuncs(Array *array);
static void BuildResult(char *mem, StructDef *base,
Array *array, Symbol *stack, int n);
/*--------------------------------------------------------------------------*/
/* current dummy and actual indices */
static int iDummy, iActual;
/* Characteristics of dummy indices (MAX_INDICES==nDummy) */
static int nDummy;
static Dimension *dims[MAX_INDICES]; /* dummy dimensions, fastest 1st */
static long strides[MAX_INDICES]; /* strides for dummy dimensions */
/* Characteristics of actual indices (MAX_INDICES==nActual) */
static int overreach;
static long overOrigin; /* maximum origin if overreach */
static long offsets[MAX_INDICES]; /* offsets for actual indices
used by scalars, ranges -- also
index count for rubber index */
static long numbers[MAX_INDICES]; /* numbers for actual indices */
static long steps[MAX_INDICES]; /* ::steps for actual indices */
static int rangeFlags[MAX_INDICES]; /* nilFlags for actual indices */
static Array *indexLists[MAX_INDICES]; /* index lists for actual indices */
static long (*Builder[MAX_INDICES])(LValue *);
/* routine to build result */
/* Characteristics of result */
static int rsltIndex, markedIndex, nRF, iRubber;
/* in following arrays (MAX_INDICES==nRF) */
static RangeFunc *rfs[MAX_INDICES]; /* range functions */
static int rfIndices[MAX_INDICES]; /* index # for rfs */
/* possible functions for Builder */
static long BuildScalar(LValue *result);
static long BuildList(LValue *result);
static long BuildRange(LValue *result);
/* set up function tables for initializing Builder and bParam arrays */
extern UnaryOp SetupC, SetupS, SetupI, SetupL, SetupX, SetupR, SetupVD;
extern UnaryOp ToLongC, ToLongS, ToLongI;
/*--------------------------------------------------------------------------*/
static int EvalSetup(Symbol *stack, int n)
{
Operand index;
Dimension *tmp= tmpDims;
if (n>MAX_INDICES) YError("too many array indices");
/* Note: There is no point in freeing tmpDims until here, where it
is needed again. Until now, tmpDims is simply an extra reference
to the Dimension* created in the previous Eval operation. The
amount of storage associated with tmpDims is miniscule, so even
if this is the last remaining reference, the fact that it wasn't
freed as soon as possible is unimportant. */
tmpDims= 0;
FreeDimension(tmp);
overreach= rsltIndex= nRF= 0;
markedIndex= iRubber= -1;
overOrigin= 0;
/* sort through all of the actual indices, setting up Builder routines */
iDummy= 0;
for (iActual=0 ; iActual<n ; iActual++) {
stack++;
if (!stack->ops) YError("array index cannot be keyword");
stack->ops->FormOperand(stack, &index);
index.ops->Setup(&index);
if (iDummy<0) { /* nullifier, e.g.- where(0) */
Drop(n+1);
PushDataBlock(Ref(&nilDB));
return 1;
}
}
if (iDummy<nDummy && n>0) {
if (index.ops==&voidOps) {
/* pick up all remaining dummy indices, just as if final index
had been .. instead of nil */
long number= numbers[--iActual];
long na= offsets[iActual];
DotdotScan(stack, 0);
rangeFlags[iActual]|= R_RUBBER;
numbers[iActual]*= number;
offsets[iActual++]+= na;
} /* else, should check that there wasn't a nil index followed by
one or more pseudo index -- however, this error is rather
expensive to detect, and I'm omitting the check for now. */
}
/* make sure any references beyond index bounds are kosher */
if (overOrigin) {
while (overOrigin && iDummy<nDummy) overOrigin/= dims[iDummy++]->number;
if (overOrigin) YError("index overreach beyond array bounds");
}
return 0;
}
/*--------------------------------------------------------------------------*/
/* Three distinct DataBlock types for Index operation:
longType, rangeType, and voidType.
char, short, and int also legal, as is LValue.
These routines set up the LValue Builder routines. */
static void SetupScalar(long index)
{
long number;
if (iDummy<nDummy) {
number= dims[iDummy]->number;
index-= yForceOrigin? 1L : dims[iDummy]->origin;
} else {
number= 1;
index-= 1L;
}
if (index<0 && (index+=number)<0) { /* notice behavior when index<0 */
YError("array index is too small");
} else if (index+overOrigin>=number) {
overreach= 1;
overOrigin+= index;
}
if (overOrigin) overOrigin/= number; /* origin for next index */
Builder[iActual]= &BuildScalar;
offsets[iActual]= index;
iDummy++;
}
void SetupL(Operand *op)
{
/* Scalar is simple index, dimensioned array is index list */
if (!op->type.dims) {
SetupScalar(((long *)op->value)[0]);
return;
} else { /* index list */
long i, n= op->type.number;
long *il= op->value;
long ilMin, ilMax;
long number= dims[iDummy]->number;
long origin= yForceOrigin? 1L : dims[iDummy]->origin;
if (iDummy>=nDummy) YError("index list beyond final array index");
Builder[iActual]= &BuildList;
/* Since dims is non-0, we know that the op->owner is a dataBlockSym
which points to an Array (any LValue has been fetched). */
indexLists[iActual]= (Array *)op->owner->value.db;
if (indexLists[iActual]->ops==&lvalueOps) {
indexLists[iActual]= FetchLValue(indexLists[iActual], op->owner);
il= indexLists[iActual]->value.l;
}
offsets[iActual]= -origin; /* compensate for non-0 origin */
iDummy++;
/* find minimum and maximum index list values */
ilMin= ilMax= il[0];
for (i=1 ; i<n ; i++) {
if (ilMin > il[i]) ilMin= il[i];
else if (ilMax < il[i]) ilMax= il[i];
}
if (ilMin<origin) {
YError("minimum array index in index list is too small");
} else if (ilMax-origin+overOrigin>=number) {
overreach= 1;
overOrigin+= ilMax-origin;
}
if (overOrigin) overOrigin/= number;
/* copy dimension list from index list to tmpDims (copy origins) */
if (tmpDims) tmpDims= CopyDims(op->type.dims, tmpDims, 1);
else tmpDims= Ref(op->type.dims);
/* increment count of result indices */
rsltIndex+= CountDims(op->type.dims);
return;
}
}
void SetupR(Operand *op)
{
/* Range functions specify several cases:
-: this is not an actual index
..: expand to fill remaining indices
+: mark this index */
Range *range= op->value;
int nilFlags= range->nilFlags;
long offset, origin, number, step, largest, n;
/* Return iDummy==-1 to force void result before any Builders called. */
if (nilFlags & R_NULLER) { iDummy= -1; return; }
Builder[iActual]= &BuildRange;
rangeFlags[iActual]= nilFlags;
if (nilFlags & R_RUBBER) {
DotdotScan(op->owner, nilFlags&R_PSEUDO);
return;
}
/* set origin and n for dummy index corresponding to this actual index */
step= range->inc;
if (nilFlags & R_PSEUDO) {
origin= step>0? range->min : range->max;
n= 1;
/* iDummy NOT incremented on this branch */
} else {
if (iDummy>=nDummy) YError("index range beyond final array index");
origin= yForceOrigin? 1L : dims[iDummy]->origin;
n= dims[iDummy]->number;
if (nilFlags & R_MARKED) markedIndex= rsltIndex;
iDummy++;
}
/* get min:max:inc and compensate for dummy origin */
if (nilFlags&R_MINNIL) offset= step>0? 0 : n-1;
else offset= range->min - origin;
if (nilFlags&R_MAXNIL) number= step>0? n-1 : 0;
else number= range->max - origin;
/* perform negative index wrap around if necessary */
if (offset<0 && (offset+=n)<0) {
YError("array index range start is too small");
} else if (number<0 && (number+=n)<0) {
YError("array index range stop is too small");
}
/* compute the number of footprints (#strides+1) */
if (step>=0 && number>=offset) {
if (step>1) {
largest= (number-offset)/step;
number= largest+1;
largest= offset + largest*step;
} else {
largest= number;
number= number-offset+1;
}
} else if (step<0 && offset>=number) {
if (step<-1) number= (offset-number)/(-step) + 1;
else number= offset-number + 1;
largest= offset;
} else {
YError("array index range step has wrong sign");
largest= 0;
}
/* detect and handle overreach */
if (largest+overOrigin>=n && (nilFlags&R_PSEUDO)==0) {
overreach= 1;
overOrigin+= largest;
}
if (overOrigin) overOrigin/= n;
offsets[iActual]= offset;
numbers[iActual]= number;
steps[iActual]= step;
tmpDims= NewDimension(number, 1L, tmpDims); /* default origin */
if (range->rf) {
rfs[nRF]= range->rf;
rfIndices[nRF++]= rsltIndex;
}
rsltIndex++;
}
static void DotdotScan(Symbol *stack, int singleIndex)
{
/* Scan through remaining actual indices to see how many dummy
indices to skip. We only need to detect pseudo-indices, since
these are the only type which break the one-one correspondence
between actual and dummy indices. */
int na= 0; /* # remaining non-pseudo actuals */
long number, n;
while (stack<sp) {
stack++;
if (stack->ops==&referenceSym) ReplaceRef(stack);
if (stack->ops!=&dataBlockSym || stack->value.db->ops!=&rangeOps) {
na++;
} else {
int nilFlags= ((Range *)stack->value.db)->nilFlags;
if (nilFlags & R_RUBBER)
YError("multiple rubber (.. or *) indices in one index list");
if ((nilFlags & R_PSEUDO)==0) na++;
}
}
if (singleIndex && (iDummy<nDummy-na-1)) iRubber= iActual;
offsets[iActual]= na; /* offset is actually 0, intentionally
misused here and in BuildRange */
number= 1;
while (iDummy < nDummy-na) {
n= dims[iDummy]->number;
if (overOrigin) overOrigin/= n;
number*= n;
/* copy origin here */
if (!singleIndex)
tmpDims= NewDimension(n, dims[iDummy]->origin, tmpDims);
rsltIndex++;
iDummy++;
}
if (singleIndex) tmpDims= NewDimension(number, 1L, tmpDims);
numbers[iActual]= number;
steps[iActual]= 1;
return;
}
void SetupC(Operand *op)
{
if (!op->type.dims) {
SetupScalar((long)((char *)op->value)[0]);
} else {
ToLongC(op);
SetupL(FormOperandDB(op->owner, op));
}
}
void SetupS(Operand *op)
{
if (!op->type.dims) {
SetupScalar((long)((short *)op->value)[0]);
} else {
ToLongS(op);
SetupL(FormOperandDB(op->owner, op));
}
}
void SetupI(Operand *op)
{
if (!op->type.dims) {
SetupScalar((long)((int *)op->value)[0]);
} else {
ToLongI(op);
SetupL(FormOperandDB(op->owner, op));
}
}
/* ARGSUSED */
void SetupVD(Operand *op)
{
long n= iDummy<nDummy? dims[iDummy]->number : 1L;
Builder[iActual]= &BuildRange;
rangeFlags[iActual]= 0;
offsets[iActual]= 0;
numbers[iActual]= n;
steps[iActual]= 1;
if (overOrigin) overOrigin= (overOrigin+n-1)/n;
if (iDummy<nDummy) {
tmpDims= NewDimension(n, dims[iDummy]->origin, tmpDims);
rsltIndex++;
}
iDummy++;
}
/* ARGSUSED */
void SetupX(Operand *op)
{
YError("bad data type for array index");
}
/*--------------------------------------------------------------------------*/
/* ArrayDims initializes dims[] and nDummy, ArrayStrides and LValueStrides
initialize strides[]. */
static void ArrayDims(Dimension *adims)
{ /* ArrayDims(lvalue->type.dims); */
if (!adims) { /* halt recursion */
nDummy= 0;
return;
}
ArrayDims(adims->next); /* recurse */
if (nDummy>=MAX_INDICES) YError("too many array dimensions");
dims[nDummy++]= adims;
}
static void ArrayStrides(long stride)
{ /* ArrayDims(array->type.dims); ArrayStrides(array->type.base->size); */
int i;
for (i=0 ; i<nDummy ; i++) {
strides[i]= stride;
stride*= dims[i]->number;
}
}
static int LValueStrides(Strider *strider)
{ /* ArrayDims(lvalue->type.dims); LValueStrides(lvalue->strider); */
int iDummy;
if (!strider) { /* halt recursion */
iDummy= 0;
} else {
long n, number= strider->number;
long stride= strider->stride;
iDummy= LValueStrides(strider->next); /* recurse */
if (iDummy<0 || strider->indexList) return -1;
if (iDummy<nDummy) {
strides[iDummy]= stride;
n= dims[iDummy++]->number;
while (n<number) {
strides[iDummy]= stride*n;
n*= dims[iDummy++]->number;
}
}
}
return iDummy;
}
/*--------------------------------------------------------------------------*/
/* The Builder routines actually build up the result LValue. */
static long BuildScalar(LValue *result)
{
long offset= offsets[iActual] * strides[iDummy];
iDummy++;
return offset;
}
static long BuildRange(LValue *result)
{
int nilFlags= rangeFlags[iActual];
long offset, stride, number= numbers[iActual];
/* Compute appropriate stride, offset, and increment iDummy */
if (nilFlags&R_RUBBER) { /* this is .. index (right justify remaining) */
int na= offsets[iActual]; /* # remaining non-pseudo actuals */
if (iDummy >= nDummy-na) return 0;
if (number>1 && (iDummy<nDummy-na-1) && !(nilFlags&R_PSEUDO)) {
/* a .. rubber index may need several striders */
Strider *strider= result->strider;
long n= 1, total= number;
for (; iDummy<nDummy-na ; iDummy++) {
if (n<total) {
stride= strides[iDummy];
number= dims[iDummy]->number;
if (number>1) { /* (See comments below.) */
if (strider) {
if (!strider->indexList &&
strider->stride*strider->number == stride) {
strider->number*= number;
} else {
result->strider= NewStrider(stride, number);
result->strider->next= strider;
strider= result->strider;
}
} else {
result->strider= strider= NewStrider(stride, number);
}
n*= number;
}
}
}
return 0;
} else {
stride= strides[iDummy]; /* steps[iActual] always 1 */
offset= 0;
iDummy= nDummy-na;
}
} else {
if (nilFlags&R_PSEUDO) { /* this is - index (insert new dimension) */
stride= offset= 0;
} else { /* this is ordinary rf:min:max:inc */
stride= steps[iActual] * strides[iDummy];
offset= offsets[iActual] * strides[iDummy];
iDummy++;
}
}
/* Add or append to result->strider */
if (number>1) {
if (result->strider) {
Strider *strider= result->strider;
if (!strider->indexList &&
strider->stride*strider->number == stride) {
/* If the current strider is not an index list, and its total
span (stride*number) is the same as the current stride, then
we can simply increment its number to include the current
dimension. */
strider->number*= number;
} else {
/* Otherwise, we need a new strider. */
result->strider= NewStrider(stride, number);
result->strider->next= strider;
}
} else {
result->strider= NewStrider(stride, number);
}
}
return offset;
}
static long BuildList(LValue *result)
{
Array *array= indexLists[iActual];
long offset= offsets[iActual] * strides[iDummy];
Strider *newStrider, *strider= result->strider;
/* Add index list strider to result->strider */
newStrider=
result->strider= NewStrider(strides[iDummy], array->type.number);
newStrider->next= strider;
newStrider->indexList= Ref(array);
iDummy++;
return offset;
}
/*--------------------------------------------------------------------------*/
static void DoRangeFuncs(Array *array)
{
/* Range functions are performed in left-to-right order, that is,
from the fastest varying index to the slowest. */
int i, j;
for (i=0 ; i<nRF ; i++) {
if (rfs[i](array, rfIndices[i])) {
/* This was a rank reducing operation, adjust the index numbering
for any remaining range functions. */
for (j=i+1 ; j<nRF ; j++) rfIndices[j]--;
/* Note: parser responsible for ensuring that range->rf==0
whenever range->nilFlags&R_MARKED */
if (markedIndex>i) markedIndex--;
}
/* range function left result on top of stack */
sp--;
sp->value= (sp+1)->value;
sp->ops= (sp+1)->ops;
Unref(array);
array= (Array *)sp->value.db;
}
}
static void BuildResult(char *mem, StructDef *base,
Array *array, Symbol *stack, int n)
{
LValue *result= PushDataBlock(NewLValueM(array, mem, base, tmpDims));
/* build an appropriate LValue on top of stack */
ArrayStrides(base->size);
iDummy= 0;
for (iActual=0 ; iActual<n ; iActual++) mem+= Builder[iActual](result);
result->address.m= mem;
/* swap result LValue with array on stack */
PopTo(stack); /* note that result owns use of array */
/* discard actual indices */
Drop(n);
/* If range functions were specified, do them now.
If the original array is a temporary, or if an index is marked,
may as well fetch the result LValue now, and leave an Array on
the stack instead. Non-temporaries should be left as they are,
since they might be destined for further indexing. */
if (nRF)
DoRangeFuncs(FetchLValue(result, stack));
else if (array->references==0 || markedIndex>=0)
FetchLValue(result, stack);
}
/*--------------------------------------------------------------------------*/
void FormEvalOp(int nArgs, Operand *obj)
{
Symbol *s= sp-nArgs;
DataBlock *db= (s->ops==&dataBlockSym)? s->value.db : ForceToDB(s);
obj->owner= s;
obj->references= nArgs; /* intentionally misused */
obj->ops= db->ops;
obj->value= db;
}
void Eval2(void)
{
int nArgs= (pc++)->count;
Operand obj;
FormEvalOp(nArgs, &obj);
/* guard against x(+)*y(+) where x or y is a function */
if (!obj.ops->isArray && obj.ops!=&lvalueOps)
YError("matrix multiply index marker (+) not in array index list");
obj.ops->Eval(&obj);
/* One index MUST be marked; Eval2 leaves 2 elements on the top of the
stack-- the Array, and an intScalar to tell which index is marked.
The parser guarantees that markedIndex>0 here, but only here. */
PushIntValue(markedIndex);
}
void EvalAY(Operand *op)
{
Symbol *stack= op->owner;
int nArgs= op->references; /* interpret misuse in FormEvalOp */
Array *array= op->value;
/* initialize nDummy, dims, strides */
ArrayDims(array->type.dims);
/* initialize Builder, offsets, numbers, steps, indexLists, rfs, nRF */
if (EvalSetup(stack, nArgs)) return; /* nullifier index */
BuildResult(array->value.c, array->type.base, array, stack, nArgs);
}
void EvalLV(Operand *op)
{
Symbol *stack= op->owner;
int nArgs= op->references; /* interpret misuse in FormEvalOp */
LValue *lvalue= op->value;
Strider *strider= lvalue->strider;
StructDef *base= lvalue->type.base;
int addressType= base->addressType;
/* initialize nDummy, dims */
ArrayDims(lvalue->type.dims);
/* initialize Builder, offsets, numbers, steps, indexLists, rfs, nRF */
if (EvalSetup(stack, nArgs)) return; /* nullifier index */
if (nRF || markedIndex>=0 || (overreach&&strider) ||
LValueStrides(strider)<0 || addressType>1 || iRubber>=0) {
/* Must gather the original LValue into a compact Array if any of
the following conditions are met:
(1) The actual indices include range functions (the range
function will need the data immediately).
(2) There is a marked index (the matrix multiply operation
will need the data)
(3) Any actual index overreached its corresponding dummy index,
and the LValue has strides (the overreached elements will
not be at the expected address)
(4) The original LValue includes an index list (some of the
actual indices may require extracting a subset of the index
list, rather than a subset of the data array)
(5) The original LValue references a sequential object in a
disk file.
(6) A rubber * index contracts two or more dimensions into one
As soon as one of these conditions is met, gather the LValue and
proceed as for an Array. */
Array *dst= FetchLValue(lvalue, stack);
/* The new Array is guaranteed to have simple strides, but nDummy,
dims, Builder, numbers, offsets, steps, etc. have not changed. */
BuildResult(dst->value.c, dst->type.base, dst, stack, nArgs);
} else {
/* The input LValue is described by a simple hierarchy of strides.
The data itself need never be touched to build the result LValue. */
long totalOffset;
LValue *result;
result= PushDataBlock(addressType?
NewLValueD(lvalue->address.d, base, tmpDims) :
NewLValueM(lvalue->owner, lvalue->address.m,
base, tmpDims));
if (!strider) ArrayStrides(base->size);
/* build an appropriate LValue on top of stack */
totalOffset= 0;
iDummy= 0;
for (iActual=0 ; iActual<nArgs ; iActual++)
totalOffset+= Builder[iActual](result);
if (addressType) result->address.d+= totalOffset;
else result->address.m+= totalOffset;
/* swap result LValue with array on stack */
PopTo(stack);
/* discard actual indices, leaving result on top of stack */
Drop(nArgs);
}
}
/*--------------------------------------------------------------------------*/
|