1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
/*
FMCALC.C
FMCALC is a stand-alone code which calculates the the binary
encoding of six primitive data types on a wide variety of
machine/compiler combinations. The six primitives are:
char short int long float double
The size and alignment of generic pointers is also computed.
FMCALC makes the following assumptions:
(1) The char is always and 8-bit byte.
(2) The sizes of all data types are multiples of sizeof(char).
(3) The order of the bytes can be described in terms of a
word size (possibly more than one byte) in which the
bytes are laid out either from most-to-least or least-to-most
significant, and the words are also either most-to-least or
least-to-most ordered. (The VAX floating point formats are
the only known examples of opposite ordering between words
within the object and bytes within the words.)
(4) The floating point format consists of an overall sign bit,
a group of 31 or fewer contiguous exponent bits from which
a fixed bias value can be subtracted to get the binary exponent,
and contiguous mantissa bits. The leading 1 bit on mantissas
may be explicit or implicit. Floating point zero must be
represented as all bytes 0.
The only obvious machines that this excludes are those which use
hex exponents instead of binary exponents.
The ANSI C standard requires:
sizeof(char) == 1
sizeof(short) >= 2
sizeof(int) >= 2
sizeof(long) >= 4
float exponent >= 8-bits (1.0e-37 to 1.0e37 representable)
float mantissa >= 18-bits (1.0+1.0e-5 distinct from 1.0)
--> sizeof(float) >= 4
double exponent >= 8-bits (1.0e-37 to 1.0e37 representable)
double mantissa >= 31-bits (1.0+1.0e-9 distinct from 1.0)
--> sizeof(double) >= 5
$Id: fmcalc.c,v 1.1 1993/08/27 18:32:09 munro Exp munro $
*/
/* Copyright (c) 1994. The Regents of the University of California.
All rights reserved. */
/* If you want "float" or "double" to mean something else, change these. */
#define FLOAT float
#define DOUBLE double
/*--------------------------------------------------------------------------*/
#define T_CHAR 0
#define T_SHORT 1
#define T_INT 2
#define T_LONG 3
#define T_FLOAT 4
#define T_DOUBLE 5
#define T_POINTER 6
/*--------------------------------------------------------------------------*/
/* Each of the primitive data types has a size (in bytes). */
int size[7]= {
sizeof(char), sizeof(short), sizeof(int), sizeof(long),
sizeof(FLOAT), sizeof(DOUBLE), sizeof(char *) };
/*--------------------------------------------------------------------------*/
/* The following data structures exhibit the definition of "alignment": */
struct CharAlign { char x; char y[1]; };
struct ShortAlign { char x; short y[1]; };
struct IntAlign { char x; int y[1]; };
struct LongAlign { char x; long y[1]; };
struct FloatAlign { char x; FLOAT y[1]; };
struct DoubleAlign { char x; DOUBLE y[1]; };
struct PointerAlign { char x; char *y[1]; };
struct StructAlign { char x; struct { char x; } y[1]; };
/* Since this has failed at least once (scc/UNICOS), just set it. */
#define BAD_ALIGNOF
#ifndef BAD_ALIGNOF
/* The basic data type alignments can be determined at compile time
if the offsetof macro (ANSI standard in <stddef.h>) works. This
definition is based on the ANSI standard offsetof in <stddef.h>. */
#define alignof(XxAlign) ((int)(((struct XxAlign*)0)->y))
#else
/* Must use the runtime fallback technique for computing alignments. */
#define alignof(XxAlign) 0
#endif
/* Each of the primitive data types has an alignment (in bytes).
The offset of a structure member from the beginning of the structure
is constrained to be a multiple of this alignment. */
int alignment[7]= {
alignof(CharAlign), alignof(ShortAlign),
alignof(IntAlign), alignof(LongAlign),
alignof(FloatAlign), alignof(DoubleAlign),
alignof(PointerAlign) };
/* Structure members which are themselves structure instances may have
a more restrictive alignment than required by their own members. */
int structAlign= alignof(StructAlign);
/*--------------------------------------------------------------------------*/
/* The six primitive data types also have a byte order. */
int order[6];
/*--------------------------------------------------------------------------*/
/* The two floating point data types have a floating point layout. */
struct FPLayout {
/* Addresses are in bits with 0 128-bit of the most significant byte
of the object, 8 the 128-bit of the 2nd most significant byte,
and so on until 8*size-1 is the 1-bit of the least significant
byte. The actual storage order of the bytes is given by the
order member of the DataLayout.
sgnAddr - bit address of overall sign
expAddr, expSize - bit address and size of exponent
manAddr, manSize - bit address and size of mantissa
manNorm - if non-zero, address of leading 1 in mantissa
expBias - exponent bias
*/
int references; /* reference counter */
int sgnAddr, expAddr, expSize, manAddr, manSize, manNorm;
long expBias;
} fpLayout[2];
/*--------------------------------------------------------------------------*/
#undef PROTO
#ifdef NEED_PROTOTYPES
#define PROTO(x) (x)
#else
#define PROTO(x) ()
#endif
extern int DecodeOrder PROTO((char *permute, long n));
extern int CompareBits PROTO((char *obj0, char *obj1, long n));
extern int MantissaOrder PROTO((int *mord, int nmo, long size));
extern int BigEndian PROTO((char *obj0, char *obj1, long size, int order));
extern int SwapBytes PROTO((char *obj, int n));
extern int HybridCBug PROTO((int hi, int lo));
extern long ExponentBias PROTO((char *one, int expAddr, int expSize));
extern int BadLayout PROTO((struct FPLayout *fpLayout));
extern int flt_compare PROTO((float, float));
extern int dbl_compare PROTO((double, double));
#include <stdio.h>
int main(argc, argv)
int argc;
char *argv[];
{
short sord= 0;
int iord= 0;
long lord= 0;
int mord[sizeof(DOUBLE)], manAddr;
FLOAT f0, f1, fx;
DOUBLE d0, d1, dx;
int i, tmp, mask;
FILE *file;
#ifdef BAD_ALIGNOF
/* This is the fallback technique for computing data type alignments. */
struct CharAlign alignC;
struct ShortAlign alignS;
struct IntAlign alignI;
struct LongAlign alignL;
struct FloatAlign alignF;
struct DoubleAlign alignD;
struct PointerAlign alignP;
struct StructAlign alignT;
/* fill in correct data alignments */
alignment[0]= (int)((char *)(alignC.y) - (char *)(&alignC));
alignment[1]= (int)((char *)(alignS.y) - (char *)(&alignS));
alignment[2]= (int)((char *)(alignI.y) - (char *)(&alignI));
alignment[3]= (int)((char *)(alignL.y) - (char *)(&alignL));
alignment[4]= (int)((char *)(alignF.y) - (char *)(&alignF));
alignment[5]= (int)((char *)(alignD.y) - (char *)(&alignD));
alignment[6]= (int)((char *)(alignP.y) - (char *)(&alignP));
structAlign= (int)((char *)(alignT.y) - (char *)(&alignT));
#endif
/* Byte ordering for integers is directly testable -- just need to
compare set values in successive bytes by the shift left operator,
then re-interpret them as characters to find the byte order. */
for (i=0 ; i<sizeof(short) ; i++) { sord|= (sizeof(short)-i)<<(8*i); }
for (i=0 ; i<sizeof(int) ; i++) { iord|= (sizeof(int)-i)<<(8*i); }
for (i=0 ; i<sizeof(long) ; i++) { lord|= (sizeof(long)-i)<<(8*i); }
order[T_SHORT]= DecodeOrder((char *)&sord, (long)sizeof(short));
order[T_INT]= DecodeOrder((char *)&iord, (long)sizeof(int));
order[T_LONG]= DecodeOrder((char *)&lord, (long)sizeof(long));
order[T_CHAR]= 0; /* char order not meaningful */
/* Cracking the floating point formats relies on comparing signed and
unsigned 1 to get the sign bit, watching 1, 2, and 4 increment the
exponent, and watching the successive addition of a 1-bit to the
mantissa caused by successive addition of powers of 1/256.
Also need to compare 1.0 and 1.5 to find most significant bit
of mantissa. */
f1= 1.0;
fx= 0.5;
for (i=0 ; i<sizeof(FLOAT) ; i++) {
f0= f1;
f1+= fx;
if (flt_compare(f1,f0)) break; /* loop always exits here */
mord[i]= CompareBits((char *)&f0, (char *)&f1, (long)sizeof(FLOAT));
fx*= (1.0/256.0);
}
if ((order[T_FLOAT]= MantissaOrder(mord, i, (long)sizeof(FLOAT)))) {
f0= 1.0;
f1= -1.0;
BigEndian((char *)&f0, (char *)&f1, (long)sizeof(FLOAT), order[T_FLOAT]);
fpLayout[0].sgnAddr=
CompareBits((char *)&f0, (char *)&f1, (long)sizeof(FLOAT));
/* pick multiples of two "guaranteed" bigger than exponent bias
in order to find most significant bit of exponent */
f0= 65536.0*65536.0*65536.0*65536.0*65536.0*65536.0; /* 2^96 */
f1= 1.0/(65536.0*65536.0*65536.0*65536.0*65536.0*65536.0);
BigEndian((char *)&f0, (char *)&f1, (long)sizeof(FLOAT), order[T_FLOAT]);
fpLayout[0].expAddr=
CompareBits((char *)&f0, (char *)&f1, (long)sizeof(FLOAT));
/* finding the least significant bit of the exponent requires
an extra reversal, since the bias is as yet unknown */
f0= 1.0;
f1= 2.0;
BigEndian((char *)&f0, (char *)&f1, (long)sizeof(FLOAT), order[T_FLOAT]);
SwapBytes((char *)&f0, (int)sizeof(FLOAT));
SwapBytes((char *)&f1, (int)sizeof(FLOAT));
tmp= CompareBits((char *)&f0, (char *)&f1, (long)sizeof(FLOAT));
mask= ((char *)&f0)[tmp>>3] ^ ((char *)&f1)[tmp>>3];
for (i=0 ; i<8 ; i++) {
if (mask&1) break;
else mask>>= 1;
}
tmp= ((int)sizeof(FLOAT)) - (tmp>>3) - 1;
fpLayout[0].expSize= (tmp<<3) + (7-i) - fpLayout[0].expAddr + 1;
f0= 1.0;
f1= 1.5;
BigEndian((char *)&f0, (char *)&f1, (long)sizeof(FLOAT), order[T_FLOAT]);
fpLayout[0].manAddr= manAddr=
CompareBits((char *)&f0, (char *)&f1, (long)sizeof(FLOAT));
f0= 1.0;
fx= 1.0/65536.0; /* 2^-16 */
for (i=16, f1=f0+fx ; !flt_compare(f0,f1) ; i++, f1=f0+fx) fx*= 0.5;
fpLayout[0].manSize= i-1;
fpLayout[0].manNorm= 0;
if (manAddr>0) {
/* try to determine whether the bit before manAddr is always set */
int ba= (manAddr-1)>>3;
int mask= 128>>(manAddr-1 - (ba<<3));
fx= 1.5;
for (i=0 ; i<16 ; i++) {
f0= fx;
f1= -1.75*fx;
BigEndian((char *)&f0, (char *)&f1, (long)sizeof(FLOAT),
order[T_FLOAT]);
if ((((char *)&f0)[ba]&mask)==0 || (((char *)&f0)[ba]&mask)==0)
break;
fx*= 2.0;
}
if (i>=16) {
fpLayout[0].manNorm= 1;
fpLayout[0].manAddr= manAddr-1;
fpLayout[0].manSize++;
}
}
f0= f1= 1.0;
BigEndian((char *)&f0, (char *)&f1, (long)sizeof(FLOAT), order[T_FLOAT]);
fpLayout[0].expBias= ExponentBias((char *)&f0, fpLayout[0].expAddr,
fpLayout[0].expSize);
if (fpLayout[0].manNorm) fpLayout[0].expBias--;
/* guard against things like hex exponent machines... */
if (BadLayout(&fpLayout[0])) order[T_FLOAT]= 0;
}
/* repeat the excercise for doubles */
d1= 1.0;
dx= 0.5;
for (i=0 ; i<sizeof(DOUBLE) ; i++) {
d0= d1;
d1+= dx;
if (dbl_compare(d1,d0)) break; /* loop always exits here */
mord[i]= CompareBits((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE));
dx*= (1.0/256.0);
}
if ((order[T_DOUBLE]= MantissaOrder(mord, i, (long)sizeof(DOUBLE)))) {
d0= 1.0;
d1= -1.0;
BigEndian((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE), order[T_DOUBLE]);
fpLayout[1].sgnAddr=
CompareBits((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE));
/* pick multiples of two "guaranteed" bigger than exponent bias
in order to find most significant bit of exponent */
d0= 65536.0*65536.0*65536.0*65536.0*65536.0*65536.0; /* 2^96 */
d1= 1.0/(65536.0*65536.0*65536.0*65536.0*65536.0*65536.0);
BigEndian((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE), order[T_DOUBLE]);
fpLayout[1].expAddr=
CompareBits((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE));
/* finding the least significant bit of the exponent requires
an extra reversal, since the bias is as yet unknown */
d0= 1.0;
d1= 2.0;
BigEndian((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE), order[T_DOUBLE]);
SwapBytes((char *)&d0, (int)sizeof(DOUBLE));
SwapBytes((char *)&d1, (int)sizeof(DOUBLE));
tmp= CompareBits((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE));
mask= ((char *)&d0)[tmp>>3] ^ ((char *)&d1)[tmp>>3];
for (i=0 ; i<8 ; i++) {
if (mask&1) break;
else mask>>= 1;
}
tmp= ((int)sizeof(DOUBLE)) - (tmp>>3) - 1;
fpLayout[1].expSize= (tmp<<3) + (7-i) - fpLayout[1].expAddr + 1;
d0= 1.0;
d1= 1.5;
BigEndian((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE), order[T_DOUBLE]);
fpLayout[1].manAddr= manAddr=
CompareBits((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE));
d0= 1.0;
dx= 1.0/65536.0; /* 2^-16 */
for (i=16, d1=d0+dx ; !dbl_compare(d0,d1) ; i++, d1=d0+dx) dx*= 0.5;
fpLayout[1].manSize= i-1;
fpLayout[1].manNorm= 0;
if (manAddr>0) {
/* try to determine whether the bit before manAddr is always set */
int ba= (manAddr-1)>>3;
int mask= 128>>(manAddr-1 - (ba<<3));
dx= 1.5;
for (i=0 ; i<16 ; i++) {
d0= dx;
d1= -1.75*dx;
BigEndian((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE),
order[T_DOUBLE]);
if ((((char *)&d0)[ba]&mask)==0 || (((char *)&d0)[ba]&mask)==0)
break;
dx*= 2.0;
}
if (i>=16) {
fpLayout[1].manNorm= 1;
fpLayout[1].manAddr= manAddr-1;
fpLayout[1].manSize++;
}
}
d0= d1= 1.0;
BigEndian((char *)&d0, (char *)&d1, (long)sizeof(DOUBLE), order[T_DOUBLE]);
fpLayout[1].expBias= ExponentBias((char *)&d0, fpLayout[1].expAddr,
fpLayout[1].expSize);
if (fpLayout[1].manNorm) fpLayout[1].expBias--;
/* guard against things like hex exponent machines... */
if (BadLayout(&fpLayout[1])) order[T_DOUBLE]= 0;
}
if (argc>1) file= fopen(argv[1], "w");
else file= stdout;
fprintf(file,
"/* Native primitive data formats computed by FMCALC */\n\n");
fprintf(file,
"#define CHAR_ALIGN %d\n\n", alignment[T_CHAR]);
fprintf(file,
"#define SHORT_SIZE %dL\n", size[T_SHORT]);
fprintf(file,
"#define SHORT_ALIGN %d\n", alignment[T_SHORT]);
fprintf(file,
"#define SHORT_ORDER %d\n\n", order[T_SHORT]);
fprintf(file,
"#define INT_SIZE %dL\n", size[T_INT]);
fprintf(file,
"#define INT_ALIGN %d\n", alignment[T_INT]);
fprintf(file,
"#define INT_ORDER %d\n\n", order[T_INT]);
fprintf(file,
"#define LONG_SIZE %dL\n", size[T_LONG]);
fprintf(file,
"#define LONG_ALIGN %d\n", alignment[T_LONG]);
fprintf(file,
"#define LONG_ORDER %d\n\n", order[T_LONG]);
fprintf(file,
"#define FLOAT_SIZE %dL\n", size[T_FLOAT]);
fprintf(file,
"#define FLOAT_ALIGN %d\n", alignment[T_FLOAT]);
fprintf(file,
"#define FLOAT_ORDER %d\n", order[T_FLOAT]);
fprintf(file,
"#define FLOAT_LAYOUT {0, %d, %d, %d, %d, %d, %d, %ld}\n\n",
fpLayout[0].sgnAddr, fpLayout[0].expAddr, fpLayout[0].expSize,
fpLayout[0].manAddr, fpLayout[0].manSize, fpLayout[0].manNorm,
fpLayout[0].expBias);
fprintf(file,
"#define DOUBLE_SIZE %dL\n", size[T_DOUBLE]);
fprintf(file,
"#define DOUBLE_ALIGN %d\n", alignment[T_DOUBLE]);
fprintf(file,
"#define DOUBLE_ORDER %d\n", order[T_DOUBLE]);
fprintf(file,
"#define DOUBLE_LAYOUT {0, %d, %d, %d, %d, %d, %d, %ld}\n\n",
fpLayout[1].sgnAddr, fpLayout[1].expAddr, fpLayout[1].expSize,
fpLayout[1].manAddr, fpLayout[1].manSize, fpLayout[1].manNorm,
fpLayout[1].expBias);
fprintf(file,
"#define POINTER_ALIGN %d\n\n", alignment[T_POINTER]);
fprintf(file,
"#define STRUCT_ALIGN %d\n", structAlign);
if (argc>1) fclose(file);
return 0;
}
/* without these, optimizers may break the above comparison tests */
int flt_compare(x, y)
float x, y;
{ return x==y; }
int dbl_compare(x, y)
double x, y;
{ return x==y; }
int DecodeOrder(permute, n)
char *permute;
long n;
{
int i, lswFirst=0, wordSize, order;
/* first, scan for the "1" or "n" in the permutation */
for (i=0 ; i<n ; i++) {
if (permute[i]==1) {
lswFirst= 0;
break;
} else if (permute[i]==n) {
lswFirst= 1;
break;
}
}
if (i<n/2) {
wordSize= i+1;
} else if (lswFirst) {
/* this handles situation in which integer is stored in a larger
size memory location than the register used to manipulate it --
Cray short uses 24-bit register, but stores to 64-bit word */
lswFirst= 0;
wordSize= n-i;
} else {
/* this will return an error below */
lswFirst= 0;
wordSize= 1;
}
order= lswFirst? -wordSize : wordSize;
/* n must be a multiple of imputed wordSize */
if (n%wordSize) return 0;
/* check to be sure that entire permutation is in fact described by
lswFirst and wordSize */
if (lswFirst) {
int w, b;
for (w=n-1 ; w>=0 ; w-=wordSize)
for (b=1 ; b<=wordSize ; b++) {
if (*permute && *permute!=(w+b)) return 0;
permute++;
}
} else {
int w, b;
for (w=0 ; w<n ; w+=wordSize) {
for (b=wordSize ; b>0 ; b--) {
if (*permute && *permute!=(w+b)) return 0;
permute++;
}
}
}
return order;
}
/* returns big-endian style bit address of first difference encountered
between two sequences of bytes */
int CompareBits(obj0, obj1, n)
char *obj0;
char *obj1;
long n;
{
int i, j;
char diff, mask;
for (i=0 ; i<n ; i++) if (obj0[i]!=obj1[i]) break;
if (i>=n) return n<<3;
mask= '\200';
diff= obj0[i] ^ obj1[i];
for (j=0 ; j<8 ; j++) {
if (mask&diff) break;
else mask>>= 1;
}
return (i<<3)+j;
}
int MantissaOrder(mord, nmo, size)
int *mord;
int nmo;
long size;
{
int order, i;
if (nmo<2) return 0; /* impossibly short order list */
if (mord[0]<mord[nmo-1]) { /* big-endian at first glance */
for (i=1 ; i<nmo ; i++) if (mord[i-1]+8!=mord[i]) break;
if (i>=nmo) {
return 1; /* big-endian */
} else {
int j, first= mord[nmo-1];
for (i=nmo-1 ; i>0 ; i--) if (mord[i-1]-8!=mord[i]) break;
order= nmo-i;
if (size%order) return 0;
for (i-- ; i>=0 ; i--) {
if (mord[i]+8*order != first) return 0; /* give up */
first= mord[i];
for (j=1 ; j<order && (--i)>=0 ; j++)
if (mord[i-1]-8!=mord[i]) return 0; /* give up */
}
return order; /* VAX-style middle-endian */
}
} else { /* little-endian at first glance */
for (i=1 ; i<nmo ; i++) if (mord[i-1]-8!=mord[i]) break;
if (i>=nmo) {
return -1; /* little-endian */
} else {
int j, first= mord[nmo-1];
for (i=nmo-1 ; i>0 ; i--) if (mord[i-1]+8!=mord[i]) break;
order= nmo-i;
if (size%order) return 0;
for (i-- ; i>=0 ; i--) {
if (mord[i]-8*order != first) return 0; /* give up */
first= mord[i];
for (j=1 ; j<order && (--i)>=0 ; j++)
if (mord[i-1]+8!=mord[i]) return 0; /* give up */
}
return order; /* unknown middle-endian */
}
}
}
/* in-place permutation of size bytes of obj0 and obj1 into
"standard" big-endian order (order=1), given the actual order */
int BigEndian(obj0, obj1, size, order)
char *obj0;
char *obj1;
long size;
int order;
{
if (order>1) {
/* VAX-style middle-endian, must byte-reverse groups of order bytes */
int i;
for (i=0 ; i<size ; i+=order) {
SwapBytes(obj0+i, order);
SwapBytes(obj1+i, order);
}
} else if (order<0) {
SwapBytes(obj0, (int)size);
SwapBytes(obj1, (int)size);
BigEndian(obj0, obj1, size, -order);
}
return 0;
}
int SwapBytes(obj, n)
char *obj;
int n;
{
char *end= obj+n-1;
register char c;
while (obj<end) { c=*obj; *(obj++)=*end; *(end--)=c; }
return 0;
}
long ExponentBias(one, expAddr, expSize)
char *one;
int expAddr, expSize;
{
long bias;
int expEnd= expAddr+expSize-1;
int n= expEnd>>3;
int i= expAddr>>3;
int rshft= 7 - (expEnd - (n<<3));
int rmask= (1<<rshft) - 1;
int byt= one[i]&0xff;
bias= byt>>rshft;
while (i<n) {
bias<<= 8;
bias|= (byt&rmask)<<(8-rshft);
byt= one[++i]&0xff;
bias|= byt>>rshft;
}
bias|= (byt&rmask)<<(8-rshft);
bias= bias & ((1<<expSize)-1); /* this is the exponent of 1.0 */
return bias;
}
int BadLayout(fpLayout)
struct FPLayout *fpLayout;
{
int sgnAddr= fpLayout->sgnAddr;
int expAddr= fpLayout->expAddr;
int expPlus= expAddr+fpLayout->expSize;
int manAddr= fpLayout->manAddr;
int manPlus= manAddr+fpLayout->manSize;
if ((sgnAddr>=expAddr && sgnAddr<expPlus) ||
(sgnAddr>=manAddr && sgnAddr<manPlus)) return 1;
if (expAddr==manAddr) return 1;
if (expAddr<manAddr) {
if (expPlus>manAddr) return 1;
} else {
if (manPlus>expAddr) return 1;
}
return 0; /* no overlapping fields -- looks OK */
}
|