1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
|
/*
RANGE.C
Implement range functions.
$Id: range.c,v 1.1 1993/08/27 18:32:09 munro Exp $
A range function operates on one index of an Array, while the
remaining indices are "spectators". The range function may
preserve rank, so that the result Array has the same number of
dimensions as the input Array, or it may reduce rank, so that
the result Array has one fewer dimensions than the input Array.
In either case, the spectator indices are identical in the
input and result Array. A rank preserving range function may
change the length of the index it operates on, or the result
may have identical dimensions as the input.
Yorick supports the following range functions:
RANK REDUCING
-------------
min:
max:
the minimum (or maximum) value along the index
ptp:
the difference between the maximum and minimum values
along the index, positive if the maximum occurs for a
larger index than the minimum, otherwise negative
sum:
the sum of the values along the index
avg:
rms:
the arithmetic mean (or square root of the arithmetic mean
of the squares) of the values along the index, the result
is always a double
mnx:
mxx:
the index at which the minimum (or maximum) value along the
index occured (the first such index if the extreme value
occurs more than once), the result is always a long
Complex input is allowed for the sum and avg functions only.
RANK PRESERVING
---------------
psum:
the sums of the values at equal or lesser indices along the
index
dif:
the pairwise differences between adjacent values along the
index (there is one fewer pairwise difference than value)
cum:
psum, but first result value is 0 -- true inverse of dif
zcen:
the pairwise averages between adjacent values along the
index (there is one fewer pairwise average than value),
zcen is for "zone center"
pcen:
the pairwise averages between adjacent values along the
index, with the first and last values copied (there is one
more result than input than value), pcen is for "point center"
uncp:
the inverse of the pcen operation (there is one fewer result
than input value), uncp is for "uncenter point"
Complex input is allowed for all rank preserving range functions.
*/
/* Copyright (c) 1994. The Regents of the University of California.
All rights reserved. */
/* ------------------------------------------------------------------------ */
#include "ydata.h"
/* A range function takes an Array and an integer indicating which index
of the array to operate on (0 for fastest varying, 1 for next, etc.).
The result of the operation is placed on top of the stack, and the
function returns 0 if the result Array (the result MUST be an Array)
has the same rank as the input Array, 1 if the result array has
reduced rank (the input index is missing in the result). */
/* typedef int RangeFunc(Array *array, int index); */
/* Here are the range functions themselves. Pointers to these functions
are introduced into the virtual machine code by the parser. */
extern RangeFunc RFmin, RFmax, RFptp, RFsum, RFavg, RFrms, RFmnx, RFmxx,
RFpsum, RFdif, RFzcen, RFpcen, RFuncp, RFcum;
/* ------------------------------------------------------------------------ */
/* rms function needs square root */
extern double sqrt(double);
/* ------------------------------------------------------------------------ */
/* RFCopyDims is used to copy the part of the input dimension list
which varies more slowly than the range function index.
The copy is placed in tmpDims. */
static void RFCopyDims(Dimension *start, Dimension *stop);
/* RankReduce and RankPreserve build the result dimension list tmpDims,
and set the scalar parameters step, number, nout, and nslow for the
range function worker routines. */
static void RankReduce(Dimension *dims, int index);
static void RankPreserve(Dimension *dims, int index, long change);
/* The RFPushN routines push the result array onto the stack. The four
routines correspond to the four different mappings of input data type
to output data type (see the enumeration below). */
static Array *RFPush1(int typeID);
static Array *RFPush2(void);
static Array *RFPush3(int typeID);
static Array *RFPush4(int typeID);
/* RFLoop calls the raw range function routine once for each combination
of spectator indices. RFLoopC is a special version for complex
input (all routines which allow complex input produce a complex
result). */
typedef void RawRF(void *, void *);
static void RFLoop(RawRF *RFRaw, Array *input, Array *result);
static void RFLoopC(RawRF *RFRaw, Array *input, Array *result);
/* ------------------------------------------------------------------------ */
/* step is the number of elements in dimensions which vary faster than
the dimension which is the domain of the range function
number is the number of elements in the domain dimension
nout is the number of elements in the result dimension
nslow is the number of elements in dimensions which vary slower than
the domain dimension */
static long step, number, origin, nout, nslow;
static void RFCopyDims(Dimension *start, Dimension *stop)
{
if (start==stop) {
nslow= 1;
} else {
RFCopyDims(start->next, stop);
nslow*= start->number;
tmpDims= NewDimension(start->number, start->origin, tmpDims);
}
}
static void RankReduce(Dimension *dims, int index)
{
Dimension *dims0, *dimsx;
dims0= tmpDims;
tmpDims= 0;
FreeDimension(dims0);
dims0= dimsx= dims;
while (index--) dimsx= dimsx->next;
while (dimsx->next) { dimsx= dimsx->next; dims= dims->next; }
tmpDims= Ref(dims->next);
step= TotalNumber(dims->next);
number= dims->number;
origin= yForceOrigin? 1L : dims->origin;
RFCopyDims(dims0, dims);
number*= step;
nout= step;
}
static void RankPreserve(Dimension *dims, int index, long change)
{
Dimension *dims0, *dimsx;
dims0= tmpDims;
tmpDims= 0;
FreeDimension(dims0);
dims0= dimsx= dims;
while (index--) dimsx= dimsx->next;
while (dimsx->next) { dimsx= dimsx->next; dims= dims->next; }
tmpDims= Ref(dims->next);
step= TotalNumber(dims->next);
number= dims->number;
nout= number+change;
tmpDims= NewDimension(nout, 1L, tmpDims); /* note default origin */
RFCopyDims(dims0, dims);
number*= step;
nout*= step;
}
/* ------------------------------------------------------------------------ */
/* The range functions fall into 4 categories as far as the relationship
between the input and result data types:
(1) min max input same as output
(2) mnx mxx output always long
(3) sum ptp psum dif cum integers->long, reals unchanged
(4) avg rms zcen pcen uncp integers->double, reals unchanged
In all cases, complex input is either an error, or is implemented
by two calls to the double routine. The sum, avg, psum, dif, cum, zcen,
pcen, and uncp functions accept complex input. */
static StructDef *rfBase1[]= {
&charStruct, &shortStruct, &intStruct, &longStruct,
&floatStruct, &doubleStruct, &complexStruct };
static StructDef *rfBase3[]= {
&longStruct, &longStruct, &longStruct, &longStruct,
&floatStruct, &doubleStruct, &complexStruct };
static StructDef *rfBase4[]= {
&doubleStruct, &doubleStruct, &doubleStruct, &doubleStruct,
&floatStruct, &doubleStruct, &complexStruct };
static Array *RFPush1(int typeID)
{
return PushDataBlock(NewArray(rfBase1[typeID], tmpDims));
}
static Array *RFPush2(void)
{
return PushDataBlock(NewArray(&longStruct, tmpDims));
}
static Array *RFPush3(int typeID)
{
return PushDataBlock(NewArray(rfBase3[typeID], tmpDims));
}
static Array *RFPush4(int typeID)
{
return PushDataBlock(NewArray(rfBase4[typeID], tmpDims));
}
/* ------------------------------------------------------------------------ */
/* The main loop is the same for all range functions -- the basic idea
is to call the raw range function once per each value of all spectator
indices. The spectator indices are divided into those which vary
faster than the range function index and those which vary slower. */
static void RFLoop(RawRF *RFRaw, Array *input, Array *result)
{
char *inp= input->value.c;
char *out= result->value.c;
long inpSize= input->type.base->size;
long outSize= result->type.base->size;
long inpNext= (number-step)*inpSize;
long outNext= (nout-step)*outSize;
long i, j;
for (j=0 ; j<nslow ; j++) {
for (i=0 ; i<step ; i++) {
RFRaw(inp, out);
inp+= inpSize;
out+= outSize;
}
inp+= inpNext;
out+= outNext;
}
}
/* Those range functions for which complex input is legal are all
implemented as two passes through the corresponding double function. */
static void RFLoopC(RawRF *RFRaw, Array *input, Array *result)
{
double *inp= input->value.d;
double *out= result->value.d;
long inpNext, outNext, i, j;
number*= 2;
nout*= 2;
step*= 2;
inpNext= number-step;
outNext= nout-step;
for (j=0 ; j<nslow ; j++) {
for (i=0 ; i<step ; i++) RFRaw(inp++, out++);
inp+= inpNext;
out+= outNext;
}
}
/* ------------------------------------------------------------------------ */
/* The actual raw range functions are generated by macros, since only
the data types differ, not the algorithms. */
/* ---- min - returns minimum along index */
static RawRF RFminC, RFminS, RFminI, RFminL, RFminF, RFminD;
static RawRF *RawMin[]= {
&RFminC, &RFminS, &RFminI, &RFminL, &RFminF, &RFminD };
int RFmin(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_DOUBLE) YError("bad data type in min: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type same as input data type (behavior #1) */
result= RFPush1(typeID);
RFLoop(RawMin[typeID], array, result);
return 1;
}
#define RF_MIN(rfname, type) \
static void rfname(void *in, void *out) \
{ type *inp= in, *res= out, cur= inp[0]; long i; \
for (i=step ; i<number ; i+=step) if (inp[i]<cur) cur= inp[i]; \
res[0]= cur; }
RF_MIN(RFminC, unsigned char)
RF_MIN(RFminS, short)
RF_MIN(RFminI, int)
RF_MIN(RFminL, long)
RF_MIN(RFminF, float)
RF_MIN(RFminD, double)
/* ---- max - returns maximum along index */
static RawRF RFmaxC, RFmaxS, RFmaxI, RFmaxL, RFmaxF, RFmaxD;
static RawRF *RawMax[]= {
&RFmaxC, &RFmaxS, &RFmaxI, &RFmaxL, &RFmaxF, &RFmaxD };
int RFmax(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_DOUBLE) YError("bad data type in max: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type same as input data type (behavior #1) */
result= RFPush1(typeID);
RFLoop(RawMax[typeID], array, result);
return 1;
}
#define RF_MAX(rfname, type) \
static void rfname(void *in, void *out) \
{ type *inp= in, *res= out, cur= inp[0]; long i; \
for (i=step ; i<number ; i+=step) if (inp[i]>cur) cur= inp[i]; \
res[0]= cur; }
RF_MAX(RFmaxC, unsigned char)
RF_MAX(RFmaxS, short)
RF_MAX(RFmaxI, int)
RF_MAX(RFmaxL, long)
RF_MAX(RFmaxF, float)
RF_MAX(RFmaxD, double)
/* ---- mnx - returns first 0-origin index where value is minimum */
static RawRF RFmnxC, RFmnxS, RFmnxI, RFmnxL, RFmnxF, RFmnxD;
static RawRF *RawMnx[]= {
&RFmnxC, &RFmnxS, &RFmnxI, &RFmnxL, &RFmnxF, &RFmnxD };
int RFmnx(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_DOUBLE) YError("bad data type in mnx: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type always long (behavior #2) */
result= RFPush2();
RFLoop(RawMnx[typeID], array, result);
return 1;
}
#define RF_MNX(rfname, type) \
static void rfname(void *in, void *out) \
{ type *inp= in; type cur= inp[0]; long *res= out, i, j=1, jcur=0; \
for (i=step ; i<number ; i+=step,j++) if (inp[i]<cur) cur= inp[jcur=j,i]; \
res[0]= jcur+origin; }
RF_MNX(RFmnxC, unsigned char)
RF_MNX(RFmnxS, short)
RF_MNX(RFmnxI, int)
RF_MNX(RFmnxL, long)
RF_MNX(RFmnxF, float)
RF_MNX(RFmnxD, double)
/* ---- mxx - returns first 0-origin index where value is maximum */
static RawRF RFmxxC, RFmxxS, RFmxxI, RFmxxL, RFmxxF, RFmxxD;
static RawRF *RawMxx[]= {
&RFmxxC, &RFmxxS, &RFmxxI, &RFmxxL, &RFmxxF, &RFmxxD };
int RFmxx(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_DOUBLE) YError("bad data type in mxx: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type always long (behavior #2) */
result= RFPush2();
RFLoop(RawMxx[typeID], array, result);
return 1;
}
#define RF_MXX(rfname, type) \
static void rfname(void *in, void *out) \
{ type *inp= in; type cur= inp[0]; long *res= out, i, j=1, jcur=0; \
for (i=step ; i<number ; i+=step,j++) if (inp[i]>cur) cur= inp[jcur=j,i]; \
res[0]= jcur+origin; }
RF_MXX(RFmxxC, unsigned char)
RF_MXX(RFmxxS, short)
RF_MXX(RFmxxI, int)
RF_MXX(RFmxxL, long)
RF_MXX(RFmxxF, float)
RF_MXX(RFmxxD, double)
/* ---- sum - returns sum along index */
static RawRF RFsumC, RFsumS, RFsumI, RFsumL, RFsumF, RFsumD;
static RawRF *RawSum[]= {
&RFsumC, &RFsumS, &RFsumI, &RFsumL, &RFsumF, &RFsumD };
int RFsum(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in sum: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type long, float, or double (behavior #3) */
result= RFPush3(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawSum[typeID], array, result);
else RFLoopC(&RFsumD, array, result);
return 1;
}
#define RF_SUM(rfname, type1, type2, type3) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; type3 cur= inp[0]; long i; \
for (i=step ; i<number ; i+=step) cur+= inp[i]; \
res[0]= cur; }
RF_SUM(RFsumC, unsigned char, long, long)
RF_SUM(RFsumS, short, long, long)
RF_SUM(RFsumI, int, long, long)
RF_SUM(RFsumL, long, long, long)
RF_SUM(RFsumF, float, float, double)
RF_SUM(RFsumD, double, double, double)
/* ---- ptp - returns peak-to-peak variation along index,
>0 if minimum occurs before maximum, else <0 */
static RawRF RFptpC, RFptpS, RFptpI, RFptpL, RFptpF, RFptpD;
static RawRF *RawPtp[]= {
&RFptpC, &RFptpS, &RFptpI, &RFptpL, &RFptpF, &RFptpD };
int RFptp(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_DOUBLE) YError("bad data type in ptp: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type long, float, or double (behavior #3) */
result= RFPush3(typeID);
RFLoop(RawPtp[typeID], array, result);
return 1;
}
#define RF_PTP(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out, cn, cx; long i, jn, jx; \
jn= jx= 0; cn= cx= inp[0]; \
for (i=step ; i<number ; i+=step) \
if ((type2)inp[i]>cx) cx= inp[jx= i]; \
else if ((type2)inp[i]<cn) cn= inp[jn= i]; \
res[0]= jn<jx? cx-cn : cn-cx; }
RF_PTP(RFptpC, unsigned char, long)
RF_PTP(RFptpS, short, long)
RF_PTP(RFptpI, int, long)
RF_PTP(RFptpL, long, long)
RF_PTP(RFptpF, float, float)
RF_PTP(RFptpD, double, double)
/* ---- psum - returns psum along index */
static RawRF RFpsumC, RFpsumS, RFpsumI, RFpsumL, RFpsumF, RFpsumD;
static RawRF *RawPsum[]= {
&RFpsumC, &RFpsumS, &RFpsumI, &RFpsumL, &RFpsumF, &RFpsumD };
int RFpsum(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in psum: range function");
/* set tmpDims to result dimensions */
RankPreserve(array->type.dims, index, 0L);
/* result data type long, float, or double (behavior #3) */
result= RFPush3(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawPsum[typeID], array, result);
else RFLoopC(&RFpsumD, array, result);
return 0;
}
#define RF_PSUM(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; long i; \
res[0]= inp[0]; \
for (i=step ; i<number ; i+=step) res[i]= res[i-step]+inp[i]; }
RF_PSUM(RFpsumC, unsigned char, long)
RF_PSUM(RFpsumS, short, long)
RF_PSUM(RFpsumI, int, long)
RF_PSUM(RFpsumL, long, long)
RF_PSUM(RFpsumF, float, float)
RF_PSUM(RFpsumD, double, double)
/* ---- dif - returns dif along index */
static RawRF RFdifC, RFdifS, RFdifI, RFdifL, RFdifF, RFdifD;
static RawRF *RawDif[]= {
&RFdifC, &RFdifS, &RFdifI, &RFdifL, &RFdifF, &RFdifD };
int RFdif(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in dif: range function");
/* set tmpDims to result dimensions */
RankPreserve(array->type.dims, index, -1L);
if (number==step) YError("can't use dif: on index of length 1");
/* result data type long, float, or double (behavior #3) */
result= RFPush3(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawDif[typeID], array, result);
else RFLoopC(&RFdifD, array, result);
return 0;
}
#define RF_DIF(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; long i; \
for (i=0 ; i<number-step ; i+=step) res[i]= inp[i+step]-inp[i]; }
RF_DIF(RFdifC, unsigned char, long)
RF_DIF(RFdifS, short, long)
RF_DIF(RFdifI, int, long)
RF_DIF(RFdifL, long, long)
RF_DIF(RFdifF, float, float)
RF_DIF(RFdifD, double, double)
/* ---- cum - returns cum along index */
static RawRF RFcumC, RFcumS, RFcumI, RFcumL, RFcumF, RFcumD;
static RawRF *RawCum[]= {
&RFcumC, &RFcumS, &RFcumI, &RFcumL, &RFcumF, &RFcumD };
int RFcum(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in cum: range function");
/* set tmpDims to result dimensions */
RankPreserve(array->type.dims, index, 1L);
/* result data type long, float, or double (behavior #3) */
result= RFPush3(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawCum[typeID], array, result);
else RFLoopC(&RFcumD, array, result);
return 0;
}
#define RF_CUM(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; long i; \
res[0]= 0; for (i=0 ; i<number ; i+=step) res[i+step]= res[i]+inp[i]; }
RF_CUM(RFcumC, unsigned char, long)
RF_CUM(RFcumS, short, long)
RF_CUM(RFcumI, int, long)
RF_CUM(RFcumL, long, long)
RF_CUM(RFcumF, float, float)
RF_CUM(RFcumD, double, double)
/* ---- avg - returns avg along index */
static RawRF RFavgC, RFavgS, RFavgI, RFavgL, RFavgF, RFavgD;
static RawRF *RawAvg[]= {
&RFavgC, &RFavgS, &RFavgI, &RFavgL, &RFavgF, &RFavgD };
int RFavg(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in avg: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type double, float, or double (behavior #4) */
result= RFPush4(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawAvg[typeID], array, result);
else RFLoopC(&RFavgD, array, result);
return 1;
}
#define RF_AVG(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; double cur= inp[0]; long i, n= 1; \
for (i=step ; i<number ; i+=step) { cur+= inp[i]; n++; } \
res[0]= cur/n; }
RF_AVG(RFavgC, unsigned char, double)
RF_AVG(RFavgS, short, double)
RF_AVG(RFavgI, int, double)
RF_AVG(RFavgL, long, double)
RF_AVG(RFavgF, float, float)
RF_AVG(RFavgD, double, double)
/* ---- rms - returns rms along index */
static RawRF RFrmsC, RFrmsS, RFrmsI, RFrmsL, RFrmsF, RFrmsD;
static RawRF *RawRms[]= {
&RFrmsC, &RFrmsS, &RFrmsI, &RFrmsL, &RFrmsF, &RFrmsD };
int RFrms(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_DOUBLE) YError("bad data type in rms: range function");
/* set tmpDims to result dimensions */
RankReduce(array->type.dims, index);
/* result data type double, float, or double (behavior #4) */
result= RFPush4(typeID);
RFLoop(RawRms[typeID], array, result);
return 1;
}
#define RF_RMS(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out, mxa, avg, cur, tmp; long i, n= 1; \
avg= inp[0]; mxa= avg>0.0? avg : -avg; \
for (i=step ; i<number ; i+=step) { avg+= inp[i]; n++; \
if (mxa<(type2)inp[i]) mxa= (type2)inp[i]; \
else if (mxa<-(type2)inp[i]) mxa= -(type2)inp[i]; } \
if (mxa) { avg/= n; tmp= ((type2)inp[0]-avg)/mxa; cur= tmp*tmp; \
for (i=step ; i<number ; i+=step) { \
tmp= ((type2)inp[i]-avg)/mxa; cur+= tmp*tmp; } \
res[0]= mxa*sqrt(cur/n); \
} else res[0]= 0.0; }
RF_RMS(RFrmsC, unsigned char, double)
RF_RMS(RFrmsS, short, double)
RF_RMS(RFrmsI, int, double)
RF_RMS(RFrmsL, long, double)
RF_RMS(RFrmsF, float, float)
RF_RMS(RFrmsD, double, double)
/* ---- zcen - returns zcen along index */
static RawRF RFzcenC, RFzcenS, RFzcenI, RFzcenL, RFzcenF, RFzcenD;
static RawRF *RawZcen[]= {
&RFzcenC, &RFzcenS, &RFzcenI, &RFzcenL, &RFzcenF, &RFzcenD };
int RFzcen(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in zcen: range function");
/* set tmpDims to result dimensions */
RankPreserve(array->type.dims, index, -1L);
if (number==step) YError("can't use zcen: on index of length 1");
/* result data type double, float, or double (behavior #4) */
result= RFPush4(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawZcen[typeID], array, result);
else RFLoopC(&RFzcenD, array, result);
return 0;
}
#define RF_ZCEN(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; long i; \
for (i=0 ; i<number-step ; i+=step) res[i]= \
0.5*((type2)inp[i+step]+(type2)inp[i]); }
RF_ZCEN(RFzcenC, unsigned char, double)
RF_ZCEN(RFzcenS, short, double)
RF_ZCEN(RFzcenI, int, double)
RF_ZCEN(RFzcenL, long, double)
RF_ZCEN(RFzcenF, float, float)
RF_ZCEN(RFzcenD, double, double)
/* ---- pcen - returns pcen along index */
static RawRF RFpcenC, RFpcenS, RFpcenI, RFpcenL, RFpcenF, RFpcenD;
static RawRF *RawPcen[]= {
&RFpcenC, &RFpcenS, &RFpcenI, &RFpcenL, &RFpcenF, &RFpcenD };
int RFpcen(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in pcen: range function");
/* set tmpDims to result dimensions */
RankPreserve(array->type.dims, index, 1L);
/* result data type double, float, or double (behavior #4) */
result= RFPush4(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawPcen[typeID], array, result);
else RFLoopC(&RFpcenD, array, result);
return 0;
}
#define RF_PCEN(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; long i; \
res[0]= inp[0]; \
for (i=step ; i<number ; i+=step) res[i]= \
0.5*((type2)inp[i]+(type2)inp[i-step]); res[i]= inp[i-step]; }
RF_PCEN(RFpcenC, unsigned char, double)
RF_PCEN(RFpcenS, short, double)
RF_PCEN(RFpcenI, int, double)
RF_PCEN(RFpcenL, long, double)
RF_PCEN(RFpcenF, float, float)
RF_PCEN(RFpcenD, double, double)
/* ---- uncp - returns uncp along index */
static RawRF RFuncpC, RFuncpS, RFuncpI, RFuncpL, RFuncpF, RFuncpD;
static RawRF *RawUncp[]= {
&RFuncpC, &RFuncpS, &RFuncpI, &RFuncpL, &RFuncpF, &RFuncpD };
int RFuncp(Array *array, int index)
{
Operations *ops= array->ops;
int typeID= ops->typeID;
Array *result;
if (typeID > T_COMPLEX) YError("bad data type in uncp: range function");
/* set tmpDims to result dimensions */
RankPreserve(array->type.dims, index, -1L);
if (number==step) YError("can't use uncp: on index of length 1");
/* result data type double, float, or double (behavior #4) */
result= RFPush4(typeID);
if (typeID!=T_COMPLEX) RFLoop(RawUncp[typeID], array, result);
else RFLoopC(&RFuncpD, array, result);
return 0;
}
#define RF_UNCP(rfname, type1, type2) \
static void rfname(void *in, void *out) \
{ type1 *inp= in; type2 *res= out; double cur= inp[0]; long i; \
for (i=step,res[0]=cur ; i<number-step ; i+=step) \
res[i]= (cur= 2.0*inp[i]-cur); }
RF_UNCP(RFuncpC, unsigned char, double)
RF_UNCP(RFuncpS, short, double)
RF_UNCP(RFuncpI, int, double)
RF_UNCP(RFuncpL, long, double)
RF_UNCP(RFuncpF, float, float)
RF_UNCP(RFuncpD, double, double)
/* ------------------------------------------------------------------------ */
|