File: pl3d.i

package info (click to toggle)
yorick 1.5.08-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 7,508 kB
  • ctags: 7,937
  • sloc: ansic: 75,604; cpp: 1,282; lisp: 1,217; sh: 1,026; makefile: 616; fortran: 19
file content (1385 lines) | stat: -rw-r--r-- 42,959 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
/*
   PL3D.I
   Viewing transforms and other aids for 3D plotting.

   $Id$
 */
/*    Copyright (c) 1996.  The Regents of the University of California.
                    All rights reserved.  */

/* General overview:

   (1) Viewing transform machinery.  Arguably the simplest model
       is the CAD/CAM notion that the object you see is oriented
       as you see it in the current picture.  You can then move
       it left, right, up, down, or toward or away from you,
       or you can rotate it about any of the three axes (horizontal,
       vertical, or out of the screen).  The xyz coordinates of the
       object remains unchanged throughout all of this, but this
       object coordinate system changes relative to the fixed
       xyz of the viewer, in which x is always to the right, y is
       up, and z is directed out of the screen.  Initially, the
       two coordinate systems coincide.

       rot3, xangle,yangle,zangle
         Rotate the object about viewer's x-axis by xangle, then
	 about viewer's y-axis by yangle, then about viewer's
	 z-axis by zangle
       mov3, xchange,ychange,zchange
         Move the object by the specified amounts.

       setz3, zcamera
         The "camera" is located at (0,0,zcamera) in the viewer's
	 coordinate system, looking in the minus-z direction.
	 Initially, zcamera is very large, and the magnification
	 factor is correspondingly large, giving an isometric view.
	 Decreasing zcamera makes the perspective more extreme.
	 If parts of the object are behind the camera, strange things
	 may happen.

       undo3
       undo3, n
         Undo the last N (default 1) viewpoint commands (rot3, mov3,
	 or setz3).  Up to 100 viewpoint changes are remembered.
       viewpoint= save3()
       ...
       restore3, viewpoint
         The current viewpoint transformation can be saved and later
	 restored.

       gnomon, on_off
         Toggle the gnomon (a simple display showing the orientation
	 of the xyz axes of the object).
 */

/* ------------------------------------------------------------------------ */

func rot3(xa,ya,za)
/* DOCUMENT rot3, xa,ya,za
     rotate the current 3D plot by XA about viewer's x-axis,
     YA about viewer's y-axis, and ZA about viewer's z-axis.
   SEE ALSO: orient3, mov3, aim3, setz3, undo3, save3, restore3, light3
 */
{
  if (is_void(xa)) xa= 0.;
  if (is_void(ya)) ya= 0.;
  if (is_void(za)) za= 0.;
  x= [1.,0.,0.];
  y= [0.,1.,0.];
  z= [0.,0.,1.];
  _rot3, za, x, y;
  _rot3, ya, z, x;
  _rot3, xa, y, z;
  _setrot3, [x,y,z](,+)*_getrot3()(+,);
}

func _rot3(a, &x, &y)
{
  ca= cos(a);
  sa= sin(a);
  a= x;
  x=  ca*a + sa*y;
  y= -sa*a + ca*y;
}

func mov3(xa,ya,za)
/* DOCUMENT mov3, xa,ya,za
     move the current 3D plot by XA along viewer's x-axis,
     YA along viewer's y-axis, and ZA along viewer's z-axis.
   SEE ALSO: rot3, orient3, setz3, undo3, save3, restore3, light3
 */
{
  if (is_void(xa)) xa= 0.;
  if (is_void(ya)) ya= 0.;
  if (is_void(za)) za= 0.;
  _setorg3, _getorg3() - _getrot3()(+,)*[xa,ya,za](+);
}

func aim3(xa,ya,za)
/* DOCUMENT aim3, xa,ya,za
     move the current 3D plot to put the point (XA,YA,ZA) in object
     coordinates at the point (0,0,0) -- the aim point -- in the
     viewer's coordinates.  If any of XA, YA, or ZA is nil, it defaults
     to zero.
   SEE ALSO: mov3, rot3, orient3, setz3, undo3, save3, restore3, light3
 */
{
  if (is_void(xa)) xa= 0.;
  if (is_void(ya)) ya= 0.;
  if (is_void(za)) za= 0.;
  _setorg3, [xa,ya,za];
}

func setz3(zc)
/* DOCUMENT setz3, zc
     Set the camera position to z=ZC (x=y=0) in the viewer's coordinate
     system.  If ZC is nil, set the camera to infinity (default).
   SEE ALSO: rot3, orient3, undo3, save3, restore3, light3
 */
{
  if (!is_void(zc)) {
    if (dimsof(zc)(1)) error, "camera position must be scalar";
    zc= double(zc);
  }
  _setzc3, zc;
}

func orient3(phi, theta)
/* DOCUMENT orient3, phi, theta
         or orient3, phi
         or orient3, , theta
         or orient3
     Set the "orientation" of the object to (PHI,THETA).  "Orientations"
     are a subset of the possible rotation matrices in which the z-axis
     of the object appears vertical on the screen (that is, the object
     z-axis projects onto the viewer y-axis).  The THETA angle is the
     angle from the viewer y-axis to the object z-axis, positive if
     the object z-axis is tilted toward you (toward viewer +z).  PHI is
     zero when the object x-axis coincides with the viewer x-axis.  If
     neither PHI nor THETA is specified, PHI defaults to -pi/4 and
     THETA defaults to pi/6.  If only one of PHI or THETA is specified,
     the other remains unchanged, unless the current THETA is near pi/2,
     in which case THETA returns to pi/6, or unless the current
     orientation does not have a vertical z-axis, in which case the
     unspecified value returns to its default.

     Unlike rot3, orient3 is not a cumulative operation.

   SEE ALSO: rot3, mov3, aim3, save3, restore3, light3, limit3
 */
{
  if (is_void(theta) && is_void(phi)) {
    theta= _orient3_theta;
    phi= _orient3_phi;
  } else if (is_void(theta) || is_void(phi)) {
    z= _getrot3()(,+)*[0.,0.,1.](+);
    if (abs(z(1))>1.e-6) {
      /* object z-axis not aligned with viewer y-axis */
      if (is_void(theta)) theta= _orient3_theta;
      else phi= _orient3_phi;
    } else if (is_void(theta)) {
      if (abs(z(2))<1.e-6) theta= _orient3_theta;
      else theta= atan(z(3),z(2));
    } else /*if (is_void(phi))*/ {
      y= [0.,z(3),-z(2)];  /* in object xy-plane */
      x= _getrot3()(,+)*[1.,0.,0.](+);
      phi= atan(y(+)*x(+), x(1));
    }
  }
  x= [1.,0.,0.];
  y= [0.,1.,0.];
  z= [0.,0.,1.];
  _rot3, theta, y, z;
  _rot3, phi, z, x;
  _setrot3, [x,-z,y];
}

/* unless user has supplied alternative defaults, set orient3 defaults */
if (is_void(_orient3_theta)) _orient3_theta= pi/6;
if (is_void(_orient3_phi)) _orient3_phi= -pi/4;

func limit3(xn,xx,yn,yx,zn,zx,aspect=)
/* DOCUMENT limit3, xmin,xmax, ymin,ymax
         or limit3, xmin,xmax, ymin,ymax, zmin,zmax
     Set the 3D axis limits for use with the cage.
     Use keyword aspect=[ax,ay,az] to set the aspect ratios of the
     cage to ax:ay:az -- that is, the ratios of the lengths of the
     cage axes will become ax:ay:az.
   SEE ALSO: cage3, range3, plwf (include plwf.i), orient3
 */
{
  local limits;
  eq_nocopy, limits, _car(_draw3_list, _draw3_nll+1);
  if (dimsof(xn)(1)>1) {
    if (dimsof(xn)(1)!=2 || anyof(dimsof(xn)(2:3)!=3))
      error, "bad limit3 arguments";
    _setscl3, xn;
    return limits;
  }
  void= [[is_void(xn),is_void(xx)],[is_void(yn),is_void(yx)],
	 [is_void(zn),is_void(zx)]];
  if (nallof(void) || !is_void(aspect)) {
    if (is_void(limits)) {
      if (anyof(void))
	error, "no xyz limits currently set -- you must set all six";
      lims= array([0.,1.,1.],3);
    } else {
      lims= limits;
    }
    if (!void(1,1)) lims(1,1)= xn;
    if (!void(2,1)) lims(2,1)= xx;
    if (!void(1,2)) lims(1,2)= yn;
    if (!void(2,2)) lims(2,2)= yx;
    if (!void(1,3)) lims(1,3)= zn;
    if (!void(2,3)) lims(2,3)= zx;
    if (!is_void(aspect)) lims(3,)= aspect;
    _setscl3, lims;
  }
  return limits;
}

func range3(zn,zx,aspect=)
/* DOCUMENT range3, zmin,zmax
     Set the 3D axis z limits for use with the cage.
     Use keyword aspect=[ax,ay,az] to set the aspect ratios of the
     cage to ax:ay:az -- that is, the ratios of the lengths of the
     cage axes will become ax:ay:az.
   SEE ALSO: cage3, limit3, plwf (include plwf.i), orient3
 */
{
  return limit3(,,,,zn,zx,aspect=aspect);
}

func save3(void)
/* DOCUMENT view= save3()
     Save the current 3D viewing transformation and lighting.
   SEE ALSO: restore3, rot3, mov3, aim3, light3
 */
{
  return _cpy(_draw3_list, _draw3_n);
}

func restore3(view)
/* DOCUMENT restore3, view
     Restore a previously saved 3D viewing transformation and lighting.
     If VIEW is nil, rotate object to viewer's coordinate system.
   SEE ALSO: restore3, rot3, mov3, aim3, light3
 */
{
  if (!is_void(view)) view= _cpy(view);
  else view= _cat(_cpy(_draw3_view), _cpy(_light3_list));
  _cdr, view, _draw3_n, _cdr(_draw3_list, _draw3_n, []);
  _draw3_list= view;
  _undo3_set, restore3, old;
}

/* set default viewing direction if user hasn't already done so */
if (is_void(_draw3_view)) _draw3_view= _lst(unit(3), [0.,0.,0.], []);
_draw3_nv= _len(_draw3_view);

/* ------------------------------------------------------------------------ */

func light3(ambient=,diffuse=,specular=,spower=,sdir=)
/* DOCUMENT light3, ambient=a_level,
                    diffuse=d_level,
		    specular=s_level,
		    spower=n,
		    sdir=xyz
     Sets lighting properties for 3D shading effects.
     A surface will be shaded according to its to its orientation
     relative to the viewing direction.

     The ambient level A_LEVEL is a light level (arbitrary units)
     that is added to every surface independent of its orientation.

     The diffuse level D_LEVEL is a light level which is proportional
     to cos(theta), where theta is the angle between the surface
     normal and the viewing direction, so that surfaces directly
     facing the viewer are bright, while surfaces viewed edge on are
     unlit (and surfaces facing away, if drawn, are shaded as if they
     faced the viewer).

     The specular level S_LEVEL is a light level proportional to a high
     power spower=N of 1+cos(alpha), where alpha is the angle between
     the specular reflection angle and the viewing direction.  The light
     source for the calculation of alpha lies in the direction XYZ (a
     3 element vector) in the viewer's coordinate system at infinite
     distance.  You can have ns light sources by making S_LEVEL, N, and
     XYZ (or any combination) be vectors of length ns (3-by-ns in the
     case of XYZ).  (See source code for specular_hook function
     definition if powers of 1+cos(alpha) aren't good enough for you.)

     With no arguments, return to the default lighting.

   EXAMPLES:
     light3, diffuse=.1, specular=1., sdir=[0,0,-1]
       (dramatic "tail lighting" effect)
     light3, diffuse=.5, specular=1., sdir=[1,.5,1]
       (classic "over your right shoulder" lighting)
     light3, ambient=.1,diffuse=.1,specular=1.,
             sdir=[[0,0,-1],[1,.5,1]],spower=[4,2]
       (two light sources combining previous effects)

   SEE ALSO: rot3, save3, restore3
 */
{
  old= _cpy(_cdr(_draw3_list,_draw3_nv),5);

  flags= 0;
  if (!is_void(ambient)) {
    if (dimsof(ambient)(1)) error, "ambient light level must be scalar";
    flags|= 1;
    _car, _draw3_list, _draw3_nv+1, double(ambient);
  }
  if (!is_void(diffuse)) {
    if (dimsof(diffuse)(1)) error, "diffuse light level must be scalar";
    flags|= 2;
    _car, _draw3_list, _draw3_nv+2, double(diffuse);
  }

  if (!is_void(specular)) flags|= 4;
  else specular= _car(_draw3_list, _draw3_nv+3);
  if (!is_void(spower)) flags|= 8;
  else spower= _car(_draw3_list, _draw3_nv+4);
  if (!is_void(sdir)) {
    dims= dimsof(sdir);
    if (dims(1)<1 || dims(2)!=3)
      error, "lighting direction must be 3 vector or 3-by-ns array"
    flags|= 16;
  } else {
    sdir= _car(_draw3_list, _draw3_nv+5);
  }
  if (flags&28) {
    if (is_void(dimsof(specular,spower,sdir(1,..))))
      error, "specular, spower, and sdir not conformable";
    if (flags&4) _car, _draw3_list, _draw3_nv+3, double(specular);
    if (flags&8) _car, _draw3_list, _draw3_nv+4, spower;
    if (flags&16) _car, _draw3_list, _draw3_nv+5, double(sdir);
  }

  if (!flags) {
    for (i=1 ; i<=5 ; ++i)
      _car, _draw3_list, _draw3_nv+i, _car(_light3_list,i);
  }

  _undo3_set, _light3, old;
}

func _light3(arg)
{
  for (i=1 ; i<=5 ; ++i)
    _car, _draw3_list, _draw3_nv+i, _car(arg,i);
}

/* set default values if user hasn't already done so */
if (is_void(_light3_ambient)) _light3_ambient= 0.2;
if (is_void(_light3_diffuse)) _light3_diffuse= 1.0;
if (is_void(_light3_specular)) _light3_specular= 0.0;
if (is_void(_light3_spower)) _light3_spower= 2;
if (is_void(_light3_sdir)) _light3_sdir= [1.0, 0.5, 1.0]/sqrt(2.25);
_light3_list= _lst(_light3_ambient,_light3_diffuse,_light3_specular,
		   _light3_spower,_light3_sdir);

func get3_light(xyz, nxyz)
/* DOCUMENT get3_light(xyz, nxyz)
         or get3_light(xyz)

     return 3D lighting for polygons with vertices XYZ.  If NXYZ is
     specified, XYZ should be 3-by-sum(nxyz), with NXYZ being the
     list of numbers of vertices for each polygon (as for the plfp
     function).  If NXYZ is not specified, XYZ should be a quadrilateral
     mesh, 3-by-ni-by-nj (as for the plf function).  In the first case,
     the return value is numberof(NXYZ); in the second case, the
     return value is (ni-1)-by-(nj-1).

     The parameters of the lighting calculation are set by the
     light3 function.

   SEE ALSO: light3, set3_object, get3_normal, get3_centroid
 */
{
  list= _cdr(_draw3_list, _draw3_nv);
  ambient= _nxt(list);
  diffuse= _nxt(list);
  specular= _nxt(list);
  spower= _nxt(list);
  sdir= _nxt(list);

  /* get normal */
  normal= get3_normal(xyz, nxyz);

  /* get direction to viewer's eye (camera) */
  zc= _getzc3();
  if (is_void(zc)) {
    view= [0.,0.,1.];
  } else {
    view= [0.,0.,zc]-get3_centroid(xyz, nxyz);
    m1= abs(view(1,..),view(2,..),view(3,..))(-,..);
    m1= m1 + (m1==0.0);
    view/= m1;
  }

  /* do lighting calculation */
  nv= (normal*view)(sum,..);
  light= ambient + diffuse*abs(nv);
  if (anyof(specular)) {
    sdir= sdir(,*);
    sdir/= abs(sdir(1,),sdir(2,),sdir(3,))(-,);
    sv= sdir(+,*)*view(+,..);
    sn= sdir(+,*)*normal(+,..);
    m1= max(sn*nv(-,) - 0.5*sv + 0.5, 1.e-30);  /* max(1+cos(alpha),0) */
    if (is_func(specular_hook))
      m1= specular_hook(m1, abs(nv)(-,..), spower);
    else
      m1= m1^spower;
    light+= (specular(*)*m1)(sum,..);
  }

  return light;
}

func get3_normal(xyz, nxyz)
/* DOCUMENT get3_normal(xyz, nxyz)
         or get3_normal(xyz)

     return 3D normals for polygons with vertices XYZ.  If NXYZ is
     specified, XYZ should be 3-by-sum(nxyz), with NXYZ being the
     list of numbers of vertices for each polygon (as for the plfp
     function).  If NXYZ is not specified, XYZ should be a quadrilateral
     mesh, 3-by-ni-by-nj (as for the plf function).  In the first case,
     the return value is 3-by-numberof(NXYZ); in the second case, the
     return value is 3-by-(ni-1)-by-(nj-1).

     The normals are constructed from the cross product of the lines
     joining the midpoints of two edges which as nearly quarter the
     polygon as possible (the medians for a quadrilateral).  No check
     is made that these not be parallel; the returned "normal" is
     [0,0,0] in that case.  Also, if the polygon vertices are not
     coplanar, the "normal" has no precisely definable meaning.

   SEE ALSO: get3_centroid, get3_light
 */
{
  if (is_void(nxyz)) {
    /* if no polygon list is given, assume xyz is 2D mesh */
    /* form normal as cross product of medians */
    m1= xyz(,zcen,dif);
    m2= xyz(,dif,zcen);

  } else {
    /* with polygon list, more elaborate calculation required */
    frst= nxyz(psum)-nxyz+1;

    /* form normal by getting two approximate diameters
     * (reduces to above medians for quads) */
    n2= (nxyz+1)/2;
    zero= frst-1;
    c0= 0.5*(xyz(,zero+1)+xyz(,zero+2));
    i= zero+n2;  /* n2>=2, nxyz>=3 */
    c1= 0.5*(xyz(,i)+xyz(,i+1));
    i= 1+n2/2;
    c2= 0.5*(xyz(,zero+i)+xyz(,zero+i+1));
    i= min(i+n2, nxyz);
    c3= 0.5*(xyz(,zero+i)+xyz(,zero+i%nxyz+1));
    m1= c1 - c0;
    m2= c3 - c2;
  }

  /* poly normal is cross product of two medians (or diameters) */
  normal= m1;
  normal(1,..)= n1= m1(2,..)*m2(3,..) - m1(3,..)*m2(2,..);
  normal(2,..)= n2= m1(3,..)*m2(1,..) - m1(1,..)*m2(3,..);
  normal(3,..)= n3= m1(1,..)*m2(2,..) - m1(2,..)*m2(1,..);
  m1= abs(n1,n2,n3)(-,..);
  m1= m1 + (m1==0.0);
  normal/= m1;

  return normal;
}

func get3_centroid(xyz, nxyz)
/* DOCUMENT get3_centroid(xyz, nxyz)
         or get3_centroid(xyz)

     return 3D centroids for polygons with vertices XYZ.  If NXYZ is
     specified, XYZ should be 3-by-sum(nxyz), with NXYZ being the
     list of numbers of vertices for each polygon (as for the plfp
     function).  If NXYZ is not specified, XYZ should be a quadrilateral
     mesh, 3-by-ni-by-nj (as for the plf function).  In the first case,
     the return value is 3-by-numberof(NXYZ); in the second case, the
     return value is 3-by-(ni-1)-by-(nj-1).

     The centroids are constructed as the mean value of all vertices
     of each polygon.

   SEE ALSO: get3_normal, get3_light
 */
{
  if (is_void(nxyz)) {
    /* if no polygon list is given, assume xyz is 2D mesh */
    centroid= xyz(,zcen,zcen);

  } else {
    /* with polygon list, more elaborate calculation required */
    last= nxyz(psum);
    list= histogram(1+last)(1:-1);
    list(1)+= 1;
    list= list(psum);
    centroid= array(0.0, 3, numberof(nxyz));
    centroid(1,)= histogram(list, xyz(1,));
    centroid(2,)= histogram(list, xyz(2,));
    centroid(3,)= histogram(list, xyz(3,));
    centroid/= double(nxyz);
  }

  return centroid;
}

/* ------------------------------------------------------------------------ */

func get3_xy(xyz, &x, &y, &z, getz)
/* DOCUMENT get3_xy, xyz, x, y
         or get3_xy, xyz, x, y, z, 1

     Given 3-by-anything coordinates XYZ, return X and Y in viewer's
     coordinate system (set by rot3, mov3, orient3, etc.).  If the
     fifth argument is present and non-zero, also return Z (for use
     in sort3d or get3_light, for example).  If the camera position
     has been set to a finite distance with setz3, the returned
     coordinates will be tangents of angles for a perspective
     drawing (and Z will be scaled by 1/zc).

   SEE ALSO: sort3d, get3_light, rot3, setz3, set3_object
 */
{
  /* rotate and translate to viewer's coordinate system */
  xyz= _getrot3()(,+)*(_getscl3()*xyz - _getorg3())(+,..);
  x= xyz(1,..);
  y= xyz(2,..);

  /* do optional perspective projection */
  zc= _getzc3();
  if (!is_void(zc)) {
    z= xyz(3,..);
    zc= max(zc-z, 0.0);  /* protect behind camera */
    zc+= (zc==0.0)*1.e-35;       /* avoid zero divide */
    x/= zc;
    y/= zc;
    if (getz) z/= zc;
  } else if (getz) {
    z= xyz(3,..);
  }
}

func _getrot3(void)
{
  return _car(_draw3_list, 1);
}
func _getorg3(void)
{
  local limits, org3;
  eq_nocopy, limits, _car(_draw3_list, _draw3_nll+1);
  eq_nocopy, org3, _car(_draw3_list, 2);
  if (is_void(limits)) return org3;
  return org3 + limits(avg:1:2,)*limits(3,)/limits(ptp:1:2,);
}
func _getzc3(void)
{
  return _car(_draw3_list, 3);
}
func _getscl3(void)
{
  local limits;
  eq_nocopy, limits, _car(_draw3_list, _draw3_nll+1);
  if (is_void(limits)) return [1.,1.,1.];
  return limits(3,)/limits(ptp:1:2,);
}

func _setrot3(x)
{
  _undo3_set, _setrot3, _car(_draw3_list, 1, x);
}
func _setorg3(x)
{
  _undo3_set, _setorg3, _car(_draw3_list, 2, x);
}
func _setzc3(x)
{
  _undo3_set, _setzc3, _car(_draw3_list, 3, x);
}
func _setscl3(x)
{  /* not undoable, cleared by clear3 */
  _car, _draw3_list, _draw3_nll+1, x;
  draw3_trigger;
}

func _undo3_set(fnc, arg)
{
  if (!_in_undo3) {
    if (_len(_undo3_list)>=2*_undo3_limit)
      _cdr, _undo3_list, 2*_undo3_limit-2, [];
    _undo3_list= _cat(_lst(fnc,arg), _undo3_list);
  }
  draw3_trigger;
}

_undo3_limit= 100;

func undo3(n)
/* DOCUMENT undo3
         or undo3, n
     Undo the effects of the last N (default 1) rot3, orient3, mov3, aim3,
     setz3, or light3 commands.
 */
{
  if (is_void(n)) n= 1;
  n= 2*(n-1);
  if (n<0 || n>_len(_undo3_list))
    error, "not that many items in undo list";
  _in_undo3= 1;  /* flag to skip _undo3_set */
  /* perhaps should save discarded items in a redo list? */
  if (n) _undo3_list= _cdr(_undo3_list, n);
  for (; n>=0 ; n-=2) {
    fnc= _nxt(_undo3_list);
    arg= _nxt(_undo3_list);
    fnc, arg;
  }
  draw3_trigger;
}

func set3_object(fnc, arg)
/* DOCUMENT set3_object, drawing_function, _lst(arg1,arg2,...)

     set up to trigger a call to draw3, adding a call to the
     3D display list of the form:

        DRAWING_FUNCTION, _lst(ARG1, ARG2, ...)

     When draw3 calls DRAWING_FUNCTION, the external variable _draw3
     will be non-zero, so DRAWING_FUNCTION can be written like this:

     func drawing_function(arg1,arg2,...)
     {
       require, "pl3d.i";
       if (_draw3) {
         list= arg1;
	 arg1= _nxt(list);
	 arg2= _nxt(list);
	 ...
	 ...<calls to get3_xy, sort3d, get3_light, etc.>...
	 ...<calls to graphics functions plfp, plf, etc.>...
	 return;
       }
       ...<verify args>...
       ...<do orientation and lighting independent calcs>...
       set3_object, drawing_function, _lst(arg1,arg2,...);
     }

  SEE ALSO: get3_xy, get3_light, sort3d
 */
{
  _draw3_list= _cat(_draw3_list, _lst(fnc,arg));
  draw3_trigger;
}

/* ------------------------------------------------------------------------ */

func draw3(called_as_idler)
/* DOCUMENT draw3
     Draw the current 3D display list.
     (Ordinarily triggered automatically when the drawing changes.)
 */
{
  if (_draw3_changes) {
    if (called_as_idler) fma;
    /* the first _draw3_n elements of _draw3_list are the viewing
     * transforms, lighting, etc.
     * thereafter, elements are (function,argument-list) pairs
     * the _draw3 flag alerts the functions that these are the draw
     * calls rather than the interactive setup calls */
    limits, square=1;
    if (_cage3) {
      local lims;
      eq_nocopy, lims, _car(_draw3_list, _draw3_nll+1);
      if (!is_void(lims)) _3cage, transpose(lims(1:2,));
    }
    _draw3= 1;
    for (list=_cdr(_draw3_list, _draw3_n) ; list ; list=_cdr(list)) {
      fnc= _car(list);
      list= _cdr(list);
      fnc, _car(list);
    }
    if (_gnomon) _gnomon_draw;
    _draw3_changes= [];
  }
}

_draw3_nll= _draw3_nv+_len(_light3_list);
_draw3_list= _cat(_cpy(_draw3_view), _cpy(_light3_list), _lst([]));
_draw3_n= _len(_draw3_list);

func draw3_trigger
{
  /* arrange to call draw3 when everything else is finished */
  set_idler, _draw3_idler;
  extern _draw3_changes;
  _draw3_changes= 1;
}

func _draw3_idler
{
  draw3, 1;
}

func clear3(void)
/* DOCUMENT clear3
     Clear the current 3D display list.
 */
{
  _cdr, _draw3_list, _draw3_n, [];
  _car, _draw3_list, _draw3_nll+1, [];  /* clear limits */
}

func window3(n)
/* DOCUMENT window3
         or window3, n
     initialize style="nobox.gs" window for 3D graphics
 */
{
  window, n, wait=1, style="nobox.gs", legends=0;
}

/* ------------------------------------------------------------------------ */

func gnomon(on)
/* DOCUMENT gnomon
         or gnomon, onoff
     Toggle the gnomon display.  If ONOFF is non-nil and non-zero,
     turn on the gnomon.  If ONOFF is zero, turn off the gnomon.

     The gnomon shows the X, Y, and Z axis directions in the
     object coordinate system.  The directions are labeled.
     The gnomon is always infinitely far behind the object
     (away from the camera).

     There is a mirror-through-the-screen-plane ambiguity in the
     display which is resolved in two ways: (1) The (X,Y,Z)
     coordinate system is right-handed, and (2) If the tip of an
     axis projects into the screen, it's label is drawn in opposite
     polarity to the other text on the screen.
 */
{
  old= _gnomon;
  if (is_void(on)) _gnomon~= 1;
  else if (on) _gnomon= 1;
  else _gnomon= 0;
  if (old!=_gnomon) draw3_trigger;
}

if (is_void(_gnomon)) _gnomon= 0;

func _gnomon_draw(void)
{
  o= [0.,0.,0.];
  x1= [1.,0.,0.];
  y1= [0.,1.,0.];
  z1= [0.,0.,1.];
  xyz= _getrot3()(,+)*[[o,x1],[o,y1],[o,z1]](+,,,);
  xyz*= 0.0013*_gnomon_scale;
  x1= xyz(1,,);
  y1= xyz(2,,);
  z1= xyz(3,2,);
  x0= x1(1,);
  x1= x1(2,);
  y0= y1(1,);
  y1= y1(2,);
  wid= min(_gnomon_scale/18.,6.);
  if (wid<0.5) wid= 0.0;
  plsys, 0;
  pldj, x0+_gnomon_x, y0+_gnomon_y, x1+_gnomon_x, y1+_gnomon_y,
    width=wid, type=1, legend=string(0);
  plsys, 1;

  /* compute point size of labels (1/3 of axis length) */
  pts= [8,10,12,14,18,24](digitize(_gnomon_scale/3.0,
				   [9,11,13,16,21]));
  if (_gnomon_scale < 21.) {
    x1*= 21./_gnomon_scale;
    y1*= 21./_gnomon_scale;
  }
  /* label positions: first find shortest axis */
  xy= abs(x1,y1);
  i= xy(mnx);
  jk= [[2,3],[3,1],[1,2]](,i);
  if (xy(i)<1.e-7*xy(sum)) {  /* guarantee not exactly zero */
    x1(i)= -1.e-6*x1(jk)(sum);
    y1(i)= -1.e-6*y1(jk)(sum);
    xy(i)= abs(x1(i),y1(i));
  }
  xyi= xy(i);
  /* next find axis nearest to shortest */
  j= jk(1);
  k= jk(2);
  if (abs(x1(j)*y1(i)-y1(j)*x1(i))*xy(k) >
      abs(x1(k)*y1(i)-y1(k)*x1(i))*xy(j)) {
    jk= j;  j= k;  k= jk;
  }
  /* furthest axis first - move perpendicular to nearer axis */
  xk= -y1(j);
  yk= x1(j);
  xy= abs(xk,yk);
  xk/= xy;
  yk/= xy;
  if (xk*x1(k)+yk*y1(k) < 0.0) { xk= -xk;  yk= -yk; }
  /* nearer axis next - move perpendicular to furthest axis */
  xj= -y1(k);
  yj= x1(k);
  xy= abs(xj,yj);
  xj/= xy;
  yj/= xy;
  if (xj*x1(j)+yj*y1(j) < 0.0) { xj= -xj;  yj= -yj; }
  /* shortest axis last - move perpendicular to nearer */
  xi= -y1(j);
  yi= x1(j);
  xy= abs(xi,yi);
  xi/= xy;
  yi/= xy;
  if (xi*x1(i)+yi*y1(i) < 0.0) { xi= -xi;  yi= -yi; }

  /* shortest axis label may need adjustment */
  d= 0.0013*pts;
  if (xyi < d) {
    /* just center it in correct quadrant */
    jk= sign(xi*xj+yi*yj);
    yi= sign(xi*xk+yi*yk);
    xi= jk*xj + yi*xk;
    yi= jk*yj + yi*yk;
    jk= abs(xi, yi);
    xi/= jk;
    yi/= jk;
  }

  x= y= [0.,0.,0.];
  x([i,j,k])= [xi,xj,xk];
  y([i,j,k])= [yi,yj,yk];
  x*= d;
  y*= d;
  x+= x1 + _gnomon_x;
  y+= y1 + _gnomon_y;
  chr= ["X","Y","Z"];
  _gnomon_text, chr(i), x(i),y(i), pts, z1(i)<-1.e-6;
  _gnomon_text, chr(j), x(j),y(j), pts, z1(j)<-1.e-6;
  _gnomon_text, chr(k), x(k),y(k), pts, z1(k)<-1.e-6;
}

/* recommended _gnomon_scale: 24, 30, 36, 42, 54, or 72 */
if (is_void(_gnomon_scale))
  _gnomon_scale= 30.   /* X,Y,Z axis lengths in points */
if (is_void(_gnomon_x))
  _gnomon_x= 0.18;     /* gnomon origin in system 0 coordinates */
if (is_void(_gnomon_y))
  _gnomon_y= 0.42;

func _gnomon_text(chr, x, y, pts, invert)
{
  /* pts= 8, 10, 12, 14, 18, or 24 */
  col= "fg";
  if (invert) {
    plsys, 0;
    plg,[y,y],[x,x],
      type=1,width=2.2*pts,color=col,marks=0,legend=string(0);
    plsys, 1;
    col= "bg";
  }
  plt, chr, x,y,
    justify="CH",color=col,height=pts,font="helvetica",opaque=0;
}

/* ------------------------------------------------------------------------ */

func sort3d(z, npolys, &list, &vlist)
/* DOCUMENT sort3d(z, npolys, &list, &vlist)

     given Z and NPOLYS, with numberof(Z)==sum(npolys), return
     LIST and VLIST such that Z(VLIST) and NPOLYS(LIST) are
     sorted from smallest average Z to largest average Z, where
     the averages are taken over the clusters of length NPOLYS.
     Within each cluster (polygon), the cyclic order of Z(VLIST)
     remains unchanged, but the absolute order may change.

     This sorting order produces correct or nearly correct order
     for a plfp command to make a plot involving hidden or partially
     hidden surfaces in three dimensions.  It works best when the
     polys form a set of disjoint closed, convex surfaces, and when
     the surface normal changes only very little between neighboring
     polys.  (If the latter condition holds, then even if sort3d
     mis-orders two neighboring polys, their colors will be very
     nearly the same, and the mistake won't be noticeable.)  A truly
     correct 3D sorting routine is impossible, since there may be no
     rendering order which produces correct surface hiding (some polys
     may need to be split into pieces in order to do that).  There
     are more nearly correct algorithms than this, but they are much
     slower.

   SEE ALSO: get3_xy
 */
{
  /* first compute z, the z-centroid of every poly
   * get a list the same length as x, y, or z which is 1 for each
   * vertex of poly 1, 2 for each vertex of poly2, etc.
   * the goal is to make nlist with histogram(nlist)==npolys */
  nlist= histogram(1+npolys(psum))(1:-1);
  nlist(1)+= 1;  /* another problem with 1-origin indexing */
  nlist= nlist(psum);
  /* now sum the vertex values and divide by the number of vertices */
  z= histogram(nlist, double(z))/npolys;

  /* sort the polygons from smallest z to largest z
   * npolys(list) is the sorted list of lengths */
  list= sort(z);

  /* next, find the list which sorts the polygon vertices
   * first, find a list vlist such that sort(vlist) is above list */
  vlist= list;
  vlist(list)= indgen(numberof(list));
  /* then reset the nlist values to that pre-sorted order, so that
   * sort(nlist) will be the required vertex sorting list */
  nlist= vlist(nlist);
  /* the final hitch is to ensure that the vertices within each polygon
   * remain in their initial order (sort scrambles equal values)
   * since the vertices of a polygon can be cyclically permuted,
   * it suffices to add a sawtooth function to a scaled nlist to
   * produce a list in which each cluster of equal values will retain
   * the same cyclic order after the sort
   * (note that the more complicated msort routine would leave the
   *  clusters without even a cyclic permutation, if that were
   *  necessary) */
  nmax= max(npolys);  /* this must never be so large that
		       * numberof(npolys)*nmax > 2e9  */
  vlist= sort(nmax*nlist + indgen(numberof(nlist))%nmax);
  /* primary sort key ^            secondary key  ^  */
}

/* ------------------------------------------------------------------------ */

func spin3(nframes, axis, tlimit=, dtmin=, bracket_time=)
/* DOCUMENT spin3
         or spin3, nframes
         or spin3, nframes, axis
     Spin the current 3D display list about AXIS over NFRAMES.  Keywords
     tlimit= the total time allowed for the movie in seconds (default 60),
     dtmin= the minimum allowed interframe time in seconds (default 0.0),
     bracket_time= (as for movie function in movie.i)

     The default AXIS is [-1,1,0] and the default NFRAMES is 30.

   SEE ALSO: rot3
 */
{
  require, "movie.i";
  if (is_void(nframes)) nframes= 30;
  dtheta= 2*pi/(nframes-1);
  if (is_void(axis)) axis= [-1.,1.,0.];
  theta= acos(axis(3)/abs(axis(1),axis(2),axis(3)));
  phi= atan(axis(2),axis(1)+(!axis(1)&&!axis(2)));
  orig= save3();
  movie, _spin3, tlimit, dtmin, bracket_time;
  restore3, orig;
}

func _spin3(i)
{
  if (i>=nframes) return 0;
  rot3,,,-phi
  rot3,,-theta,dtheta;
  rot3,,theta,phi;
  draw3;
  return 1;
}

/* ------------------------------------------------------------------------ */

func cage3(on)
/* DOCUMENT cage3
         or cage3, onoff
     Toggle the cage display.  If ONOFF is non-nil and non-zero,
     turn on the cage.  If ONOFF is zero, turn off the cage.

     The cage draws a rectangular box "behind" the 3D object and
     attempts to put ticks and labels around the edge of the box.

   SEE ALSO: limit3, plwf (include plwf.i)
 */
{
  old= _cage3;
  if (is_void(on)) _cage3~= 1;
  else if (on) _cage3= 1;
  else _cage3= 0;
  if (old!=_cage3) draw3_trigger;
}

if (is_void(_cage3)) _cage3= 0;

/*
   Idea:

   Draw hexagon, representing the free edges of the three "backplanes"
   of a cube surrounding the 3D object being plotted.  Ticks should
   be perpendicular to the backplane associated with the edge.  Try
   to put numeric labels on the "leftmost" and "bottommost" edges,
   while "X", "Y", and "Z" markers can go on the"topmost" and
   "rightmost" edges.  In the pl3d.i interface, this "ticked box"
   should optionally replace the gnomon, since there is no reason
   to have both.  Should also draw (optionally?) the common edges of
   the three backplanes.
 */

func _3cage(xyzlim)
{
  /* make 3x2x2x2 = (vector,dx,dy,dz) coordinates of the box,
     starting from 3x2 (vector,min_max) limits values */
  dxyz= xyzlim(,2)-xyzlim(,1);
  xyz= xyzlim(,1,-:1:2,-:1:2,-:1:2);
  xyz(1,2,,)+= dxyz(1);
  xyz(2,,2,)+= dxyz(2);
  xyz(3,,,2)+= dxyz(3);

  /* transform to three 2x2x2 arrays (x,y,z) in camera coord system */
  local x, y, z;
  get3_xy, xyz, x, y, z, 1;

  /* find the three orthogonal backplanes
     owing to perspective, there may be up to five back facing planes
     of the box -- choose the most rearward, or the smaller object
     coordinate value (xn,yn,zn) in case of ties */
  i= z(,avg,avg)(mnx);
  j= z(avg,,avg)(mnx);
  k= z(avg,avg,)(mnx);
  /* now the common point of the backplanes is (i,j,k), the three common
     edges connect to the points (3-i,j,k), (i,3-j,k), and (i,j,3-k),
     and the three non-common points of the backplanes are
     (3-i,j,3-k), (3-i,3-j,k), and (i,3-j,3-k) */

  /* it is best to draw these as polylines, since polylines have
     round endcaps, while disjoint lines have square caps
     -- if the common edges are omitted, there is just a single
        closed hexagon.  otherwise, we draw two open polylines,
	one starting at the common point then traversing the
	hexagon (8 points), the other consisting of the two
	remaining common edges (3 points) */
  ip= 3-i;
  j= 2*(j-1);
  jp= 2-j;
  k= 4*(k-1);
  kp= 4-k;
  if (omit3_common)
    list= [ip+j+k, ip+jp+k, i+jp+k, i+jp+kp, i+j+kp, ip+j+kp];
  else
    list= [i+j+k, ip+j+k, ip+jp+k, i+jp+k, i+jp+kp, i+j+kp, ip+j+kp, ip+j+k];
  x1= x(list);
  y1= y(list);
  plg, y1, x1, closed=omit3_common, marks=0, legend="",
       color=_3kcolor, type=_3ktype, width=_3kwidth;
  xmin= min(x1);
  xmax= max(x1);
  ymin= min(y1);
  ymax= max(y1);

  if (!omit3_common) {
    list= [i+jp+k, i+j+k, i+j+kp];
    plg, y(list), x(list), closed=0, marks=0, legend="",
         color=_3kcolor, type=_3ktype, width=_3kwidth;
  }

  nlabel= 0;
  if (!omit3_ticks) {
    /* innermost index is [back,front] point,
       next index is [first, second] edge,
       third index is [x,y,z] */
    list= [[[i+j+kp,ip+j+kp],[i+jp+k,ip+jp+k]],
	   [[i+j+kp,i+jp+kp],[ip+j+k,ip+jp+k]],
	   [[ip+j+k,ip+j+kp],[i+jp+k,i+jp+kp]]];
    /* reorder first index so that first point is minimum */
    n= list(2,1,)<list(1,1,);
    for (m=1 ; m<=3 ; ++m) if (n(m)) list(,,m)= list(2:1:-1,,m);
    /* reorder second index so that first edge is the one which
       will get any labels -- leftmost or lower */
    x1= x(list);
    y1= y(list);
    horiz= (abs(y1(ptp,,))>abs(x1(ptp,,)));
    x2= x1(avg,,);
    y2= y1(avg,,);
    dir= sign(x2-x2(2:1:-1,))*horiz + sign(y2-y2(2:1:-1,))*(!horiz);
    for (m=1 ; m<=3 ; ++m) {
      if (dir(1,m)<0.) {
	if (dir(2,m)>0. || horiz(2,m)) continue;
      } else {
	if (dir(2,m)>0. && horiz(1,m)) continue;
      }
      list(,,m)= list(,2:1:-1,m);
      horiz(,m)= horiz(2:1:-1,m);
      dir(,m)= dir(2:1:-1,m);
    }
    xyz0= xyz(,i+j+k); /* back corner */
    xyz= xyz(,list);   /* 3x2x2x3 edge coordinates, with last
			  three indices as above */

    /* compute projected lengths of the labeled edges */
    n= list(,1,);
    len= abs(x(n)(ptp,),y(n)(ptp,),z(n)(ptp,));
    mxlen= max(len);
    len/= mxlen;       /* ...relative to longest edge */

    /* identify the two shared corners of the labeled edges --
       list(,1,) is 6 numbers, 2 are unique and 2 others shared;
       both endpoints of one of the three edges are shared */
    ms1= (n(*)==n(-,,))(sum,,)-1; /* 0 for unique, 1 for shared pt */
    ms1= where(ms1);      /* four indices, three possible pairings */
    if (n(ms1(1))==n(ms1(2))) {
      ms2= [ms1(3),ms1(4)];
      ms1= [ms1(1),ms1(2)];
    } else if (n(ms1(1))==n(ms1(3))) {
      ms2= [ms1(2),ms1(4)];
      ms1= [ms1(1),ms1(3)];
    } else {
      ms2= [ms1(2),ms1(3)];
      ms1= [ms1(1),ms1(4)];
    }

    /* First idea was to make the ticks lie along the perpendicular
       (in 3D) to the backplane of the associated edge.  This looks
       slick for orientations in which the hexagon is near regular,
       but very ugly when some angles project to near 0 or 180
       degrees.

       The second idea is more robust, but not quite as nice at its
       best: ticks are always either horizontal or vertical (after
       projection), with the choice made according to whether the
       edge is more nearly vertical or horizontal (respectively).
     */

    local xmajor, xminor, xlabel;
    unit= array(0.,3,3);
    unit(1:9:4,1)= 1.;
    llen= [0,0,0];
    xptr= yptr= lptr= array(pointer, 3);
    xylabs= array(0.,2,2,3);
    for (m=1 ; m<=3 ; ++m) {
      /* longest labeled edge gets specified maximum number of
	 major ticks -- other two edges get scaled number */
      if (_3ticks(xyzlim(m,1), xyzlim(m,2), _3nmajor*len(m)))
	continue;        /* (no ticks on very short axes) */

      /* expand coordinate lists to vector lists */
      mask= unit(,m);
      xmajor= mask*xmajor(-,);
      xminor= mask*xminor(-,);
      mask= 1.-mask;

      /* do upper or right edge, then lower or left edge */
      for (n=2 ; n>=1 ; --n) {
	xyz0= xyz(,1,n,m)*mask;

	/* first do minor ticks */
	tend= xyz0 + xminor;
	get3_xy, tend, x1, y1;
	if (horiz(n,m)) tdir= [mxlen*dir(n,m),0.];
	else            tdir= [0.,mxlen*dir(n,m)];
	x2= x1 + tdir(1)*_3lminor;
	y2= y1 + tdir(2)*_3lminor;
	pldj, x1,y1,x2,y2, legend="",
	  type=_3ktype,color=_3kcolor,width=_3kwidth;
	xmin= min(min(x2),xmin);
	xmax= max(max(x2),xmax);
	ymin= min(min(y2),ymin);
	ymax= max(max(y2),ymax);

	/* then do major ticks */
	tend= xyz0 + xmajor;
	get3_xy, tend, x1, y1;
	x2= x1 + tdir(1)*_3lmajor;
	y2= y1 + tdir(2)*_3lmajor;
	pldj, x1,y1,x2,y2, legend="",
	  type=_3ktype,color=_3kcolor,width=_3kwidth;
	xmin= min(min(x2),xmin);
	xmax= max(max(x2),xmax);
	ymin= min(min(y2),ymin);
	ymax= max(max(y2),ymax);
      }

      /* save the tips of the major ticks for the labeled edge */
      xylabs(,,m)= [[x2(1),y2(1)],[x2(0),y2(0)]];
      xptr(m)= &x2;
      yptr(m)= &y2;
      lptr(m)= &xlabel;
      llen(m)= max(strlen(xlabel));
      nlabel+= numberof(xlabel);
    }

    if (!omit_labels && nlabel) {
      /* estimate horizontal and vertical size of labels in
	 world coordinates -- obviously this makes assumptions about
	 the size of the viewport and won't work if the cage is zoomed
	 to a very different size
	 the default numbers assume nobox.gs style (6 inch viewport) */
      scale= 6. /*inches/viewport*/ * 72.27 /*points/inch*/ /
	(2.2*mxlen) /*units/viewport*/;     /* net: points/unit */
      scale*= _3xfudge;         /* get serious */
      tvert= _3xheight/scale;   /* text size in world coordinates */
      thoriz= 0.6*tvert*llen;   /* assume text shape about 9x15 */

      /* locate and discard any labels
	 which interfere near the shared corners */
      hflags= horiz(1,);
      _3interference, ms1;
      _3interference, ms2;

      dir= dir(1,);
      for (m=1 ; m<=3 ; ++m) {
	horiz= hflags(m);
	tdir= dir(m);
	offset= _3xoffset*mxlen*tdir;
	eq_nocopy, x2, *xptr(m);
	eq_nocopy, y2, *yptr(m);
	eq_nocopy, xlabel, *lptr(m);
	if (numberof(xlabel)) {
	  if (horiz) x2+= offset;
	  else       y2+= offset;   /* add term in thoriz(m)? */
	  if (horiz) justify= (tdir<0.)? 15 : 13;
	  else       justify= (tdir<0.)? 10 : 18;
	  for (n=1 ; n<=numberof(xlabel) ; ++n) {
	    plt, xlabel(n), x2(n),y2(n), tosys=1, justify=justify,
	      color=_3xcolor,font=_3xfont,height=_3xheight;
	  }
	  if (horiz) {
	    xmin= min(min(x2-thoriz(m)),xmin);
	  } else {
	    ymin= min(min(y2-tvert),ymin);
	    xmin= min(min(x2-0.5*thoriz(m)),xmin);
	    xmax= max(max(x2+0.5*thoriz(m)),xmax);
	  }
	}
      }

      /* autoscaling will clip text */
      dx= xmax-xmin;
      dy= ymax-ymin;
      dd= 0.5*(dx-dy);
      if (dd>0.) {
	ymax+= dd;
	ymin-= dd;
      } else {
	xmax-= dd;
	xmin+= dd;
      }
      limits, xmin,xmax,ymin,ymax;
    }
  }
}

/* tick parameters */
_3nmajor= 4.5;     /* 1/(max allowed tick density on longest edge) */
_3lmajor= 0.06;    /* length of major ticks as fraction of longest edge */
_3lminor= 0.03;    /* length of minor ticks as fraction of longest edge */
_3ktype= 1;
_3kwidth= 0.0;
_3kcolor= -2;
/* label parameters */
_3xoffset= 0.02;   /* label offset from tick as fraction of longest edge */
_3xfudge= 1.0;     /* fudge factor for points/(longest edge) calc */
_3xfont= 8;        /* helvetica */
_3xheight= 14.0    /* point size of label text */
_3xcolor= -2;

func _3interference(ms)
{
  ms-= 1;
  m= ms/2 + 1;
  m1= m(1);
  m2= m(2);
  horiz= hflags(m1);

  /* interference only possible if ticks have like orientation */
  if (hflags(m2)!=horiz) return;

  n= 1-(ms%2);  /* 1 for 1st index, 0 for last index */
  n1= n(1);
  n2= n(2);

  local x1, y1, x2, y2;
  if (horiz) {
    eq_nocopy, y1, *yptr(m1);
    eq_nocopy, y2, *yptr(m2);
    if (!is_void(y1) && !is_void(y2))
      interfere= (abs(y1(n1)-y2(n2))<tvert);
  } else {
    eq_nocopy, x1, *xptr(m1);
    eq_nocopy, x2, *xptr(m2);
    if (!is_void(x1) && !is_void(x2))
      interfere= (abs(x1(n1)-x2(n2))<0.5*(thoriz(m1)+thoriz(m2)));
  }

  if (interfere) {
    _3remove, m1, n1;
    _3remove, m2, n2;
  }
}

func _3remove(m, n, a)
{
  if (!is_void(m)) {
    xptr(m)= &_3remove(,n,*xptr(m));
    yptr(m)= &_3remove(,n,*yptr(m));
    lptr(m)= &_3remove(,n,*lptr(m));
  } else if (numberof(a)>1) {
    if (n) return a(2:0);
    else return a(1:-1);
  }
}

func _3ticks(xmin, xmax, n)
{
  extern xmajor, xminor, xlabel;   /* results */
  xmajor= xminor= xlabel= [];

  /* dx is the minimum allowed spacing between ticks */
  if (n<1.0) return 1;
  dx= abs(xmax-xmin)/double(n);
  sdx= sign(xmax-xmin);
  xmin*= sdx;
  xmax*= sdx;

  /* round dx up to the nearest "nice" value */
  pwr= 10.^floor(log10(dx)+0.0001);
  base= digitize(dx/pwr,[2.0001,5.0001]);
  if (base==3) pwr*= 10.;
  dx= [2.,5.,1.](base)*pwr;

  /* find the major tick values */
  xn= ceil(xmin/dx - 0.0001);
  xx= floor(xmax/dx + 0.0001);
  if (xx<=xn) return 1;
  xmajor= (xn+indgen(0:long(xx-xn)))*dx*sdx;
  /* sigh -- don't want to print "-0" */
  xn= where(xmajor==0.);
  if (numberof(xn)) xmajor(xn(1))= 0.0;

  /* find the minor tick values */
  dxn= dx/(base==1? 4. : 5.);
  xn= ceil(xmin/dxn - 0.0001);
  xx= floor(xmax/dxn + 0.0001);
  xminor= (xn+indgen(0:long(xx-xn)))*dxn*sdx;
  /* remove minor ticks which are also major */
  xminor= xminor(where(abs(floor(xminor/dxn+0.01)*dxn -
			   floor(xminor/dx+0.01)*dx) > 0.01*dx));

  /* compute major tick labels */
  xn= abs(xmajor);
  xx= max(xn);
  ipwr= floor(log10(xx)+0.0001);
  xpwr= 10.^ipwr;
  ipwr= long(ipwr);
  if (ipwr>3 || min(xn+(!xn))<0.00099999999) {
    /* use e format -- normalize to 0<= xmajor <10 */
    npwr= xpwr;
    mpwr= ipwr;
    pwr/= npwr;
    ipwr= 0;
    xpwr= 1.0;
  } else {
    /* use f format */
    npwr= 1.0;
    mpwr= 0;
  }
  ndecimals= max(long(floor(log10(xpwr/pwr)+0.0001)) - ipwr, 0);
  format= swrite(format="%%.%ldf",ndecimals);
  xlabel= swrite(format=format, xmajor/npwr);
  /* sigh -- "0" often padded with blanks */
  xlabel= strtok(xlabel)(1,);
  if (mpwr)
    xlabel+= swrite(format="%se%+02ld",(ndecimals?"":"."),mpwr);

  return 0;
}

/* ------------------------------------------------------------------------ */