| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 
 | #ifndef BIGINTEGER_H
#define BIGINTEGER_H
#include "BigUnsigned.hh"
/* A BigInteger object represents a signed integer of size limited only by
 * available memory.  BigUnsigneds support most mathematical operators and can
 * be converted to and from most primitive integer types.
 *
 * A BigInteger is just an aggregate of a BigUnsigned and a sign.  (It is no
 * longer derived from BigUnsigned because that led to harmful implicit
 * conversions.) */
class BigInteger {
public:
	typedef BigUnsigned::Blk Blk;
	typedef BigUnsigned::Index Index;
	typedef BigUnsigned::CmpRes CmpRes;
	static const CmpRes
		less    = BigUnsigned::less   ,
		equal   = BigUnsigned::equal  ,
		greater = BigUnsigned::greater;
	// Enumeration for the sign of a BigInteger.
	enum Sign { negative = -1, zero = 0, positive = 1 };
protected:
	Sign sign;
	BigUnsigned mag;
public:
	// Constructs zero.
	BigInteger() : sign(zero), mag() {}
	// Copy constructor
	BigInteger(const BigInteger &x) : sign(x.sign), mag(x.mag) {};
	// Assignment operator
	void operator=(const BigInteger &x);
	// Constructor that copies from a given array of blocks with a sign.
	BigInteger(const Blk *b, Index blen, Sign s);
	// Nonnegative constructor that copies from a given array of blocks.
	BigInteger(const Blk *b, Index blen) : mag(b, blen) {
		sign = mag.isZero() ? zero : positive;
	}
	// Constructor from a BigUnsigned and a sign
	BigInteger(const BigUnsigned &x, Sign s);
	// Nonnegative constructor from a BigUnsigned
	BigInteger(const BigUnsigned &x) : mag(x) {
		sign = mag.isZero() ? zero : positive;
	}
	// Constructors from primitive integer types
	BigInteger(unsigned long  x);
	BigInteger(         long  x);
	BigInteger(unsigned int   x);
	BigInteger(         int   x);
	BigInteger(unsigned short x);
	BigInteger(         short x);
	/* Converters to primitive integer types
	 * The implicit conversion operators caused trouble, so these are now
	 * named. */
	unsigned long  toUnsignedLong () const;
	long           toLong         () const;
	unsigned int   toUnsignedInt  () const;
	int            toInt          () const;
	unsigned short toUnsignedShort() const;
	short          toShort        () const;
protected:
	// Helper
	template <class X> X convertToUnsignedPrimitive() const;
	template <class X, class UX> X convertToSignedPrimitive() const;
public:
	// ACCESSORS
	Sign getSign() const { return sign; }
	/* The client can't do any harm by holding a read-only reference to the
	 * magnitude. */
	const BigUnsigned &getMagnitude() const { return mag; }
	// Some accessors that go through to the magnitude
	Index getLength() const { return mag.getLength(); }
	Index getCapacity() const { return mag.getCapacity(); }
	Blk getBlock(Index i) const { return mag.getBlock(i); }
	bool isZero() const { return sign == zero; } // A bit special
	// COMPARISONS
	// Compares this to x like Perl's <=>
	CmpRes compareTo(const BigInteger &x) const;
	// Ordinary comparison operators
	bool operator ==(const BigInteger &x) const {
		return sign == x.sign && mag == x.mag;
	}
	bool operator !=(const BigInteger &x) const { return !operator ==(x); };
	bool operator < (const BigInteger &x) const { return compareTo(x) == less   ; }
	bool operator <=(const BigInteger &x) const { return compareTo(x) != greater; }
	bool operator >=(const BigInteger &x) const { return compareTo(x) != less   ; }
	bool operator > (const BigInteger &x) const { return compareTo(x) == greater; }
	// OPERATORS -- See the discussion in BigUnsigned.hh.
	void add     (const BigInteger &a, const BigInteger &b);
	void subtract(const BigInteger &a, const BigInteger &b);
	void multiply(const BigInteger &a, const BigInteger &b);
	/* See the comment on BigUnsigned::divideWithRemainder.  Semantics
	 * differ from those of primitive integers when negatives and/or zeros
	 * are involved. */
	void divideWithRemainder(const BigInteger &b, BigInteger &q);
	void negate(const BigInteger &a);
	
	/* Bitwise operators are not provided for BigIntegers.  Use
	 * getMagnitude to get the magnitude and operate on that instead. */
	BigInteger operator +(const BigInteger &x) const;
	BigInteger operator -(const BigInteger &x) const;
	BigInteger operator *(const BigInteger &x) const;
	BigInteger operator /(const BigInteger &x) const;
	BigInteger operator %(const BigInteger &x) const;
	BigInteger operator -() const;
	void operator +=(const BigInteger &x);
	void operator -=(const BigInteger &x);
	void operator *=(const BigInteger &x);
	void operator /=(const BigInteger &x);
	void operator %=(const BigInteger &x);
	void flipSign();
	// INCREMENT/DECREMENT OPERATORS
	void operator ++(   );
	void operator ++(int);
	void operator --(   );
	void operator --(int);
};
// NORMAL OPERATORS
/* These create an object to hold the result and invoke
 * the appropriate put-here operation on it, passing
 * this and x.  The new object is then returned. */
inline BigInteger BigInteger::operator +(const BigInteger &x) const {
	BigInteger ans;
	ans.add(*this, x);
	return ans;
}
inline BigInteger BigInteger::operator -(const BigInteger &x) const {
	BigInteger ans;
	ans.subtract(*this, x);
	return ans;
}
inline BigInteger BigInteger::operator *(const BigInteger &x) const {
	BigInteger ans;
	ans.multiply(*this, x);
	return ans;
}
inline BigInteger BigInteger::operator /(const BigInteger &x) const {
	if (x.isZero()) throw "BigInteger::operator /: division by zero";
	BigInteger q, r;
	r = *this;
	r.divideWithRemainder(x, q);
	return q;
}
inline BigInteger BigInteger::operator %(const BigInteger &x) const {
	if (x.isZero()) throw "BigInteger::operator %: division by zero";
	BigInteger q, r;
	r = *this;
	r.divideWithRemainder(x, q);
	return r;
}
inline BigInteger BigInteger::operator -() const {
	BigInteger ans;
	ans.negate(*this);
	return ans;
}
/*
 * ASSIGNMENT OPERATORS
 * 
 * Now the responsibility for making a temporary copy if necessary
 * belongs to the put-here operations.  See Assignment Operators in
 * BigUnsigned.hh.
 */
inline void BigInteger::operator +=(const BigInteger &x) {
	add(*this, x);
}
inline void BigInteger::operator -=(const BigInteger &x) {
	subtract(*this, x);
}
inline void BigInteger::operator *=(const BigInteger &x) {
	multiply(*this, x);
}
inline void BigInteger::operator /=(const BigInteger &x) {
	if (x.isZero()) throw "BigInteger::operator /=: division by zero";
	/* The following technique is slightly faster than copying *this first
	 * when x is large. */
	BigInteger q;
	divideWithRemainder(x, q);
	// *this contains the remainder, but we overwrite it with the quotient.
	*this = q;
}
inline void BigInteger::operator %=(const BigInteger &x) {
	if (x.isZero()) throw "BigInteger::operator %=: division by zero";
	BigInteger q;
	// Mods *this by x.  Don't care about quotient left in q.
	divideWithRemainder(x, q);
}
// This one is trivial
inline void BigInteger::flipSign() {
	sign = Sign(-sign);
}
#endif
 |