| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 
 | #include "BigUnsigned.hh"
// Memory management definitions have moved to the bottom of NumberlikeArray.hh.
// The templates used by these constructors and converters are at the bottom of
// BigUnsigned.hh.
BigUnsigned::BigUnsigned(unsigned long  x) { initFromPrimitive      (x); }
BigUnsigned::BigUnsigned(unsigned int   x) { initFromPrimitive      (x); }
BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive      (x); }
BigUnsigned::BigUnsigned(         long  x) { initFromSignedPrimitive(x); }
BigUnsigned::BigUnsigned(         int   x) { initFromSignedPrimitive(x); }
BigUnsigned::BigUnsigned(         short x) { initFromSignedPrimitive(x); }
unsigned long  BigUnsigned::toUnsignedLong () const { return convertToPrimitive      <unsigned long >(); }
unsigned int   BigUnsigned::toUnsignedInt  () const { return convertToPrimitive      <unsigned int  >(); }
unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive      <unsigned short>(); }
long           BigUnsigned::toLong         () const { return convertToSignedPrimitive<         long >(); }
int            BigUnsigned::toInt          () const { return convertToSignedPrimitive<         int  >(); }
short          BigUnsigned::toShort        () const { return convertToSignedPrimitive<         short>(); }
// BIT/BLOCK ACCESSORS
void BigUnsigned::setBlock(Index i, Blk newBlock) {
	if (newBlock == 0) {
		if (i < len) {
			blk[i] = 0;
			zapLeadingZeros();
		}
		// If i >= len, no effect.
	} else {
		if (i >= len) {
			// The nonzero block extends the number.
			allocateAndCopy(i+1);
			// Zero any added blocks that we aren't setting.
			for (Index j = len; j < i; j++)
				blk[j] = 0;
			len = i+1;
		}
		blk[i] = newBlock;
	}
}
/* Evidently the compiler wants BigUnsigned:: on the return type because, at
 * that point, it hasn't yet parsed the BigUnsigned:: on the name to get the
 * proper scope. */
BigUnsigned::Index BigUnsigned::bitLength() const {
	if (isZero())
		return 0;
	else {
		Blk leftmostBlock = getBlock(len - 1);
		Index leftmostBlockLen = 0;
		while (leftmostBlock != 0) {
			leftmostBlock >>= 1;
			leftmostBlockLen++;
		}
		return leftmostBlockLen + (len - 1) * N;
	}
}
void BigUnsigned::setBit(Index bi, bool newBit) {
	Index blockI = bi / N;
	Blk block = getBlock(blockI), mask = Blk(1) << (bi % N);
	block = newBit ? (block | mask) : (block & ~mask);
	setBlock(blockI, block);
}
// COMPARISON
BigUnsigned::CmpRes BigUnsigned::compareTo(const BigUnsigned &x) const {
	// A bigger length implies a bigger number.
	if (len < x.len)
		return less;
	else if (len > x.len)
		return greater;
	else {
		// Compare blocks one by one from left to right.
		Index i = len;
		while (i > 0) {
			i--;
			if (blk[i] == x.blk[i])
				continue;
			else if (blk[i] > x.blk[i])
				return greater;
			else
				return less;
		}
		// If no blocks differed, the numbers are equal.
		return equal;
	}
}
// COPY-LESS OPERATIONS
/*
 * On most calls to copy-less operations, it's safe to read the inputs little by
 * little and write the outputs little by little.  However, if one of the
 * inputs is coming from the same variable into which the output is to be
 * stored (an "aliased" call), we risk overwriting the input before we read it.
 * In this case, we first compute the result into a temporary BigUnsigned
 * variable and then copy it into the requested output variable *this.
 * Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on
 * aliased calls) to generate code for this check.
 * 
 * I adopted this approach on 2007.02.13 (see Assignment Operators in
 * BigUnsigned.hh).  Before then, put-here operations rejected aliased calls
 * with an exception.  I think doing the right thing is better.
 * 
 * Some of the put-here operations can probably handle aliased calls safely
 * without the extra copy because (for example) they process blocks strictly
 * right-to-left.  At some point I might determine which ones don't need the
 * copy, but my reasoning would need to be verified very carefully.  For now
 * I'll leave in the copy.
 */
#define DTRT_ALIASED(cond, op) \
	if (cond) { \
		BigUnsigned tmpThis; \
		tmpThis.op; \
		*this = tmpThis; \
		return; \
	}
void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) {
	DTRT_ALIASED(this == &a || this == &b, add(a, b));
	// If one argument is zero, copy the other.
	if (a.len == 0) {
		operator =(b);
		return;
	} else if (b.len == 0) {
		operator =(a);
		return;
	}
	// Some variables...
	// Carries in and out of an addition stage
	bool carryIn, carryOut;
	Blk temp;
	Index i;
	// a2 points to the longer input, b2 points to the shorter
	const BigUnsigned *a2, *b2;
	if (a.len >= b.len) {
		a2 = &a;
		b2 = &b;
	} else {
		a2 = &b;
		b2 = &a;
	}
	// Set prelimiary length and make room in this BigUnsigned
	len = a2->len + 1;
	allocate(len);
	// For each block index that is present in both inputs...
	for (i = 0, carryIn = false; i < b2->len; i++) {
		// Add input blocks
		temp = a2->blk[i] + b2->blk[i];
		// If a rollover occurred, the result is less than either input.
		// This test is used many times in the BigUnsigned code.
		carryOut = (temp < a2->blk[i]);
		// If a carry was input, handle it
		if (carryIn) {
			temp++;
			carryOut |= (temp == 0);
		}
		blk[i] = temp; // Save the addition result
		carryIn = carryOut; // Pass the carry along
	}
	// If there is a carry left over, increase blocks until
	// one does not roll over.
	for (; i < a2->len && carryIn; i++) {
		temp = a2->blk[i] + 1;
		carryIn = (temp == 0);
		blk[i] = temp;
	}
	// If the carry was resolved but the larger number
	// still has blocks, copy them over.
	for (; i < a2->len; i++)
		blk[i] = a2->blk[i];
	// Set the extra block if there's still a carry, decrease length otherwise
	if (carryIn)
		blk[i] = 1;
	else
		len--;
}
void BigUnsigned::subtract(const BigUnsigned &a, const BigUnsigned &b) {
	DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
	if (b.len == 0) {
		// If b is zero, copy a.
		operator =(a);
		return;
	} else if (a.len < b.len)
		// If a is shorter than b, the result is negative.
		throw "BigUnsigned::subtract: "
			"Negative result in unsigned calculation";
	// Some variables...
	bool borrowIn, borrowOut;
	Blk temp;
	Index i;
	// Set preliminary length and make room
	len = a.len;
	allocate(len);
	// For each block index that is present in both inputs...
	for (i = 0, borrowIn = false; i < b.len; i++) {
		temp = a.blk[i] - b.blk[i];
		// If a reverse rollover occurred,
		// the result is greater than the block from a.
		borrowOut = (temp > a.blk[i]);
		// Handle an incoming borrow
		if (borrowIn) {
			borrowOut |= (temp == 0);
			temp--;
		}
		blk[i] = temp; // Save the subtraction result
		borrowIn = borrowOut; // Pass the borrow along
	}
	// If there is a borrow left over, decrease blocks until
	// one does not reverse rollover.
	for (; i < a.len && borrowIn; i++) {
		borrowIn = (a.blk[i] == 0);
		blk[i] = a.blk[i] - 1;
	}
	/* If there's still a borrow, the result is negative.
	 * Throw an exception, but zero out this object so as to leave it in a
	 * predictable state. */
	if (borrowIn) {
		len = 0;
		throw "BigUnsigned::subtract: Negative result in unsigned calculation";
	} else
		// Copy over the rest of the blocks
		for (; i < a.len; i++)
			blk[i] = a.blk[i];
	// Zap leading zeros
	zapLeadingZeros();
}
/*
 * About the multiplication and division algorithms:
 *
 * I searched unsucessfully for fast C++ built-in operations like the `b_0'
 * and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer
 * Programming'' (replace `place' by `Blk'):
 *
 *    ``b_0[:] multiplication of a one-place integer by another one-place
 *      integer, giving a two-place answer;
 *
 *    ``c_0[:] division of a two-place integer by a one-place integer,
 *      provided that the quotient is a one-place integer, and yielding
 *      also a one-place remainder.''
 *
 * I also missed his note that ``[b]y adjusting the word size, if
 * necessary, nearly all computers will have these three operations
 * available'', so I gave up on trying to use algorithms similar to his.
 * A future version of the library might include such algorithms; I
 * would welcome contributions from others for this.
 *
 * I eventually decided to use bit-shifting algorithms.  To multiply `a'
 * and `b', we zero out the result.  Then, for each `1' bit in `a', we
 * shift `b' left the appropriate amount and add it to the result.
 * Similarly, to divide `a' by `b', we shift `b' left varying amounts,
 * repeatedly trying to subtract it from `a'.  When we succeed, we note
 * the fact by setting a bit in the quotient.  While these algorithms
 * have the same O(n^2) time complexity as Knuth's, the ``constant factor''
 * is likely to be larger.
 *
 * Because I used these algorithms, which require single-block addition
 * and subtraction rather than single-block multiplication and division,
 * the innermost loops of all four routines are very similar.  Study one
 * of them and all will become clear.
 */
/*
 * This is a little inline function used by both the multiplication
 * routine and the division routine.
 *
 * `getShiftedBlock' returns the `x'th block of `num << y'.
 * `y' may be anything from 0 to N - 1, and `x' may be anything from
 * 0 to `num.len'.
 *
 * Two things contribute to this block:
 *
 * (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left.
 *
 * (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right.
 *
 * But we must be careful if `x == 0' or `x == num.len', in
 * which case we should use 0 instead of (2) or (1), respectively.
 *
 * If `y == 0', then (2) contributes 0, as it should.  However,
 * in some computer environments, for a reason I cannot understand,
 * `a >> b' means `a >> (b % N)'.  This means `num.blk[x-1] >> (N - y)'
 * will return `num.blk[x-1]' instead of the desired 0 when `y == 0';
 * the test `y == 0' handles this case specially.
 */
inline BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num,
	BigUnsigned::Index x, unsigned int y) {
	BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y));
	BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y);
	return part1 | part2;
}
void BigUnsigned::multiply(const BigUnsigned &a, const BigUnsigned &b) {
	DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
	// If either a or b is zero, set to zero.
	if (a.len == 0 || b.len == 0) {
		len = 0;
		return;
	}
	/*
	 * Overall method:
	 *
	 * Set this = 0.
	 * For each 1-bit of `a' (say the `i2'th bit of block `i'):
	 *    Add `b << (i blocks and i2 bits)' to *this.
	 */
	// Variables for the calculation
	Index i, j, k;
	unsigned int i2;
	Blk temp;
	bool carryIn, carryOut;
	// Set preliminary length and make room
	len = a.len + b.len;
	allocate(len);
	// Zero out this object
	for (i = 0; i < len; i++)
		blk[i] = 0;
	// For each block of the first number...
	for (i = 0; i < a.len; i++) {
		// For each 1-bit of that block...
		for (i2 = 0; i2 < N; i2++) {
			if ((a.blk[i] & (Blk(1) << i2)) == 0)
				continue;
			/*
			 * Add b to this, shifted left i blocks and i2 bits.
			 * j is the index in b, and k = i + j is the index in this.
			 *
			 * `getShiftedBlock', a short inline function defined above,
			 * is now used for the bit handling.  It replaces the more
			 * complex `bHigh' code, in which each run of the loop dealt
			 * immediately with the low bits and saved the high bits to
			 * be picked up next time.  The last run of the loop used to
			 * leave leftover high bits, which were handled separately.
			 * Instead, this loop runs an additional time with j == b.len.
			 * These changes were made on 2005.01.11.
			 */
			for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) {
				/*
				 * The body of this loop is very similar to the body of the first loop
				 * in `add', except that this loop does a `+=' instead of a `+'.
				 */
				temp = blk[k] + getShiftedBlock(b, j, i2);
				carryOut = (temp < blk[k]);
				if (carryIn) {
					temp++;
					carryOut |= (temp == 0);
				}
				blk[k] = temp;
				carryIn = carryOut;
			}
			// No more extra iteration to deal with `bHigh'.
			// Roll-over a carry as necessary.
			for (; carryIn; k++) {
				blk[k]++;
				carryIn = (blk[k] == 0);
			}
		}
	}
	// Zap possible leading zero
	if (blk[len - 1] == 0)
		len--;
}
/*
 * DIVISION WITH REMAINDER
 * This monstrous function mods *this by the given divisor b while storing the
 * quotient in the given object q; at the end, *this contains the remainder.
 * The seemingly bizarre pattern of inputs and outputs was chosen so that the
 * function copies as little as possible (since it is implemented by repeated
 * subtraction of multiples of b from *this).
 * 
 * "modWithQuotient" might be a better name for this function, but I would
 * rather not change the name now.
 */
void BigUnsigned::divideWithRemainder(const BigUnsigned &b, BigUnsigned &q) {
	/* Defending against aliased calls is more complex than usual because we
	 * are writing to both *this and q.
	 * 
	 * It would be silly to try to write quotient and remainder to the
	 * same variable.  Rule that out right away. */
	if (this == &q)
		throw "BigUnsigned::divideWithRemainder: Cannot write quotient and remainder into the same variable";
	/* Now *this and q are separate, so the only concern is that b might be
	 * aliased to one of them.  If so, use a temporary copy of b. */
	if (this == &b || &q == &b) {
		BigUnsigned tmpB(b);
		divideWithRemainder(tmpB, q);
		return;
	}
	/*
	 * Knuth's definition of mod (which this function uses) is somewhat
	 * different from the C++ definition of % in case of division by 0.
	 *
	 * We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no
	 * exceptions thrown.  This allows us to preserve both Knuth's demand
	 * that a mod 0 == a and the useful property that
	 * (a / b) * b + (a % b) == a.
	 */
	if (b.len == 0) {
		q.len = 0;
		return;
	}
	/*
	 * If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into
	 * *this at all.  The quotient is 0 and *this is already the remainder (so leave it alone).
	 */
	if (len < b.len) {
		q.len = 0;
		return;
	}
	// At this point we know (*this).len >= b.len > 0.  (Whew!)
	/*
	 * Overall method:
	 *
	 * For each appropriate i and i2, decreasing:
	 *    Subtract (b << (i blocks and i2 bits)) from *this, storing the
	 *      result in subtractBuf.
	 *    If the subtraction succeeds with a nonnegative result:
	 *        Turn on bit i2 of block i of the quotient q.
	 *        Copy subtractBuf back into *this.
	 *    Otherwise bit i2 of block i remains off, and *this is unchanged.
	 * 
	 * Eventually q will contain the entire quotient, and *this will
	 * be left with the remainder.
	 *
	 * subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11.
	 * But on a single iteration, we don't touch the i lowest blocks of blk
	 * (and don't use those of subtractBuf) because these blocks are
	 * unaffected by the subtraction: we are subtracting
	 * (b << (i blocks and i2 bits)), which ends in at least `i' zero
	 * blocks. */
	// Variables for the calculation
	Index i, j, k;
	unsigned int i2;
	Blk temp;
	bool borrowIn, borrowOut;
	/*
	 * Make sure we have an extra zero block just past the value.
	 *
	 * When we attempt a subtraction, we might shift `b' so
	 * its first block begins a few bits left of the dividend,
	 * and then we'll try to compare these extra bits with
	 * a nonexistent block to the left of the dividend.  The
	 * extra zero block ensures sensible behavior; we need
	 * an extra block in `subtractBuf' for exactly the same reason.
	 */
	Index origLen = len; // Save real length.
	/* To avoid an out-of-bounds access in case of reallocation, allocate
	 * first and then increment the logical length. */
	allocateAndCopy(len + 1);
	len++;
	blk[origLen] = 0; // Zero the added block.
	// subtractBuf holds part of the result of a subtraction; see above.
	Blk *subtractBuf = new Blk[len];
	// Set preliminary length for quotient and make room
	q.len = origLen - b.len + 1;
	q.allocate(q.len);
	// Zero out the quotient
	for (i = 0; i < q.len; i++)
		q.blk[i] = 0;
	// For each possible left-shift of b in blocks...
	i = q.len;
	while (i > 0) {
		i--;
		// For each possible left-shift of b in bits...
		// (Remember, N is the number of bits in a Blk.)
		q.blk[i] = 0;
		i2 = N;
		while (i2 > 0) {
			i2--;
			/*
			 * Subtract b, shifted left i blocks and i2 bits, from *this,
			 * and store the answer in subtractBuf.  In the for loop, `k == i + j'.
			 *
			 * Compare this to the middle section of `multiply'.  They
			 * are in many ways analogous.  See especially the discussion
			 * of `getShiftedBlock'.
			 */
			for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) {
				temp = blk[k] - getShiftedBlock(b, j, i2);
				borrowOut = (temp > blk[k]);
				if (borrowIn) {
					borrowOut |= (temp == 0);
					temp--;
				}
				// Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'.
				subtractBuf[k] = temp; 
				borrowIn = borrowOut;
			}
			// No more extra iteration to deal with `bHigh'.
			// Roll-over a borrow as necessary.
			for (; k < origLen && borrowIn; k++) {
				borrowIn = (blk[k] == 0);
				subtractBuf[k] = blk[k] - 1;
			}
			/*
			 * If the subtraction was performed successfully (!borrowIn),
			 * set bit i2 in block i of the quotient.
			 *
			 * Then, copy the portion of subtractBuf filled by the subtraction
			 * back to *this.  This portion starts with block i and ends--
			 * where?  Not necessarily at block `i + b.len'!  Well, we
			 * increased k every time we saved a block into subtractBuf, so
			 * the region of subtractBuf we copy is just [i, k).
			 */
			if (!borrowIn) {
				q.blk[i] |= (Blk(1) << i2);
				while (k > i) {
					k--;
					blk[k] = subtractBuf[k];
				}
			} 
		}
	}
	// Zap possible leading zero in quotient
	if (q.blk[q.len - 1] == 0)
		q.len--;
	// Zap any/all leading zeros in remainder
	zapLeadingZeros();
	// Deallocate subtractBuf.
	// (Thanks to Brad Spencer for noticing my accidental omission of this!)
	delete [] subtractBuf;
}
/* BITWISE OPERATORS
 * These are straightforward blockwise operations except that they differ in
 * the output length and the necessity of zapLeadingZeros. */
void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) {
	DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b));
	// The bitwise & can't be longer than either operand.
	len = (a.len >= b.len) ? b.len : a.len;
	allocate(len);
	Index i;
	for (i = 0; i < len; i++)
		blk[i] = a.blk[i] & b.blk[i];
	zapLeadingZeros();
}
void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) {
	DTRT_ALIASED(this == &a || this == &b, bitOr(a, b));
	Index i;
	const BigUnsigned *a2, *b2;
	if (a.len >= b.len) {
		a2 = &a;
		b2 = &b;
	} else {
		a2 = &b;
		b2 = &a;
	}
	allocate(a2->len);
	for (i = 0; i < b2->len; i++)
		blk[i] = a2->blk[i] | b2->blk[i];
	for (; i < a2->len; i++)
		blk[i] = a2->blk[i];
	len = a2->len;
	// Doesn't need zapLeadingZeros.
}
void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) {
	DTRT_ALIASED(this == &a || this == &b, bitXor(a, b));
	Index i;
	const BigUnsigned *a2, *b2;
	if (a.len >= b.len) {
		a2 = &a;
		b2 = &b;
	} else {
		a2 = &b;
		b2 = &a;
	}
	allocate(a2->len);
	for (i = 0; i < b2->len; i++)
		blk[i] = a2->blk[i] ^ b2->blk[i];
	for (; i < a2->len; i++)
		blk[i] = a2->blk[i];
	len = a2->len;
	zapLeadingZeros();
}
void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) {
	DTRT_ALIASED(this == &a, bitShiftLeft(a, b));
	if (b < 0) {
		if (b << 1 == 0)
			throw "BigUnsigned::bitShiftLeft: "
				"Pathological shift amount not implemented";
		else {
			bitShiftRight(a, -b);
			return;
		}
	}
	Index shiftBlocks = b / N;
	unsigned int shiftBits = b % N;
	// + 1: room for high bits nudged left into another block
	len = a.len + shiftBlocks + 1;
	allocate(len);
	Index i, j;
	for (i = 0; i < shiftBlocks; i++)
		blk[i] = 0;
	for (j = 0, i = shiftBlocks; j <= a.len; j++, i++)
		blk[i] = getShiftedBlock(a, j, shiftBits);
	// Zap possible leading zero
	if (blk[len - 1] == 0)
		len--;
}
void BigUnsigned::bitShiftRight(const BigUnsigned &a, int b) {
	DTRT_ALIASED(this == &a, bitShiftRight(a, b));
	if (b < 0) {
		if (b << 1 == 0)
			throw "BigUnsigned::bitShiftRight: "
				"Pathological shift amount not implemented";
		else {
			bitShiftLeft(a, -b);
			return;
		}
	}
	// This calculation is wacky, but expressing the shift as a left bit shift
	// within each block lets us use getShiftedBlock.
	Index rightShiftBlocks = (b + N - 1) / N;
	unsigned int leftShiftBits = N * rightShiftBlocks - b;
	// Now (N * rightShiftBlocks - leftShiftBits) == b
	// and 0 <= leftShiftBits < N.
	if (rightShiftBlocks >= a.len + 1) {
		// All of a is guaranteed to be shifted off, even considering the left
		// bit shift.
		len = 0;
		return;
	}
	// Now we're allocating a positive amount.
	// + 1: room for high bits nudged left into another block
	len = a.len + 1 - rightShiftBlocks;
	allocate(len);
	Index i, j;
	for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++)
		blk[i] = getShiftedBlock(a, j, leftShiftBits);
	// Zap possible leading zero
	if (blk[len - 1] == 0)
		len--;
}
// INCREMENT/DECREMENT OPERATORS
// Prefix increment
void BigUnsigned::operator ++() {
	Index i;
	bool carry = true;
	for (i = 0; i < len && carry; i++) {
		blk[i]++;
		carry = (blk[i] == 0);
	}
	if (carry) {
		// Allocate and then increase length, as in divideWithRemainder
		allocateAndCopy(len + 1);
		len++;
		blk[i] = 1;
	}
}
// Postfix increment: same as prefix
void BigUnsigned::operator ++(int) {
	operator ++();
}
// Prefix decrement
void BigUnsigned::operator --() {
	if (len == 0)
		throw "BigUnsigned::operator --(): Cannot decrement an unsigned zero";
	Index i;
	bool borrow = true;
	for (i = 0; borrow; i++) {
		borrow = (blk[i] == 0);
		blk[i]--;
	}
	// Zap possible leading zero (there can only be one)
	if (blk[len - 1] == 0)
		len--;
}
// Postfix decrement: same as prefix
void BigUnsigned::operator --(int) {
	operator --();
}
 |